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EVERYWHERE DIVERGENCE OF ONE-SIDED
ERGODIC HILBERT TRANSFORM

by Aihua FAN & Jörg SCHMELING (*)

Abstract. — For a given number α ∈ (0, 1) and a 1-periodic function f ,
we study the convergence of the series

∑∞
n=1

f(x+nα)
n

, called one-sided Hilbert
transform relative to the rotation x 7→ x + α mod 1. Among others, we prove
that for any non-polynomial function of class C2 having Taylor–Fourier series (i.e.
Fourier coefficients vanish on Z−), there exists an irrational number α (actually
a residual set of α) such that the series diverges for all x. We also prove that for
any irrational number α, there exists a continuous function f such that the series
diverges for all x. The convergence of general series

∑∞
n=1 anf(x + nα) is also

discussed in different cases involving the diophantine property of the number α
and the regularity of the function f .
Résumé. — Etant donné un nombre α ∈ (0, 1) et une fonction 1-périodique

f , nous étudions la convergence de la série
∑∞

n=1
f(x+nα)

n
, appelée la transformée

de Hilbert latérale relative à la rotation x 7→ x + α mod 1. Entre autres, nous
démontrons que pour toute fonction non-polynomiale de classe C2 admettant une
série de Taylor–Fourier (i.e. les coefficients de Fourier sont nuls sur Z−), il existe un
α irrationnel (en réalité, un ensemble de α de deuxième catégorie au sens de Baire)
tel que la série diverge pour tous les x. Nous démontrons aussi que pour tout α
irrationnel, il existe une fonction continue f telle que la série diverge pour tous les
x. La convergence d’une série générale

∑∞
n=1 anf(x+ nα) est aussi discutée pour

divers cas où interviennent la propriété diophantienne du nombre α et la régularité
de la fonction f .

1. Introduction

Let f be a Lebesgue integrable function defined on the circle T = R/Z
identified with [0, 1) such that

∫
T f(x)dx = 0 and let α ∈ [0, 1) be a given
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number. We consider the following series

(1.1)
∞∑
n=1

anf(x+ nα)

where the coefficients {an} are complex numbers which are usually assumed
square summable. Let T denote the rotation on T defined by Tx = x+ α.
Then the series (1.1) takes the form

∑∞
n=1 anf(Tnx), which may be called

an ergodic series. Such ergodic series are studied for some hyperbolic sys-
tems T in [9] and in many cases the almost everywhere (a.e.) convergence of∑∞
n=1 anf(Tnx) is ensured by

∑∞
n |an|2 <∞ (for the study of general ran-

dom series of the form
∑
anXn see [6], which is a continuation of [9]). The

method used in [9] gives nothing about (1.1). It seems a delicate problem
to study the pointwise convergence and the convergence in means of (1.1)
in its generality.
If an = 1

n , the series (1.1) becomes the so-called one-sided ergodic Hilbert
transform (EHT for short):

(1.2)
∞∑
n=1

f(x+ nα)
n

.

More generally, for any measure-preserving map T , the one-sided EHT
takes the form

∑∞
n=1

f(Tnx)
n and was studied in the literature. In 1939,

Izumi [13] raised the question of the a.e. convergence of the one-sided EHT.
In 1949, Halmos proved that for any non-atomic invariant measure µ, there
exists a centered function f ∈ L2(µ) such that the one-sided EHT fails to
converge in L2-norm. Later in 1959, Dowker and Erdős [8] constructed a
centered function f ∈ L∞(µ) which has the following stronger divergence

(1.3) lim sup
N→∞

∣∣∣∣∣
N∑
n=1

f(Tnx)
n

∣∣∣∣∣ =∞ a.e.

(see also Del Junco and Rosenblatt [15] and see [1] for additional refer-
ences). In 2009, Cuny [4] proved that for any f ∈ L1(µ), the L1-convergence
of the one-sided EHT implies its a.e. convergence. This answered a question
of Gaposhkin [11] who, in 1996, studied the one-sided EHT associated to a
general unitary operator U on L2(µ) and he gave an example of a unitary
operator U and an f ∈ L2(µ) such that the one-sided EHT converges in
L2-norm, but doesn’t converge a.e. ([11, p. 253-254]). It is still a question to
find effective condition ensuring the a.e. convergence or the Lp-convergence
for general one sided EHTs and even for (1.2).
The dynamics of the rotation Tαx = x+ α mod 1 depends strongly on

the diophantine property of the number α. Consequently, as we shall see,

ANNALES DE L’INSTITUT FOURIER
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the behavior of the associated one-sided EHTs are different for different
α. We shall also see that the high order regularity (even the analyticity)
of f can not ensure the convergence of the one-sided EHT for α’s having
very bad diophantine property (for long time, nα doesn’t come back to
the neighborhood of 0). In some cases, the divergence of (1.2) takes place
everywhere:

(1.4) lim sup
N→∞

∣∣∣∣∣
N∑
n=1

f(x+ nα)
n

∣∣∣∣∣ =∞ ∀ x ∈ [0, 1).

This reinforces the Dowker–Erdős’ result (1.3) for some Liouville rotations.
For f ∈ L1(T) we denote by f̂(n) the n-th Fourier coefficient of f defined

by
∫
T f(x)e−2πinxdx. We adopt the notation

‖f‖A(T) =
∞∑

n=−∞
|f̂(n)|.

For 0 < γ 6 1, Lipγ will denote the space of functions on T such that
|f(x)− f(y)| 6 C|x− y|γ . For x ∈ T we denote

‖x‖ = inf
n∈Z
|x− n|.

Notice that for all x, y ∈ T we have the triangle inequality ‖x + y‖ 6
‖x‖+ ‖y‖ and the estimate

2‖x‖ 6 |sin πx| 6 π‖x‖.

In this note we are concentrated on the series (1.1) and (1.2). Our results
are listed below.

(1) For any non-polynomial function f ∈ C2(T) with f̂(n) = 0 for
n < 0, there exists a residual set Rf depending on f such that for
every α ∈ Rf the series (1.2) diverges for every x (Theorem 2.1).

