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HOLDER CONTINUOUS SOLUTIONS OF THE
MONGE-AMPERE EQUATION ON COMPACT
HERMITIAN MANIFOLDS

by Stawomir KOLODZIEJ & Ngoc Cuong NGUYEN

Dedicated to Jean-Pierre Demailly on the occasion of his 60th birthday

ABSTRACT. We show that a positive Borel measure of positive finite to-
tal mass, on a compact Hermitian manifold, admits a Hoélder continuous quasi-
plurisubharmonic solution to the Monge—Ampére equation if and only if it is dom-
inated locally by Monge-Ampeére measures of Holder continuous plurisubharmonic
functions.

RESUME. Nous prouvons qu’une mesure de Borel positive avec la masse
totale finie, sur une variété hermitienne compacte, admet une solution quasi pluri-
sousharmonique de I’équation de Monge—Ampeére si et seulement si elle est dominée
localement par des mesures de Monge—Ampeére des fonctions plurisousharmoniques
continues Holdériennes.

1. Introduction

The analogue of the Calabi-Yau theorem on compact Hermitian mani-
folds was proven in 2010 by Tosatti and Weinkove [21]. Continuous weak
solutions for the right hand side in LP, p > 1 were obtained later by the
authors [16]. Here we continue to study weak solutions for more general
measures.

Consider a compact Hermitian manifold (X,w) of dimension n, and a
positive Radon measure p with finite total mass on X. An upper semicon-
tinuous function v on X is called w—psh if dd°u +w > 0 (as currents).
Then we write © € PSH(w). Our objective is to show that if the complex
Monge—Ampere equation has Holder continuous solutions for u restricted

Keywords: Weak solutions, Holder continuous, Monge—-Ampeére, Compact Hermitian
manifold.
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to local charts then it has Holder continuous solutions globally on X. To
be precise we introduce first the following definition.

DEFINITION 1.1. — We say that p admits a global Hélder continuous
subsolution if there exists a Holder continuous w—psh function u and Cy >
0 such that

(1.1) u < Co(w+dd°w)™  on X.
Let us denote by M the set of all such measures.
To verify the defining condition it is enough to look at p locally.

LEMMA 1.2. — A measure y belongs to M if and only if for every x € X,
there exists a neighborhood D of x and a Hélder continuous psh function
v on D such that ), < (dd°v)".

Proof. — The necessary condition is obvious, so we prove the sufficient
condition. Using the strict positivity of w we can extend a Hélder continuous
psh function v defined in a local coordinate chart to the whole space X so
that the extension is a Hoélder continuous Cw—psh function for some large
C > 0. Taking a finite cover by coordinate charts and using the partition
of unity one easily constructs a global w—psh function u satisfying (1.1)
(see [14] for details of such a construction). O

Our main result can be viewed as a generalization of Demailly etal. [6,
Proposition 4.3] from the Kéahler to the Hermitian setting.

THEOREM 1.3. — Assume that 0 < u(X) < +o00. There exists a Holder
continuous w-psh ¢ and a constant ¢ > 0 solving

(w+ddp)" = c p
if and only if pu belongs to M.

Thanks to this theorem the important class of measures having LP-
density, for p > 1, admits Holder continuous solutions. This result was
proven in [18, Theorem B] under the extra assumption that the right hand
side is strictly positive.

COROLLARY 1.4. — Let f be a non-negative function in LP(w™) for
p > 1. Assume that fX fw™ > 0. Then there exists a Hélder continuous
¢ € PSH(w) and a constant ¢ > 0 such that

(w+dd°p)" = cfw™.

ANNALES DE L’INSTITUT FOURIER
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Proof. — By [16, Theorem 0.1] there exists ¢ € PSH(w) N C%(X) and a
constant ¢ > 0 satisfying

(w+dd%p)" = cfw™.

Consider a local coordinate chart B CC X parametrized by the unit ball
in C™. Let x be a smooth cut-off function such that

0<x<1, x=1onB(0,1/2), suppyx CC B.

