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HÖLDER CONTINUOUS SOLUTIONS OF THE
MONGE–AMPÈRE EQUATION ON COMPACT

HERMITIAN MANIFOLDS

by Sławomir KOŁODZIEJ & Ngoc Cuong NGUYEN

Dedicated to Jean-Pierre Demailly on the occasion of his 60th birthday

Abstract. — We show that a positive Borel measure of positive finite to-
tal mass, on a compact Hermitian manifold, admits a Hölder continuous quasi-
plurisubharmonic solution to the Monge–Ampère equation if and only if it is dom-
inated locally by Monge–Ampère measures of Hölder continuous plurisubharmonic
functions.
Résumé. — Nous prouvons qu’une mesure de Borel positive avec la masse

totale finie, sur une variété hermitienne compacte, admet une solution quasi pluri-
sousharmonique de l’équation de Monge–Ampère si et seulement si elle est dominée
localement par des mesures de Monge–Ampère des fonctions plurisousharmoniques
continues Höldériennes.

1. Introduction

The analogue of the Calabi–Yau theorem on compact Hermitian mani-
folds was proven in 2010 by Tosatti and Weinkove [21]. Continuous weak
solutions for the right hand side in Lp, p > 1 were obtained later by the
authors [16]. Here we continue to study weak solutions for more general
measures.
Consider a compact Hermitian manifold (X,ω) of dimension n, and a

positive Radon measure µ with finite total mass on X. An upper semicon-
tinuous function u on X is called ω−psh if ddcu + ω > 0 (as currents).
Then we write u ∈ PSH(ω). Our objective is to show that if the complex
Monge–Ampère equation has Hölder continuous solutions for µ restricted

Keywords: Weak solutions, Hölder continuous, Monge–Ampère, Compact Hermitian
manifold.
2010 Mathematics Subject Classification: 53C55, 35J96, 32U40.
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to local charts then it has Hölder continuous solutions globally on X. To
be precise we introduce first the following definition.

Definition 1.1. — We say that µ admits a global Hölder continuous
subsolution if there exists a Hölder continuous ω−psh function u and C0 >

0 such that

(1.1) µ 6 C0(ω + ddcu)n on X.

Let us denote byM the set of all such measures.

To verify the defining condition it is enough to look at µ locally.

Lemma 1.2. — Ameasure µ belongs toM if and only if for every x ∈ X,
there exists a neighborhood D of x and a Hölder continuous psh function
v on D such that µ|D 6 (ddcv)n.

Proof. — The necessary condition is obvious, so we prove the sufficient
condition. Using the strict positivity of ω we can extend a Hölder continuous
psh function v defined in a local coordinate chart to the whole space X so
that the extension is a Hölder continuous Cω−psh function for some large
C > 0. Taking a finite cover by coordinate charts and using the partition
of unity one easily constructs a global ω−psh function u satisfying (1.1)
(see [14] for details of such a construction). �

Our main result can be viewed as a generalization of Demailly et al. [6,
Proposition 4.3] from the Kähler to the Hermitian setting.

Theorem 1.3. — Assume that 0 < µ(X) < +∞. There exists a Hölder
continuous ω-psh ϕ and a constant c > 0 solving

(ω + ddcϕ)n = c µ

if and only if µ belongs toM.

Thanks to this theorem the important class of measures having Lp-
density, for p > 1, admits Hölder continuous solutions. This result was
proven in [18, Theorem B] under the extra assumption that the right hand
side is strictly positive.

Corollary 1.4. — Let f be a non-negative function in Lp(ωn) for
p > 1. Assume that

∫
X
fωn > 0. Then there exists a Hölder continuous

ϕ ∈ PSH(ω) and a constant c > 0 such that

(ω + ddcϕ)n = cfωn.

ANNALES DE L’INSTITUT FOURIER



HÖLDER CONTINUOUS SOLUTIONS 2953

Proof. — By [16, Theorem 0.1] there exists ϕ ∈ PSH(ω) ∩ C0(X) and a
constant c > 0 satisfying

(ω + ddcϕ)n = cfωn.

Consider a local coordinate chart B ⊂⊂ X parametrized by the unit ball
in Cn. Let χ be a smooth cut-off function such that

0 6 χ 6 1, χ = 1 on B(0, 1/2), suppχ ⊂⊂ B.