(2) For any non-polynomial function f ∈ C2(T), there exists a residual
set Rf depending on f such that for every α ∈ Rf the series (1.2)
diverges for almost all x (Theorem 2.2).

(3) For any irrational number α, there exists a continuous function f
such that the series (1.2) diverges for every x (Theorem 2.3).

(4) For all f ∈ L2 and for almost all α, the series (1.2) converges for
almost all x (Theorem 3.1).

(5) If
∑∞
n∈Z\{0}

|f̂(n)|
‖nα‖ < ∞, the series (1.2) converges uniformly in x

(Theorem 3.2).
(6) If

∑∞
n∈Z\{0}

|f̂(n)|2
‖nα‖2 <∞, the series (1.2) converges in L2-norm and

for almost every x (Theorem 3.5).

TOME 68 (2018), FASCICULE 6
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(7) Let f ∈ L2(T) with f̂(0) = 0 and |f̂(k)| 6 C|k|−β where C > 0
and β > 1/2 are two constants. Let α be an irrational number with
convergents {pn/qn}. The series (1.2) converges in L2-mean and a.e.
if the following condition is satisfied

∞∑
m=1

log2 qm+1

q2β
m

<∞

(Theorem 3.6).
(8) Let α be an irrational number with convergents {pn/qn}. For the

function f defined by the lacunary series
∑∞
m=1 f̂(qm)e2πiqmx with∑

m>1 |f̂(qm)|2 < ∞, the series (1.2) converges in L2-mean if and
only if

∞∑
m=1
|f̂(qm)|2 log2 qm+1 <∞

(Proposition 3.7).
(9) Let α = p/q be a rational number where p, q are coprime. For any

f ∈ L1(T) with
∫
f(x)dx = 0, the series

∑
anf(x+ nα) converges

almost everywhere iff for any j = 0, 1, . . . , q−1, the numerical series∑
k akq+j converges (Theorem 3.8).

Notice that for any polynomial f (of cause f̂(0) = 0) and any number
α, the series (1.2) converges everywhere. But there are analytic functions
f and irrational numbers α such that the series (1.2) diverges everywhere.

The behavior of the series (1.2) depends on that of partial sums of the
series

∑∞
n=1 n

−1e2πinx. Notice that its real and imaginary parts are:
∞∑
n=1

1
n

cos 2πnx = log 1
2|sin πx| ,

∞∑
n=1

1
n

sin 2πnx = π

(
1
2 − x

)
.

These two series converge for all points x ∈ (0, 1). It is natural that the
behavior of the series (1.1) will depend on that of partial sums of the series∑∞
n=1 ane

2πinx.
Section 2 will be devoted to the divergence of the one-sided

EHT (1.2). Section 3 will be devoted to different convergences of the general
ergodic series (1.1).

2. Divergence of one-sided ergodic Hilbert transform

We first study the divergence of the series
∞∑
n=1

f(x+ nα)
n

.

ANNALES DE L’INSTITUT FOURIER
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We say f ∈ L1(T) admits a Taylor–Fourier series if f̂(n) = 0 for n 6 −1.
In the following, ζ(s) denotes the Riemann ζ-function

∑∞
n=1 n

−s.

2.1. Statements on divergence

We first state three divergence statements that we will prove.

Theorem 2.1. — Let f ∈ L1(T) satisfy the following conditions
(1) f̂(k) = 0 if k 6 0; f̂(k) 6= 0 for infinitely many k.
(2) there exists s > 1 such that ζ(s) < 2 and lim sup |k|s|f̂(k)| = 0.

Then there exists a residual set R ⊂ [0, 1] of irrational numbers such that
for each α ∈ R, we have

lim sup
n→+∞

∣∣∣∣∣
N∑
n=1

f(x+ nα)
n

∣∣∣∣∣ = +∞, ∀ x ∈ [0, 1).

The solution of ζ(s0) = 2 verifies 1 < s0 = 1.72865 . . . < 2. The s in the
condition (2) must verify s > s0 > 1. So the condition (2) implies that f
admits an absolutely convergent Fourier series. All non polynomial func-
tions of class C2 admitting Taylor–Fourier series satisfies the conditions (1)
and (2). The following analytic functions are examples

f(x) =
∞∑
n=1

rne2πinx = re2πix

1− re2πix = re2πix − r2

1− 2r cos(2πx) + r2 (0 < r < 1).

Theorem 2.2. — Let f : T → R be an integrable function whose
Fourier coefficients verify the following conditions

(1) f̂(0) = 0, f̂(k) 6= 0 for infinitely many k.
(2) there exists s > 1 such that ζ(s) < 2 and lim sup |k|s|f̂(k)| = 0.

Then there exists a residual set R ⊂ [0, 1] of irrational numbers such that
for each α ∈ R, we have

lim inf
N→+∞

N∑
n=1

f(x+ nα)
n

= −∞, lim sup
N→+∞

N∑
n=1

f(x+ nα)
n

= +∞,

for almost every x.

For the last theorem, we have succeeded in proving the a.e. divergence.
We wonder if the everywhere divergence is still true.

TOME 68 (2018), FASCICULE 6
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Theorem 2.3. — For any irrational number α ∈ (0, 1), there exists a
continuous function f : T → C with

∫
T f(x)dx = 0 having an absolutely

convergent Fourier series such that

lim sup
N→∞

∣∣∣∣∣
N∑
n=1

f(x+ nα)
n

∣∣∣∣∣ = +∞ ∀ x ∈ [0, 1).

In order to prove these three theorems, we develop f into its Fourier series
and we shall see that the behavior of the one-sided EHT relies heavily on
that of the following trigonometric polynomials

GN (x) =
N∑
n=1

e2πinx

n
.

We shall also need a result due to Jacobsthal which concerns the biggest
gap between natural numbers coprime with a given natural number. We get
together such preliminaries as several lemmas before we prove the theorems.