Find w € PSH(B) the solution of the Dirichlet problem for the Monge—
Ampere equation:

(dd“w)"™ = ex fw", w,, =0.

By the main result of [12] (see also [4]) we get that w € C%%(B) for some
« positive depending only on n,p. Therefore, on B(0,1/2) the right hand
side cfw™ is dominated by (dd°w)™. We conclude from Lemma 1.2 and
Theorem 1.3 that ¢ is Holder continuous. g

Remark 1.5. — Using the recent result from [20] instead of [12] we also
can show that if p € M and 0 < f € LP(du) for p > 1, then fdpu € M. In
other words, M satisfies the L? —property (see [6]) and the above corollary
is a special case.

Another consequence of the main result is the convexity of the range of
Monge-Ampeére operator acting on Holder continuous functions.

COROLLARY 1.6. — The set
A:={c- (w+dd°)" : ¢ € PSH(w), ¢ is Hélder continuous, ¢ > 0.}
is convex.

= (w+dd°)™. Let c;w?

Proof. — For brevity we use the notation w o1

cowiy, € A. It is easy to see that

n .
o

1 n n n— C Jr "
Wi= Q(clw(‘p1 +02w¢2) <2 1(01 + ¢2) <w+dd (P12<'02> .

Apply Theorem 1.3 to get that wg = cp for some Holder continuous w-psh
¢ and some constant ¢ > 0. Therefore, y € A. a

Acknowledgement. The first author was partially supported by NCN
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2. Preliminaries

Let us recall the definition of the Bedford—Taylor capacity. For a Borel
set £ C X put

(2.1) cap,,(F) :=sup {/ wy tv € PSH(w),0 < v < 1} .
E

By [14, p. 52], this capacity is comparable with the local Bedford—Taylor
capacity cap/, (E). Combining this fact with the work of Dinh-Nguyen—
Sibony [10] we get the following result.

LEMMA 2.1. — Let p € M. Then, for every compact set K C X,

(2.2) p(K) < Cexp ([cal;(o;l()}) :

where C, a1 > 0 depend only on X and the Hélder exponent of the global
Hélder subsolution.

COROLLARY 2.2. — Assume that u € M and fix 7 > 0. Then, there
exists C; > 0 such that for every compact set K C X

(2.3) W(K) < Cr [cap,, (K]
The set of measures satistying this inequality is denoted by H(T).
The proof of the next statement can be found in [8, Theorem 2.1].

LEMMA 2.3. — Let u € PSH(w) N C%%(X) with 0 < o < 1. Then there
exists a sequence of smooth w-psh function {u;};>1 such that

Uj — U
in CO’O‘,(X) as j — +oo, for any 0 < o’ < a.
We need also an estimate which for Kahler manifolds was given in [11].

PROPOSITION 2.4. — Suppose ¢ € PSH(w) N C°(X) and ¢ < 0. Let
w satisfy the inequality (2.3) for some 7 > 0, i.e. € H(7). Assume that
¢ € PSH(w) N C°(X) solves

(w+dd%p)" = p.

Then for v = and some positive C' > 0 depending only on

1
1+(n+2)(n+2)
T,w and ||Y||e we have

sup(v — ) < C (v - )47y -

ANNALES DE L’INSTITUT FOURIER
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Proof. — Without loss of generality we may assume that —1 < ¢ < 0.
Put

Ule,s) = {p < (1 - ) +inflp — (1 - 2)u] + 5},
where 0 < e <1 and s > 0.

LEMMA 2.5. — For
1 g3 4 g3
< o i na 1o D ) g -1 - i n) 1o D
0<s 3m1n{€ IGB} 0<t 3( e)mln{e 163}
we have
t" cap,,(Ule, s)) < Ccap, (U(s, s + 1)),

where C' is a dimensional constant.