Find w ∈ PSH(B) the solution of the Dirichlet problem for the Monge–
Ampère equation:

(ddcw)n = cχfωn, w|∂B = 0.

By the main result of [12] (see also [4]) we get that w ∈ C0,α(B̄) for some
α positive depending only on n, p. Therefore, on B(0, 1/2) the right hand
side cfωn is dominated by (ddcw)n. We conclude from Lemma 1.2 and
Theorem 1.3 that ϕ is Hölder continuous. �

Remark 1.5. — Using the recent result from [20] instead of [12] we also
can show that if µ ∈ M and 0 6 f ∈ Lp(dµ) for p > 1, then fdµ ∈ M. In
other words,M satisfies the Lp−property (see [6]) and the above corollary
is a special case.

Another consequence of the main result is the convexity of the range of
Monge–Ampère operator acting on Hölder continuous functions.

Corollary 1.6. — The set

A :=
{
c · (ω + ddcϕ)n : ϕ ∈ PSH(ω), ϕ is Hölder continuous, c > 0.

}
is convex.

Proof. — For brevity we use the notation ωnϕ := (ω+ ddcϕ)n. Let c1ω
n
ϕ1
,

c2ω
n
ϕ2
∈ A. It is easy to see that

µ := 1
2(c1ω

n
ϕ1

+ c2ω
n
ϕ2

) 6 2n−1(c1 + c2)
(
ω + ddcϕ1 + ϕ2

2

)n
.

Apply Theorem 1.3 to get that ωnφ = cµ for some Hölder continuous ω-psh
φ and some constant c > 0. Therefore, µ ∈ A. �

Acknowledgement. The first author was partially supported by NCN
grant 2013/ 08/A/ST1/00312. The second author was supported by the
NRF Grant 2011-0030044 (SRC-GAIA) of The Republic of Korea. He also
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2. Preliminaries

Let us recall the definition of the Bedford–Taylor capacity. For a Borel
set E ⊂ X put

(2.1) capω(E) := sup
{∫

E

ωnv : v ∈ PSH(ω), 0 6 v 6 1
}
.

By [14, p. 52], this capacity is comparable with the local Bedford–Taylor
capacity cap′ω(E). Combining this fact with the work of Dinh–Nguyen–
Sibony [10] we get the following result.

Lemma 2.1. — Let µ ∈M. Then, for every compact set K ⊂ X,

(2.2) µ(K) 6 C exp
(

−α1

[capω(K)] 1
n

)
,

where C,α1 > 0 depend only on X and the Hölder exponent of the global
Hölder subsolution.

Corollary 2.2. — Assume that µ ∈ M and fix τ > 0. Then, there
exists Cτ > 0 such that for every compact set K ⊂ X

(2.3) µ(K) 6 Cτ [capω(K)]1+τ
.

The set of measures satisfying this inequality is denoted by H(τ).

The proof of the next statement can be found in [8, Theorem 2.1].

Lemma 2.3. — Let u ∈ PSH(ω)∩C0,α(X) with 0 < α < 1. Then there
exists a sequence of smooth ω-psh function {uj}j>1 such that

uj → u

in C0,α′(X) as j → +∞, for any 0 < α′ < α.

We need also an estimate which for Kähler manifolds was given in [11].

Proposition 2.4. — Suppose ψ ∈ PSH(ω) ∩ C0(X) and ψ 6 0. Let
µ satisfy the inequality (2.3) for some τ > 0, i.e. µ ∈ H(τ). Assume that
ϕ ∈ PSH(ω) ∩ C0(X) solves

(ω + ddcϕ)n = µ.

Then for γ = 1
1+(n+2)(n+ 1

τ ) and some positive C > 0 depending only on
τ, ω and ‖ψ‖∞ we have

sup
X

(ψ − ϕ) 6 C ‖(ψ − ϕ)+‖γL1(dµ) .

ANNALES DE L’INSTITUT FOURIER
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Proof. — Without loss of generality we may assume that −1 6 ψ 6 0.
Put

U(ε, s) = {ϕ < (1− ε)ψ + inf
X

[ϕ− (1− ε)ψ] + s},

where 0 < ε < 1 and s > 0.