2.2. Some lemmas

Lemma 2.4. — Assume 0 < c < 1/2. Then

sup
N>1

sup
‖x‖>c

|GN (x)| 6 π

c
.

Proof. — Notice thatGN (1/2) =
∑N
n=1

(−1)n
n so that supN>1 |GN (1/2)|6

1. Also notice that

|G′N (x)| = 2π

∣∣∣∣∣
N∑
n=1

e2πinx

∣∣∣∣∣ 6 2π
|sin πx| 6

π

c

if 1/2 > |x| > c. Then, by the Newton–Leibniz formula we get

|GN (x)| 6 |GN (1/2)|+

∣∣∣∣∣
∫ x

1/2
G′N (y)dy

∣∣∣∣∣ 6 1 + π

2c 6
π

c
. �

Lemma 2.5.

GN (x) = logN − 2
N∑
n=1

sin2 πnx

n
+O(1)

where the constant in O(1) is uniform in x and in N . In particular, if
|xN | 6 C for some constant C > 0, then

GN (x) = logN +O(1)

where the constant in O(1) doesn’t depend on x and N , but on C.

ANNALES DE L’INSTITUT FOURIER
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Proof.

GN (x)−GN (0) =
N∑
n=1

e2πinx − 1
n

.

Its imaginary part is
∑N
n=1

sin(2πnx)
n which is uniformly bounded in x and

in N (see [16], p. 4). Its real part is equal to
N∑
n=1

cos(2πnx)− 1
n

= −2
N∑
n=1

sin2(πnx)
n

.

We conclude for the first assertion by observing that GN (0) = logN+O(1).
Suppose |xN | 6 C. Just using | sin x| 6 |x|, we get

N∑
n=1

sin2 πnx

n
6 π2x2

N∑
n=1

n = π2x2N(N + 1)/2 6 π2C2. �

A corollary is that if |Nx| 6 C, then we have.

sup
m>2
|GN (mx)| 6 |GN (x)|+O(1) = logN +O(1).

Lemma 2.6. — Let (φk) ⊂ [0, 1) be an arbitrary sequence of numbers
and let (nk) ⊂ N a sequence of increasing positive integers. For any interval
I ⊂ [0, 1) of positive length, the limsup set

lim sup
k→∞

{x ∈ [0, 1) : nkx+ φk ∈ I mod 1}

has full Lebesgue measure.

Proof. — The space [0, 1) identified with the circle is compact. The se-
quence (φk) has a limit point, say φ. Without loss of generality, we can
assume that φk tends to φ as k tends to infinity. So, the intervals −φk + I

contains a common interval I ′ with positive length when k is sufficiently
large. We can also assume that I ′ ⊂ I −φk for all k. Since nk is increasing,
for almost all points x, the sequence nkx (mod 1) is uniformly distributed.
So, for almost every point x, nkx ∈ I ′ mod 1 for infinitely many k. A
fortiori, nkx+ φk ∈ I mod 1 for infinitely many k. �

Lemma 2.7. — Suppose that {ck}k>1 is a sequence of numbers such that
ck 6= 0 for infinitely many k’s and lim sup |k|s|ck| = 0 for some s > 1. Then
there exists a strictly increasing subsequence {k`}`>1 of positive integers
such that for any ` > 1, we have

(ζ(s)− 1)|ck` | >
∞∑
m=2
|cmk` |

where ζ(s) =
∑∞
n=1 n

−s.

TOME 68 (2018), FASCICULE 6
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Proof. — Let k` (` > 1) be defined inductively in the following way. Let
A1 be the set of maximizing points of maxk>1|k|s|ck|. Since lim sup |k|s|ck|=
0 and there are infinitely many ck 6= 0, A1 is non-empty and finite. Let

k1 = maxA1.

Now let A2 be the set of maximizing points of maxk>k1 |k|s|ck|, which is
also non-empty and finite. Let

k2 = maxA2.

It is clear that k1 < k2. Inductively, we define

k`+1 = max
{
m > k` : |m|s|cm| = max

k>k`
|k|s|ck|

}
.

By the definition of k`, we have

∀ m > 2, ks` |ck` | > (mk`)s|cmk` |, i.e. m−s|ck` | > |cmk` |.

Taking sum over m > 2, we get the desired result. �

Let qn(α) denote the denominator of n-th convergent of α. Let ϕ : N→ N
be an increasing function. Define

Bϕ(α) = {qn(α) : ϕ(qn(α)) < qn+1(α)}.

Usually ϕ increases very fast. So, we asked that for qn(α) ∈ Bϕ(α) the
denominator qn+1(α) next to qn(α) is much larger than qn(α).

Lemma 2.8. — Let Λ ⊂ N be an arbitrary infinite subset of natural
numbers. For generic α, we have

#(Λ ∩ Bϕ(α)) =∞.

We will apply Lemma 2.8 to Λ = {k`}, the sequence appearing in Lem-
ma 2.7, with ϕ(n) = e∆n/c(n) (∆ > 1 being a large number and c(n) being
a sequence tending to 0). In order to prove Lemma 2.8 we need a result
due to Jacobsthal.

2.3. An estimate on Jacobsthal’s function

Let N = pα1
1 . . . pαkk be the prime factorization of a natural number

N ∈ N. Assume that

1 = m1 < m2 < · · · < mi < mi+1 < · · ·

ANNALES DE L’INSTITUT FOURIER
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are the integers which are coprime with N . Jacobsthal’s function is defined
as

g(N) = max
16i<∞

(mi+1 −mi), (N ∈ N).

What we will need is g(N) = o(N) as N → ∞. The estimate on g(N)
below was known to Jacobsthal [14]. But for completeness we include a
proof. There are much better estimates known (see for example [12]), but
the one presented here suffices for our purpose.

Theorem 2.9. — LetN = pα1
1 . . . pαkk . Then g(N) 6 (k+1)

(
2k − 1

)
+1.