Proof of Lemma 2.5. — By [16, Lemma 5.4]

(2.4) t" cap,(U(e,s)) < C We,
U(e,s+t)

The lemma now follows from (2.3). O

LEMMA 2.6. — Fix 0 < ¢ < 3/4 and ep := 3 min{e", %}. Then, there
exists a contant C. = C(7,w) such that for 0 < s < ep,
s < O, [cap,,(U(e, s))]™ .
Proof of Lemma 2.6. — Let us use the notation
a(s) = [cap, (U(e, 5))]" .
It follows easily from (2.4) that
ta(s) < Cla(s + )]

This is the inequality [17, (3.6)]. The arguments that follow in that paper
complete the proof of the present lemma. O

To finish the proof of the proposition we proceed as in [17, Theorem 3.11].
One needs to estimate

—S :=sup(¢p —p) >0
X
in terms of ||(¢) — ¢)4 |11 (au) as in the Kéhler case [13]. Suppose that

(2.5) 1% = @)+ llLrap <&°
for 0 <e<<3/4and a= % Let

h(s) := (s/Cr)*

TOME 68 (2018), FASCICULE 7
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be the inverse function of C,s7. Consider sublevel sets U(e,t) = {¢ <

(1 —e)p + Sc +t}, where S. = infx[p — (1 — €)9)]. It is clear that
(2:6) S—e<S. <68

Therefore, U(e, 2t) C {¢ < p+S+e+2t}. Then, (Y—¢)4 = |S|—e—2t >0
for 0 <t <epand 0 <e < |S]/2 on the latter set (if |S| < 2¢ then we are

done).
By (2.4) we have

c c (¥ —9)+
cap,,(U(e, t)) < 7/ dp < — | 7o—"—=
( ( )) tm U(e,2t) H tn X (|S| —&€—- Qt)

Cll(p — ‘p)+HL1(dy)
Son(|S] —e —2t)

Moreover, by Lemma 2.6
1
h(t) < [cap,,(U(e,t))] ™
Combining these inequalites, we obtain

Cll(¥ =)+ llLrap
t[h(t)" '

(IS] — —21) <

Therefore, using (2.5),

Cll(¥ — @)+ llLr(ap)
tr[h(t)]"

|S| <e+2t+

Ce?

Recall that ep = 1 min{e™, é—gB}. So, taking t = /2 > "2 we have

+ 1/7
h(t) = <> > Cen 2/,

With our choice of a "
€

€7L(n+2)+7(n:.r2) -
Hence |S| < Ce with C' = C(7,w). Thus,

s§p(w =) SCIW = )+l E1(ap)-

This is the desired stability estimate.

O

Following [5] we consider psp- the regularization of the w-psh function

¢ defined by

2
@7) ool = [ etennn (5 ) a0, >0

ANNALES DE L’INSTITUT FOURIER
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where ¢ — exph(() is the (formal) holomorphic part of the Taylor expan-
sion of the exponential map of the Chern connection on the tangent bundle
of X associated to w, and the modifier p : R; — R, is given by

o(t) = iy exp(iy) Hf0<tE<,
0 ift>1

with the constant 7 chosen so that

(2.9 L el ave) = 1.

where dV' denotes the Lebesgue measure in C™).
The proof of the following variation of [5, Proposition 3.8] and [2, Lem-
ma 1.12] was given in [18].

LEMMA 2.7. — Fix ¢ € PSH(w) N L*°(X). Define the Kiselman—
Legendre transform with level b > 0 by

(2.9) Os5(2) = inf (ptgo(z) + Kt* + Kt — blog t) ,
' t€[0,0] o

Then for some positive constant K depending on the curvature, the function
pep + K2 is increasing in t and the following estimate holds:

(2.10) w + ddC(I)é’b > —(Ab + 2K5) w,
where A is a lower bound of the negative part of the Chern curvature of w.

The next lemma is essentially proven in [6, Theorem 4.3] or [9, Lem-
ma 3.3, Proposition 4.4]. The adaption of those proofs to the case of com-
pact Hermitian manifolds is straightforward.