Lemma 2.5. — For

0 < s 6
1
3 min

{
εn,

ε3

16B

}
, 0 < t 6

4
3(1− ε) min

{
εn,

ε3

16B

}
we have

tn capω(U(ε, s)) 6 C [capω(U(ε, s+ t))]1+τ
,

where C is a dimensional constant.

Proof of Lemma 2.5. — By [16, Lemma 5.4]

(2.4) tn capω(U(ε, s)) 6 C
∫
U(ε,s+t)

ωnϕ,

The lemma now follows from (2.3). �

Lemma 2.6. — Fix 0 < ε < 3/4 and εB := 1
3 min{εn, ε3

16B }. Then, there
exists a contant Cτ = C(τ, ω) such that for 0 < s < εB ,

s 6 Cτ [capω(U(ε, s))]
τ
n .

Proof of Lemma 2.6. — Let us use the notation

a(s) := [capω(U(ε, s))]
1
n .

It follows easily from (2.4) that

ta(s) 6 C [a(s+ t)]1+τ
.

This is the inequality [17, (3.6)]. The arguments that follow in that paper
complete the proof of the present lemma. �

To finish the proof of the proposition we proceed as in [17, Theorem 3.11].
One needs to estimate

−S := sup
X

(ψ − ϕ) > 0

in terms of ‖(ψ − ϕ)+‖L1(dµ) as in the Kähler case [13]. Suppose that

(2.5) ‖(ψ − ϕ)+‖L1(dµ) 6 ε
a

for 0 < ε << 3/4 and a = 1
γ . Let

~(s) := (s/Cτ ) 1
τ

TOME 68 (2018), FASCICULE 7
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be the inverse function of Cτsτ . Consider sublevel sets U(ε, t) = {ϕ <

(1− ε)ψ + Sε + t}, where Sε = infX [ϕ− (1− ε)ψ]. It is clear that

(2.6) S − ε 6 Sε 6 S.

Therefore, U(ε, 2t) ⊂ {ϕ < ψ+S+ε+2t}. Then, (ψ−ϕ)+ > |S|−ε−2t > 0
for 0 < t < εB and 0 < ε < |S|/2 on the latter set (if |S| 6 2ε then we are
done).
By (2.4) we have

capω(U(ε, t)) 6 C

tn

∫
U(ε,2t)

dµ 6 C

tn

∫
X

(ψ − ϕ)+

(|S| − ε− 2t)dµ

6
C‖(ψ − ϕ)+‖L1(dµ)

tn(|S| − ε− 2t) .

Moreover, by Lemma 2.6

~(t) 6 [capω(U(ε, t))] 1
n .

Combining these inequalites, we obtain

(|S| − ε− 2t) 6
C‖(ψ − ϕ)+‖L1(dµ)

tn[~(t)]n .

Therefore, using (2.5),

|S| 6 ε+ 2t+
C‖(ψ − ϕ)+‖L1(dµ)

tn[~(t)]n

6 3ε+ Cεa

tn[~(t)]n .

Recall that εB = 1
3 min{εn, ε3

16B }. So, taking t = εB/2 > εn+2 we have

~(t) =
(
t

Cτ

)1/τ
> Cε(n+2)/τ .

With our choice of a
εa

εn(n+2)+ (n+2)
τ

= ε.

Hence |S| 6 Cε with C = C(τ, ω). Thus,

sup
X

(ψ − ϕ) 6 C‖(ψ − ϕ)+‖
1
a

L1(dµ).

This is the desired stability estimate. �

Following [5] we consider ρδϕ- the regularization of the ω-psh function
ϕ defined by

(2.7) ρδϕ(z) = 1
δ2n

∫
ζ∈TzX

ϕ(exphz(ζ))ρ
(
|ζ|2ω
δ2

)
dVω(ζ), δ > 0;

ANNALES DE L’INSTITUT FOURIER
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where ζ → exphz(ζ) is the (formal) holomorphic part of the Taylor expan-
sion of the exponential map of the Chern connection on the tangent bundle
of X associated to ω, and the modifier ρ : R+ → R+ is given by

ρ(t) =
{

η
(1−t)2 exp( 1

t−1 ) if 0 6 t 6 1,
0 if t > 1

with the constant η chosen so that

(2.8)
∫
Cn
ρ(‖z‖2) dV (z) = 1,

where dV denotes the Lebesgue measure in Cn).
The proof of the following variation of [5, Proposition 3.8] and [2, Lem-

ma 1.12] was given in [18].