Proof. — Since the definition of g(N) implies that any interval of length
g(N) contains at least one number coprime to N , we need to find a lower
bound on m ∈ N such that for any integer n the interval I := [n, n+m−1]
contains at least one integer coprime with N . Any such a lower bound will
be an upper bound of g(N).
Let 1 6 j 6 k and let 1 6 i1 < · · · < ij 6 k be given. We denote by

K(i1, . . . , ij) the number of integers l ∈ I that are divisible by pi1 . . . pij .
These integers l are the following ones

n 6 pi1 . . . pij < 2pi1 . . . pij < · · · < K(i1, . . . , ij)pi1 . . . pij 6 n+m− 1.

The number K(i1, . . . , ij) depends on n. But it has the following bounds
independent of n:[

m

pi1 . . . pij

]
− 1 6 K(i1, . . . , ij) 6

[
m

pi1 . . . pij

]
+ 1.

By the inclusion-exclusion principle, the number L of natural numbers l ∈ I
with gcd(l, N) > 1 is given by

L =
∑

16i6k
K(i)−

∑
16i1<i26k

K(i1, i2) + · · ·+ (−1)k+1K(1, . . . , k).

Hence the number M of natural numbers l ∈ I that are coprime with N

verifies

M = m− L

= m−
∑

0<i6k
K(i) +

∑
0<i1<i26k

K(i1, i2) + · · ·+ (−1)k+2K(1, . . . , k)

> m ·
k∏
i=1

(
1− 1

pi

)
−

k∑
i=1

(
k

i

)
> m ·

k∏
i=1

i

i+ 1 −
k∑
i=1

(
k

i

)
> m · 1

k + 1 −
(
2k − 1

)
.

Therefore M > 0 if m > (k + 1)
(
2k − 1

)
+ 1. �

TOME 68 (2018), FASCICULE 6
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Since N > 2 · 3k(N)−1, we have

k(N) 6 log3

(
3
2N
)

= δ log2

(
3
2N
)

where δ = 1/ log2 3 < 1. We conclude

lim
N→∞

g(N)
N
6 lim
N→∞

k(N) · 2k(N)

N
6 lim
N→∞

δ log2
( 3

2N
)
·
( 3

2N
)δ

N
= 0.

2.4. Proof of Lemma 2.8

Let n1 < n2 < · · · < nk < . . . be the elements of Λ. For k, l ∈ N we
consider the sets

Bk,l := {α ∈ R : ql(α) = nk and ql+1(α) > ϕ(ql(α)},

Bk :=
⋃
l>1

Bk,l.

These sets are open. Moreover we have

Bϕ :=
⋂
N

⋃
k>N

Bk = {α : #(Λ ∩ Bϕ(α)) =∞} .

This set is a Gδ–set and it is left to prove that it is dense.
We observe first that if p ∈ N and gcd(p, nk) = 1, then nk is an approx-

imant for p/nk. Moreover if

p

nk
= a0 +

1

a1 +
1

a2 +
. . . +

1
al

,

then p = pl(p/nk), nk = ql(p/nk). Furthermore, for any integer a`+1, let

pl+1

ql+1
:= a0 +

1

a1 +
1

a2 +
. . . +

1

al +
1

al+1

.

Then we have pl(pl+1/ql+1) = pl and

(2.1) ql(pl+1/ql+1) = nk.

ANNALES DE L’INSTITUT FOURIER
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Moreover we have gcd(pl+1, ql+1) = 1, pl+1 = al+1pl + pl−1 and ql+1 =
al+1ql + ql−1. Hence if al+1 is sufficiently large,

(2.2) pl+1

ql+1
∈ Bk

Now

(2.3)
∣∣∣∣ pnk − pl+1

ql+1

∣∣∣∣ =
∣∣∣∣plql − pl+1

ql+1

∣∣∣∣ = 1
nkql+1

<
1
n2
k

.

It follows from (2.1), (2.2) and (2.3) that it remains to show that the
reduced fractions p/nk are getting more and more dense as k increases. In
fact, by Theorem 2.9, g(nk) = o(nk). This implies that two consecutive
reduced fraction of the form p/nk have a distance of order o(1) as k tends
to infinity, which completes the proof of Lemma 2.8.
We finish our preliminaries with two facts on continued fractions which

will be frequently used later:

∀ n > 1, 1
2qn+1

6 ‖qnα‖ 6
1

qn+1
(2.4)

∀ m < qn, ‖mα‖ > ‖qnα‖.(2.5)

We refer to Khinchin ([17, Theorem 9 and Theorem 13, Theorem 16]).

2.5. Proofs of Theorem 2.1 and of Theorem 2.2

We first prove Theorem 2.2. Let ck = f̂(k). The sequence {ck}k>1 satisfies
the condition of Lemma 2.7. Take the sequence Λ = {k`} in Lemma 2.7.
Apply Lemma 2.8 to Λ and ϕ(n) = e∆n/c(n), where the constant ∆ > 1
will be determined later and

c(n) = min{|ck` | : k` 6 n}, (n > 1).

Then we get a residual set Rf such that for each α ∈ Rf there exists a
subsequence of {k`} which is a subsequence {qn`(α)} of {qn(α)} (which
depends on α!) such that

(2.6) ∀ ` > 1, c(qn`(α)) log qn`+1(α) > ∆qn`(α).

The number α being fixed for the discussion below, we will simply write
qn` and qn`+1 for qn`(α) and qn`+1(α). Recall that qn`(α) and qn`+1(α) are
the denominators of two consecutive convergents of α.

The N -th partial sum of the series in question can be written as

SN (x) =
N∑
n=1

f(x+ nα)
n

=
∑

k∈Z\{0}

cke
2πikxGN (kα).
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Let 0 < ε < 1/4 be a fixed small number. For any fixed `, we will consider
the partial sum with N = [εqn`+1]. We will cut the sum over k into four
subsums:

Sεqn`+1(x) = S`,A(x) + S`,B(x) + S`,C(x) + S`,D(x)

where

S`,A(x) =
∑
|k|<qn`

cke
2πikxGεqn`+1(kα)

S`,B(x) =
∑

|k|>εqn`+1

cke
2πikxGεqn`+1(kα)

S`,C(x) =
∑ ′

qn`<|k|<εqn`+1

cke
2πikxGεqn`+1(kα).