Lemma 2.7. — Fix ϕ ∈ PSH(ω) ∩ L∞(X). Define the Kiselman–
Legendre transform with level b > 0 by

(2.9) Φδ,b(z) = inf
t∈[0,δ]

(
ρtϕ(z) +Kt2 +Kt− b log t

δ

)
,

Then for some positive constantK depending on the curvature, the function
ρtϕ+Kt2 is increasing in t and the following estimate holds:

(2.10) ω + ddcΦδ,b > −(Ab+ 2Kδ)ω,

where A is a lower bound of the negative part of the Chern curvature of ω.

The next lemma is essentially proven in [6, Theorem 4.3] or [9, Lem-
ma 3.3, Proposition 4.4]. The adaption of those proofs to the case of com-
pact Hermitian manifolds is straightforward.

Lemma 2.8. — Let µ ∈ M and ϕ ∈ PSH(ω) ∩ L∞(X). Then, there
exists 0 < α1 < 1 such that

(2.11) ‖ρδϕ− ϕ‖L1(dµ) 6 Cδ
α1 .

3. Proof of Theorem 1.3

The necessary condition follows easily. It remains to prove the other one.
As µ ∈ M there exists u ∈ PSH(ω) ∩ C0,α0(X) with 0 < α0 6 1, and
C0 > 0 such that

(3.1) µ 6 C0(ω + ddcu)n.

TOME 68 (2018), FASCICULE 7
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Using Radon-Nikodym’s theorem, we write µ = C0hω
n
u for a Borel mea-

surable function 0 6 h 6 1. Let uj be the smooth approximation of u as in
Lemma 2.3 and denote

µj := C0hω
n
uj .

Then µj converges weakly to µ as j → +∞. Using [16, Theorem 0.1] we
find ϕj ∈ PSH(ω) ∩ C0(X) with normalisation supX ϕj = 0, and cj > 0
satisfying

(3.2) ωnϕj = cjµj .

The first thing we need to show is the following.

Claim 3.1. — There is a uniform constant C1 > 0 such that 1/C1 <

cj < C1.

Proof. — Since µ(X) > 0, it follows that
∫
X
hωnu > 0. Therefore,∫

X
h

1
nωnu > 0. By the Bedford–Taylor convergence theorem [1] we know

that ωnuj converges weakly to ωnu . Since C0(X) is dense in L1(X,ωnu), we
have ∫

X

h
1
nωnuj > C

for some uniform C > 0. Applying the mixed forms type inequality (see [14],
[19]) one obtains

ωϕj ∧ ωn−1
uj >

[
ωnϕj
ωnuj

] 1
n

ωnuj = (cjC0h) 1
nωnuj .

On the other hand,∫
X

ωϕj ∧ ωn−1
uj =

∫
X

ω ∧ ωn−1
uj +

∫
X

ddcϕj ∧ ωn−1
uj

=
∫
X

ω ∧ ωn−1
uj +

∫
X

ϕjddc(ωn−1
uj )

6
∫
X

ω ∧ ωn−1
uj +B

∫
X

|ϕj |(ω2 ∧ ωn−2
uj + ω3 ∧ ωn−3

uj ),

where B is a constant depending only on ω (see e.g. [7] for details). Since
‖uj‖∞ < C and supX ϕj = 0, it follows from the Chern–Levine–Nirenberg
type inequality ([19, Proposition 1.1]) that the right hand side is uniformly
bounded. Thus, ∫

X

ωϕj ∧ ωn−1
uj 6 C.

ANNALES DE L’INSTITUT FOURIER



HÖLDER CONTINUOUS SOLUTIONS 2959

Combining the above inequalities we get

cj < C1 :=
∫
X
ωϕj ∧ ωn−1

uj∫
X

(C0h) 1
nωnuj

< +∞.

Hence, by [16, Lemma 5.9] we also have

cj > 1/C1,

increasing C1 if necessary. Thus, Claim 3.1 is proven. �

Thanks to Lemma 2.1, Lemma 2.3 and Claim 3.1 measures µj satisfy
the volume-capacity inequality (2.2) with a uniform constant. Thus by [16,
Corollary 5.6] we have ‖ϕj‖∞ < C2. Passing to a subsequence one may
assume that {ϕj} is a Cauchy sequence in L1(ωn), and {cj} converges. Set

(3.3) ϕ := (lim sup
j

ϕj)∗, c = lim
j
cj .

Again passing to a subsequence if necessary we can also assume that

(3.4) ϕj → ϕ in L1(ωn) as j →∞.

Lemma 3.2. — We have∫
X

|ϕk − ϕ|ωnuj → 0 as min{j, k} → ∞.

Proof. — Using the uniform boundedness of ‖ϕj‖∞, ‖uj‖∞ and the ar-
gument in Cegrell [3, Lemma 5.2] (it’s a version of Vitali’s convergence
theorem) we get that

(3.5)
∫
X

|ϕk − ϕ|ωnu → 0 as k →∞.

Indeed, we first have
∫
X

(ϕk−ϕ)ωnu → 0 as k →∞. Moreover, all functions
are negative and so we get the result.
We shall prove the lemma by the contradiction argument. Assume that

there exist subsequences, still denoted by {ϕk}∞k>1, {uj}∞j>1, and δ > 0
such that ∫

X

|ϕk − ϕ|ωnuj > δ.

Let a > 0 be small. By Hartogs’ lemma there exists k0 such that

ϕk 6 ϕ+ a ∀ k > k0.

If we choose a small enough, then for k > k0 and j > 1,

(3.6)
∫
X

(ϕ− ϕk)ωnuj > δ/2.

TOME 68 (2018), FASCICULE 7
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Next, we are going to show that

(3.7) Ejk :=
∫
X

(ϕ− ϕk)ωnuj −
∫
X

(ϕ− ϕk)ωnu → 0

as min{j, k} → +∞. Indeed,

Ejk =
∫
X

(ϕ− ϕk)ddc(uj − u) ∧
n−1∑
p=0

ωpuj ∧ ω
n−1−p
u .

Let us denote by Tp(j) the current ωpuj ∧ ω
n−p−1
u . Then

ddc [(ϕ− ϕk)Tp(j)] = ddc(ϕ− ϕk) ∧ Tp(j) + d(ϕ− ϕk) ∧ dcTp(j)
− dc(ϕ− ϕk) ∧ dTp(j) + (ϕ− ϕk)ddcTp(j)

=: S1 + S2 + S3 + S4.

By integration by parts

(3.8)
Ejk =

∫
X

(uj − u)ddc [(ϕ− ϕk)Tp(j)]

=
∫
X

(uj − u)(S1 + S2 + S3 + S4).

Now we shall estimate each term in the right hand side. First, since S1 =
(ωϕ − ωϕk) ∧ Tp(j),

(3.9)
∣∣∣∣∫
X

(u− uj)S1

∣∣∣∣ 6 ‖u− uj‖∞(∫
X

(ωϕ + ωϕk) ∧ Tp(j)
)
→ 0

as j → +∞.
Next, we estimate

∫
X

(u− uj)S2. As dcTp(j) = dcω ∧ T ′p(j), where T ′p(j)
is a sum of terms of the form C3ω

k
uj ∧ ω

q
u (the constant C3 depending only

on n, p), we apply the Cauchy–Schwarz inequality [19, Proposition 1.4] to
get that

(3.10)
∣∣∣∣∫
X

(u− uj)dϕ ∧ S2

∣∣∣∣
6 C‖u− uj‖∞

[∫
X

dϕ ∧ dcϕ ∧ ω ∧ T ′p(j)
] 1

2
[∫

X

ω2 ∧ T ′p(j)
] 1

2

.