S`,D(x) =
∑

16|m|6εqn`+1/qn`

cmqn` e
2πimqn`xGεqn`+1(mqn`α)

where
∑′ means that the sum is taken over k’s which are not multiples of

qn` . As we shall see, S`,D(x) will be the principal term.
Since f is real, c−k = ck and consequently all the four sums above are

real.
For |k| < qn` , we have ‖kα‖ > 1/qn` . So, by Lemma 2.4, we have

(2.7) |S`,A(x)| 6
∑
|k|<qn`

|ck| · πqn` 6 π‖f‖A(T)qn` .

Using the trivial estimate |GN (x)| 6 logN + γ+ o(1) (γ being the Euler
constant) and the hypothesis |ck||k|s = o(1), we get

(2.8) |S`,B(x)| 6
∑

|k|>εqn`+1

1
ks
· log(εqn`+1) = O

(
log qn`+1

qs−1
n`+1

)
= O(1)

For any k such that qn` < k < εqn`+1 and qn` 6 | k, we have

k = `qn` + r (1 6 ` 6 εqn`+1/qn` , 1 6 r < qn`).

Then

‖kα‖ > ‖rα‖ − ‖`qn`α‖ >
1
qn`
− εqn`+1

qn`
· 1
qn`+1

= 1− ε
qn`

.

By Lemma 2.4, for such k we have

|Gεqn`+1(kα)| 6 π

1− εqn`
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so that

(2.9) |S`,C(x)| 6
∑ ′

qn`<|k|<εqn`+1

|ck| ·
π

1− εqn` 6
π

1− ε‖f‖A(T)qn` .

Since c−k = ck, we have

|S`,D(x)| > 2|cqn` ||Gεqn`+1(qn`α)||cos(2πqn`x+ φqn` )|

− 2
∞∑
m=2
|cmqn` ||Gεqn`+1(mqn`α)|

where φqn` is the sum of the argument of cqn` and the argument of
Gεqn`+1(qn`α). Since ‖qn`α‖ · εqn`+1 6 ε, by Lemma 2.5, we have

|Gεqn`+1(qn`α)| = log qn`+1 +O(1);
|Gεqn`+1(mqn`α)| 6 log qn`+1 +O(1) (∀ m > 2).

So,

|S`,D(x)|(2.10)

> 2
(
|cqn` ||cos(2πqn`x+ φqn` )| −

∞∑
m=2
|cmqn` |

)
(log qn`+1 +O(1)).

When cos(2πqn`x + φqn` ) is positive and when the difference on the right
hand side of (2.10) is positive, we will have S`,D(x) > 0 and we can take
off the absolute value on the left hand side of (2.10).
Take δ > 0 such that ζ(s) + δ < 2. Apply Lemma 2.6 to a small interval

I = (−η, η) centered at zero such that cos 2πη > ζ(s) − 1 + δ. For almost
all x, there exist infinitely many qn` depending on x such that

cos(2πqn`x+ φqn` ) > ζ(s)− 1 + δ.

For such `, if we use Lemma 2.7 we get

(2.11) S`,D(x) > 2δ|cqn` |(log qn`+1 +O(1)).

Combining (2.7), (2.8), (2.9) and (2.11), we obtain that for almost every x
we have

lim sup
N→+∞

N∑
n=1

f(x+ nα)
n

= +∞.

We choose

∆ = π

2δ ‖f‖A(T)

(
1 + 1

1− ε

)
.
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We can also prove that for almost every x we have

lim inf
n→∞

N∑
n=1

f(x+ nα)
n

= −∞.

The only change to do is to take a small interval centered at 1/2 instead
of I = (−η, η). Thus we have proved Theorem 2.2.

The proof of Theorem 2.1 is easier. Because, in this case, f admits a
Taylor–Fourier series and in the place of (2.10) we have directly the esti-
mate

|S`,D(x)| >
(
|cqn` | −

∞∑
m=2
|cmqn` |

)
(log qn`+1 +O(1)).

2.6. Proof of Theorem 2.3

The idea of proof is the same as above. Take a summable sequence of
positive numbers {c`}`>1 such that

∀ ` > 1, c` >

∞∑
j=`+1

cj .

For example, c` = r` with 0 < r < 1/2. Take a very sparse subsequence
{qn`} from the denominators {qn} of the convergents pn/qn of α such that

lim
`→∞

R` log qn`+1

qn`−1+1
= +∞, where R` = c` −

∞∑
j=`+1

cj .

Then define

f(x) =
∞∑
j=1

cje
2πiqnjx.

It is a continuous function with ‖f‖A(T) <∞. Notice that it is a lacunary
series in the sense that f̂(n) = 0 for n 6= qnj . We can write

εqn`+1∑
k=1

f(x+ kα)
k

=
∞∑
j=1

cje
2πiqnjxGεqn`+1(qnjα).

Cut the sum into
εqn`+1∑
k=1

f(x+ kα)
k

= S`,A(x) + S`,B(x) + S`,D(x)
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where

S`,A(x) =
`−1∑
j=1

cje
2πiqnjxGεqn`+1(qnjα)

S`,B(x) =
∞∑

j=`+1
cje

2πiqnjxGεqn`+1(qnjα)

S`,D(x) = c`e
2πiqn`xGεqn`+1(qn`α).

Then ∣∣∣∣∣
εqn`+1∑
k=1

f(x+ kα)
k

∣∣∣∣∣ > |S`,D(x)| − |S`,A(x)| − |S`,B(x)|.

For j < `, we have ‖qnjα‖ > ‖qn`−1α‖ > 1/(2(qn`−1+1)). Then by Lem-
ma 2.4,

|S`,A(x)| 6 2π‖f‖A(T)(qn`−1+1).

By the trivial estimate |GN (x)| 6 logN +O(1), we get

|S`,B(x)| 6
∑
j>`+1

|cj |(log(εqn`+1) +O(1)).

Since ‖qn`α‖ 6 1/qn`+1, we have ‖qn`α‖ · εqn`+1 6 ε. So, by Lemma 2.5,

|S`,D(x)| > |c`|(log(εqn`+1) +O(1)).

Thus∣∣∣∣∣
εqn`+1∑
k=1

f(x+ kα)
k

∣∣∣∣∣ > R`(log qn`+1 +O(1))− 2π‖f‖A(T)(qn`−1+1).

The right hand side tends to infinity.

3. Convergences of
∑∞
n=1 anf(x+ nα)

Now we present some results on the convergence (a.e. convergence, L2-
convergence or uniform convergence) of the series

∞∑
n=1

anf(x+ nα).
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3.1. Almost everywhere convergence for almost all α

Theorem 3.1. — Assume f ∈ L2(T) with
∫
f(x)dx = 0. For almost all

α ∈ (0, 1) and almost all x ∈ (0, 1), the series
∑
anf(x + nα) converges if

one of the following conditions is satisfied:
(1)

∑
|an|2 log2 n <∞;

(2)
∑
|an|2 logn < ∞ and f ∈ A(T) (in particular f ∈ Lipγ with

γ > 1/2).

Proof.
(1). — On the product space T × T, the product measure dα ⊗ dx is

considered as a probability measure. Then we consider the random variables

Xn = x+ nα (mod 1), (n > 0).

We claim that any couple Xn and Xm with n 6= m are P-independent. In
fact, take any two bounded Borel functions g1 and g2 on T. We can prove
that

Eg1(Xn)g2(Xm) = Eg1(Xn)Eg2(Xm)

where E refers to the expectation with respect to dα ⊗ dx. In fact, by
developing g1 and g2 into their Fourier series, we get

Eg1(Xn)g2(Xm) =
∑

ĝ1(k1)ĝ2(k2)Ee2πi(k1+k2)x+(nk1+mk2)α

=
∑

k1+k2=0
nk1+mk2=0

ĝ1(k1)ĝ2(k2)

= ĝ1(0)ĝ2(0) = Eg1(Xn)Eg2(Xm).

Since
∫
f(x)dx = 0, the above independence implies the orthogonality of

the system {f(Xn)} in L2(dα ⊗ dx). Then, by the Menshov–Rademacher
theorem and the hypothesis

∑
|an|2 log2 n < ∞, the random series∑

anf(Xn) converges dα⊗ dx-almost everywhere. Hence, we conclude by
using the Fubini theorem.
(2). — Assume that f ∈ A(T) and

∑∞
n=1 |an|2 logn < ∞. By a result

of Gaposhkin [10] which is a consequence of the Carleson theorem on the
a.e. convergence of Fourier series, for any given x, the series

∑
anf(x +

nα) converges for almost every α. So, by the Fubini theorem, we conclude
that for almost every α, the series

∑
anf(x + nα) converges for almost

every x. �

Notice that no triple X`, Xm, Xn are P-independent.
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3.2. Uniform convergence when α is diophantine

Theorem 3.2. — Let α be an irrational number, and let f ∈ L1(T)
with

∫
f(x)dx = 0, and (an) ⊂ C. Suppose∑
n∈Z\{0}

|f̂(n)|
‖nα‖

<∞; lim
n→∞

an = 0,
∞∑
n=0
|an − an+1| <∞.

Then the series
∑∞
n=0 anf(x + nα) converges everywhere, even uniformly

on x.

Proof. — Under the first condition, the following cocycle equation ad-
mits a unique solution g ∈ A(T):

g(x+ α)− g(x) = f(x).

Actually, by taking the Fourier transform, we find the solution

g(x) =
∑

n∈Z\{0}

f̂(n)
e2πinα − 1e

2πinα.

Thus ∑
n>0

anf(x+ nα) =
∑
n>0

an[g(x+ (n+ 1)α)− g(x+ nα)].

Since an → 0, by a summation by parts, we get∑
n>0

anf(x+ nα) =
∑
k>0

(ak−1 − ak)g(x+ kα)

(with convention a−1 = 0). So
∑
|an − an+1| < ∞ implies the uniform

convergence of the series in question. �

Recall that the irrationality measure (also called Liouville–Roth con-
stant) of an irrational number α, denoted by µ(α), is defined by

µ(α) = inf
{
µ : ∃ A > 0,∀ p ∈ Z,∀ q ∈ N∗,

∣∣∣∣α− p

q

∣∣∣∣ > A

qµ

}
.

It is well known that µ(α) = 2 for almost all irrational numbers α (Khint-
chine), µ(α) = 2 for all irrational algebraic numbers (Roth), µ(e) = 2,
µ(π) < 7, 60630853, µ(log 2) < 3, 57455391. If µ(α) = ∞, α is called a
Liouville number. The set of Liouville numbers is a Gδ dense set, but its
Hausdorff dimension is zero.

Corollary 3.3. — Suppose f ∈ Cβ(T) with β > µ(α) and
∫
f(x)dx =

0. Then
∑
anf(x+ nα) converges uniformly (on x) if

lim an = 0,
∑
|an − an+1| <∞.

TOME 68 (2018), FASCICULE 6



2494 Aihua FAN & Jörg SCHMELING

Proof. — By the hypothesis on f , we have |f̂(n)| 6 B|n|−β . By the
definition of µ(α) we have ‖nα‖ > A|n|−µ+1 for µ > µ(α). Thus∑ |f̂(n)|

‖nα‖
6
B

A

∑ 1
|n|β−µ+1 <∞. �

Corollary 3.4. — For almost all α, for any f ∈ C2+ε with
∫
f(x)dx =

0, the series
∑
anf(x+ nα) converges uniformly (on x) if

lim an = 0,
∑
|an − an+1| <∞.

3.3. L2-convergence and a.e. convergence when α is diophantine

Theorem 3.5. — Let f ∈ L2(T) with
∫
f(x)dx = 0. The series∑

anf(x+ nα) converges in L2-norm if and only if

(3.1) lim
p,q→∞

∑
k∈Z
|f̂(k)|2

∣∣∣∣∣
q∑

n=p
ane

2πinkα

∣∣∣∣∣
2

= 0.