Moreover,

(3.11)

2
∫
X

dϕ ∧ dcϕ ∧ T ′p(j) =
∫
X

ddcϕ2 ∧ T ′p(j)−
∫
X

2ϕωϕ ∧ T ′p(j)

+ 2
∫
X

ω ∧ T ′p(j)

6 C

(∫
X

ωn + ‖ϕ‖n∞‖uj‖n∞‖u‖n∞
)
,

ANNALES DE L’INSTITUT FOURIER
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where in the last inequality we used [19, Proposition 1.5]. Therefore, we
conclude the right hand side of the previous inequality tends to 0 as j →
+∞. Similar estimates are also applied to the remaining terms with S3, S4.
Thus we have shown that Ejk → 0 as min{j, k} → +∞.
Combining (3.5), (3.6), and (3.7) we get a contradiction. The lemma thus

follows. �

3.1. Existence of a continuous solution

Notice that∫
X

|ϕj − ϕk|ωnuj 6
∫
X

|ϕj − ϕ|ωnuj +
∫
X

|ϕk − ϕ|ωnuj → 0

as min{j, k} → +∞. Therefore, using Lemma 3.2 and the argument in [16,
Theorem 5.8] we get that {ϕj}j>1 is a Cauchy sequence in C0(X). Thus,

ϕ = lim
j
ϕj in C0(X).

We conclude that ϕ ∈ PSH(ω) ∩ C0(X) and it solves

(3.12) ωnϕ = c µ,

where c is defined in (3.3).

3.2. Hölder continuity of the solution

We shall show that the solution ϕ obtained in (3.12) is Hölder continuous.
Fix τ > 0 and set

α = min
{

1
1 + (n+ 2)(n+ 1

τ )
, α1

}
,

where α1 is given in Lemma 2.8. By Corollary 2.2 µ ∈ H(τ) and then
Proposition 2.4 holds with γ = α.

Consider the regularization of ϕ as in (2.7). As explained in [15] and [6]
the result follows as soon as we show that

ρtϕ− ϕ 6 Ctαα1

for t small enough.
It follows from Lemma 2.7 that

ϕ 6 Φδ,b 6 ρδϕ+K(δ + δ2).
6 ρδϕ+ 2Kδ.

TOME 68 (2018), FASCICULE 7
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Choose the level b = (δα − 2Kδ) /A = O(δα) so that

(3.13) Ab+ 2Kδ = δα.

After fixing the level b, we write

(3.14) Φδ := (1− δα)Φδ,b.

Then, by Lemma 2.7

(3.15) ω + ddcΦδ > δ2αω.

Since −C4 6 ϕ 6 0 and ρδϕ 6 0 one obtains

(3.16) Φδ 6 (1− δα)(ρδϕ+Kδ +Kδ2) 6 2Kδ.

It follows that

(3.17) Φδ 6 C4δ
α

for δ 6 δ0 small. Therefore, by (3.16) and (3.17) we have

(3.18) Φδ − ϕ 6 C4δ
α + (1− δα)(ρδϕ+Kδ +Kδ2 − ϕ).

Next, the stability estimate Proposition 2.4 applied for Φδ − C4δ
α and ϕ,

and γ = α give us that
sup
X

(Φδ − ϕ) 6 C5‖max{Φδ − ϕ− C4δ
α, 0}‖αL1(dµ) + C4δ

α

6 C5‖ρδϕ+Kδ +Kδ2 − ϕ‖αL1(dµ) + C4δ
α,

where we used (3.18) for the second inequality. Hence, using Lemma 2.8,
we conclude that

(3.19) Φδ − ϕ 6 C6δ
αα1 .

For a fixed point z, the minimum in the definition of Φδ,b(z) is realized
for some t0 = t0(z). Then, (3.14) and (3.17) imply

(1− δα)
(
ρt0ϕ+Kt0 +Kt20 − b log t0

δ
− ϕ

)
6 C6δ

α.

Since ρtϕ+Kt2 +Kt− ϕ > 0, we have

b(1− δα) log t0
δ
> −C6δ

α.

Combining this with b > δα/(2A), one gets that

(3.20) t0(z) > δκ for κ = exp
(
− 2AC6

(1− δα0 )

)
,

where δ0 is fixed, and κ is a uniform constant.
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Now, we are ready to conclude the proof. Since t0 = t0(z) > δκ and
t 7→ ρtϕ+Kt2 is increasing,

ρκδϕ(z) +K(δκ)2 +Kδκ− ϕ(z) 6 ρt0ϕ(z) +Kt20 +Kt0 − ϕ(z)

= Φδ,b(z)− ϕ(z)

= δα

1− δαΦδ + (Φδ − ϕ).

Combining this, (3.17) and (3.19) we get that

ρκδϕ(z)− ϕ(z) 6 C7δ
αα1 .

The desired estimate follows by rescaling δ := κδ and increasing C7.
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