The condition (3.1) is satisfied when the series
∑∞
n=1 ane

2πinx converges
uniformly (on x). The condition (3.1) is also satisfied when

(3.2)
∑

n∈Z\{0}

|f̂(n)|2

‖nα‖2
<∞; lim

n→∞
an = 0,

∞∑
n=1
|an − an+1| <∞.

Proof. — We have∫
T
f(x+ nα)f(x)dx =

∑
k∈Z
|f̂(k)|2e2πiknα.

It follows that the spectral measure of f is the following discrete measure

σf =
∑
k∈Z
|f̂(k)|2δkα.

By the spectral lemma, we have∫ ∣∣∣∣∣
q∑
p

anf(x+ nα)

∣∣∣∣∣
2

dx =
∫ ∣∣∣∣∣

q∑
p

ane
2πint

∣∣∣∣∣
2

σf (t).

Now we can conclude for the first assertion by the Cauchy criterion for
L2-convergence.
The second assertion is an immediate consequence.
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For the third assertion, we check the condition (3.1) by an Abel summa-
tion and the fact that

∑n
k=0 e

2πikx = O(‖x‖−1) and obtain∣∣∣∣∣
q∑

n=p
ane

2πinkα

∣∣∣∣∣ 6 C
(
|ap|+ |aq|+

1
‖kα‖

q−1∑
n=p
|an − an+1|

)
for some constant C > 0. �

In particular, a sufficient condition for
∑∞
n=1

f(x+nα)
n to converge in L2-

norm is
∑
n∈Z\{0}

|f̂(n)|2
‖nα‖2 < ∞. By Cuny’s result,

∑
n∈Z\{0}

|f̂(n)|2
‖nα‖2 < ∞

implies the a.e. convergence of
∑ f(x+nα)

n .
Similarly, a sufficient condition for

∑
n=1

(−1)n
n f(x+ nα) to converge in

L2-norm is
∑
n∈Z\{0}

|f̂(n)|2
‖nα−1/2‖2 <∞. We should only notice that

q∑
p

(−1)n

n
e2πinkα =

q∑
p

1
n
e2πin(kα−1/2)

and then make an Abel summation. It seems that the oscillation of (−1)n =
e2πin·1/2 doesn’t promote the convergence. But for a fixed α and for almost
all β ∈ (0, 1), the series

∑
e2iπnβ

n f(x + nα) converges in L2 and a.e. This
is a consequence of the result of Cuny [4] applied to the Dunford–Schwartz
operator

Tf(x) = e2iπβf(x+ α).

The size of the exceptional set of β was studied by Chevallier, Cohen and
Conze [2]. Another oscillation sequence is the Möbius function µ(n). It can
be deduced from Cuny and Weber [7] that for any f ∈ Lp (p > 1), the
series

∑ µ(n)
n f(x+ nα) converge in Lp and a.e.

The sufficient condition (3.2) is not so satisfactory, because
∑ |f̂(n)|2
‖nα‖2 <

∞ is not so transparent. If we assume f̂(k) = O(|k|−β). Then
∑ |f̂(n)|2
‖nα‖2 <∞

is ensured by β > µ(α)− 1/2 (> 3/2). This can be improved to β > 1/2 in
the case of the one-sided EHT (1.2). More precisely, we have the following
theorem.

Theorem 3.6. — Let f ∈ L2(T) with f̂(0) = 0 and |f̂(k)| 6 C|k|−β
where C > 0 and β > 1/2 are two constants. Let α be an irrational number
with convergents {pn/qn}. The one-sided EHT

∑∞
n=1

f(x+nα)
n converges in

L2-mean and a.e. if the following condition is satisfied

(3.3)
∞∑
m=1

log2 qm+1

q2β
m

<∞.
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Proof. — The proof is based on Gaposhkin’s necessary and sufficient
condition for L2- convergence ([11]):

∞∑
n=1

logn
n3

∥∥∥∥∥
n∑
`=1

f( ·+ `α)

∥∥∥∥∥
2

L2(σf )

<∞.

(Gaposhkin’s condition holds for unitary operators. See also [1]. Cohen–
Lin [3] generalized it to normal contractions. Other generalization were
obtained by Cuny [5]). In the irrational rotation case, the spectral measure
σf is the discrete measure

∑
k∈Z |f̂(k)|2δkα on the circle T. Thus the above

condition takes the following form

(3.4)
∑
k∈Z
|f̂(k)|2

∞∑
n=1

logn
n3 |Fn(kα)|2 <∞

where

Fn(t) =
n∑
`=1

e2πi` t = e(n+1)πi sin πnt
sin πt .

We are going to verify that the condition (3.4) is implied by the condi-
tion (3.3).
We cut the sum over k in (3.4) into blocks qm 6 |k| < qm+1 (m > 1) and

then decompose the m-th block into three parts:

Pm,1 = {k : qm 6 |k| < εqm+1, qm | k}
Pm,2 = {k : qm 6 |k| < εqm+1, qm 6 | k}
Pm,3 = {k : εqm+1 6 |k| < qm+1}

where 0 < ε 6 1/4 is fixed. According to these three cases of k, we are
going to estimate

∑∞
n=1

logn
n3 |Fn(kα)|2.

We make first a remark. Let k = `qm be a multiple of qm with 1 6 ` 6
1
2qm+1. We have 1

2qm+1
6 ‖qmα‖ 6 1

qm+1
which is very small and then

‖kα‖ = ‖`qmα‖ = `‖qmα‖ and

(3.5) `

2qm+1
6 ‖`qmα‖ 6

`

qm+1
6

1
2 .

So, qmα is very small and the distance of `qmα from 0 increases with `

(1 6 ` 6 qm+1/2).
Assume k ∈ Pm,1. We have k = `qm for some 1 6 ` 6 εqm+1/qm. By the

first inequality in (3.5), we get |sin π`qmα| > `
qm+1

> 1
qm+1

so that

max
k∈Pm,1

|Fn(kα)| 6 max (qm+1, n) .
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Thus if 1 6 ` < εqm+1/qm, we have
∞∑
n=1

logn
n3 |Fn(`qmα)|2 6

∑
16n6qm+1

logn
n3 · n

2 +
∑

n>qm+1

logn
n3 · q

2
m+1

= O(log2 qm+1) +O(log qm+1) = O(log2 qm+1).

Here we have used the facts∫ A

1

log x
x

dx ∼ log2A

2 ,

∫ ∞
A

log x
x3 dx ∼ logA

2A2 as A→ +∞.

Therefore, since β > 1/2, we have

(3.6)

∑
k∈Pm,1

|f̂(k)|2
∞∑
n=1

logn
n3 |Fn(kα)|2 = O

 log2 qm+1

q2β
m

εqm+1/qm∑
`=1

1
`2β


= O

(
log2 qm+1

q2β
m

)
.

Assume k ∈ Pm,2. Then k = `qm + r for some 0 6 ` 6 εqm+1/qm and
1 6 r < qm. Then by the second inequality in (3.5), we get

‖kα‖ > ‖rα‖ − ‖`qmα‖ >
1

2qm
− ε

qm
.

Thus we have

max
k∈Pm,2

|Fn(kα)| 6 max
((

1/2− ε
)
qm, n

)
.

Just as above, but cut the sum at qm instead of qm+1 we get
∞∑
n=1

logn
n3 |Fn(kα)|2 6

∑
16n6qm

logn
n3 · n

2 +
(

1/2− ε
) ∑
n>qm

logn
n3 · q

2
m

= O(log2 qm).

Therefore, again thanks to the hypothesis β > 1/2, we get

(3.7)

∑
k∈Pm,2

|f̂(k)|2
∞∑
n=1

logn
n3 |Fn(kα)|2 = O

log2 qm
∑

k∈Pm,2

1
k2β


= O

(
log2 qm

q2β
m

)
.

Assume k ∈ Pm,3. Since ‖kα‖ > ‖qmα‖ > 1
2qm+1

, we still have

max
k∈Pm,3

|Fn(kα)| 6 max(qm+1, n).
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Then we obtain

(3.8)

∑
k∈Pm,3

|f̂(k)|2
∞∑
n=1

logn
n3 |Fn(kα)|2 = O

log2 qm+1
∑

k∈Pm,2

1
k2β


= O

(
log2 qm+1

q2β
m+1

)
where, following the arguments used when we deal with Pm,1, the above
sum over n is also controlled by log2 qm+1.
Thus, it follows from (3.6), (3.7) and (3.8) that the left hand side of (3.4)

is bounded, up to a multiplicative constant, by∑ log2 qm+1

q2β
m

+
∑ log2 qm

q2β
m

+
∑ log2 qm+1

q2β
m+1

.

However, since qm is increasing,
∑ log2 qm+1

q2β
m

< ∞ implies the finiteness of
the two last sums. �

The condition (3.3) on the L2-convergence is of Bruno type. To some
extent, this condition (3.3) is optimal, as the following proposition shows.

Proposition 3.7. — Let α be an irrational number with convergents
{pn/qn}. Consider the function f defined by the lacunary series

f(x) =
∞∑
m=1

f̂(qm)e2πiqmx, with
∞∑
m=1
|f̂(qm)|2 <∞.

The one-sided EHT
∑∞
n=1

f(x+nα)
n converges in L2-mean if and only if

(3.9)
∞∑
m=1
|f̂(qm)|2 log2 qm+1 <∞.

It is immediate from the following condition∫ 1/2

−1/2
log2(|t|)σf (dt) <∞,

which is equivalent to the above mentioned Gaposhkin’s condition ([3, 5]).
Because σf =

∑∞
m=1 |f̂(qm)|2δqmα and ‖qmα‖ ≈ 1/qm+1.

3.4. Convergence when α is rational

Let L0(T) be the space of all Borel functions on T.
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Theorem 3.8. — Let α = p
q be a rational number with (p, q) = 1. Let

(an) ⊂ C. The following propositions are equivalent:
(1) For any f ∈ L0(T) with

∫
f(x)dx = 0, the series

∑
anf(x + nα)

converges almost everywhere.
(2) For any f ∈ L1(T) with

∫
f(x)dx = 0, the series

∑
anf(x + nα)

converges almost everywhere.
(3) For any j = 0, 1, . . . , q−1, the numerical series

∑
k akq+j converges.

Proof. — First remark that the hypothesis (p, q) = 1 means that p is
invertible in the ring Z/qZ. It follows that the sequence {nα (mod 1)} is
periodic with q as minimal period.
(1) is obviously stronger than (2).
(2) ⇒ (3): For fix j ∈ {0, 1, . . . , q − 1}, let i ∈ {0, 1, . . . , q − 1} be such

that jp = i (mod q), so that jα = i
q (mod 1). Define

f(x) = 1[i/q,i/q+1/(2q))(x)− 1[i/q+i/(2q),(i+1)/q)(x).

This function is supported by the interval [i/q, (i + 1)/q), taking values 1
on the left-half interval and −1 on the right-half interval. It is clear that∫
f(x)dx = 0. For any x0 ∈ [0, 1/(2q)) such that

∑
anf(x0+nα) converges.

Observe that (kq + `)α = `α (mod 1) and that x0 ∈ [0, 1/q) if and only if
x0 + jα ∈ [i/q, (i+ 1)/q), so that∑

n>0
anf(x0 + nα) =

∞∑
k=0

q−1∑
`=0

akq+`f(x0 + `α)

=
∞∑
k=0

akq+jf(x0 + jα) =
∞∑
k=0

akq+j .

(3)⇒ (1): This is because {nα (mod 1)} is q-periodic and∑
n>0

anf(x0 + nα) =
q−1∑
`=0

f(x0 + `α)
∞∑
k=0

akq+`. �
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