LEMMA 2.8. — Let 4 € M and ¢ € PSH(w) N L*(X). Then, there
exists 0 < a1 < 1 such that

(2.11) lpse — @llrrap < C5*.

3. Proof of Theorem 1.3

The necessary condition follows easily. It remains to prove the other one.
As 1 € M there exists u € PSH(w) N C%*(X) with 0 < ag < 1, and
Co > 0 such that

(3.1) 1 < Co(w + ddu)”.

TOME 68 (2018), FASCICULE 7
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Using Radon-Nikodym’s theorem, we write = Cphw;, for a Borel mea-
surable function 0 < h < 1. Let u; be the smooth approximation of u as in
Lemma 2.3 and denote

My = Cohng .

Then pu; converges weakly to p as j — +oo. Using [16, Theorem 0.1] we
find ¢; € PSH(w) N C°(X) with normalisation supy ¢; = 0, and ¢; > 0
satisfying

(3.2) Wi, = Cjfl
The first thing we need to show is the following.

CLAM 3.1. — There is a uniform constant Cy > 0 such that 1/C; <
¢ < .

Proof. — Since pu(X) > 0, it follows that [, hw} > 0. Therefore,
Ix h%wg' > 0. By the Bedford-Taylor convergence theorem [1] we know
that wy ~converges weakly to wy. Since C°(X) is dense in L'(X,w!), we

have
/ hrwp >C
X

for some uniform C' > 0. Applying the mixed forms type inequality (see [14],
[19]) one obtains

On the other hand,

/w% Awg !t :/ w/\wZ;lJr/ ddp; Awy!
X X X

:/ wAw;‘;lJr/ p;dd®(wy )

X ’ X ’

g/ wszj;lJrB/ ol (w? Awipm? +w? Awp?),
X ’ X

where B is a constant depending only on w (see e.g. [7] for details). Since
|4l < C and supy ¢; = 0, it follows from the Chern-Levine-Nirenberg
type inequality ([19, Proposition 1.1]) that the right hand side is uniformly
bounded. Thus,

n—1
/Xw%/\wuj <C.

ANNALES DE L’INSTITUT FOURIER
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Combining the above inequalities we get

n—1
fX w%‘ A wuj

[ (Coh)wuwrp,

Hence, by [16, Lemma 5.9] we also have

c; < Cy = < +00.

cj > 1/01,
increasing C1 if necessary. Thus, Claim 3.1 is proven. |

Thanks to Lemma 2.1, Lemma 2.3 and Claim 3.1 measures p; satisfy
the volume-capacity inequality (2.2) with a uniform constant. Thus by [16,
Corollary 5.6] we have ||¢;]c < Cs. Passing to a subsequence one may
assume that {¢;} is a Cauchy sequence in L' (w"), and {c;} converges. Set

(3.3) ¢ = (imsupp;)*, c= lijm ¢
j

Again passing to a subsequence if necessary we can also assume that
(3.4) ¢; — ¢ in L'(w") asj— oo.
LEMMA 3.2. — We have

/X lok — plwy, — 0 as min{j, k} — oo.

Proof. — Using the uniform boundedness of ||¢; oo, ||tj]|cc and the ar-
gument in Cegrell [3, Lemma 5.2] (it’s a version of Vitali’s convergence
theorem) we get that

(3.5) / lor — @lwy;, — 0 as k — oo.
b's

Indeed, we first have [ < (pr —@)wy — 0 as k — oo. Moreover, all functions
are negative and so we get the result.

We shall prove the lemma by the contradiction argument. Assume that
there exist subsequences, still denoted by {wr}3%, {u;}5%,, and 6 > 0
such that

[ ton - bt >0
X

Let a > 0 be small. By Hartogs’ lemma there exists kg such that
or<pt+a Yk=ko.

If we choose a small enough, then for k > kg and j > 1,

(3.6) /X (¢ — pr)el. > 6/2.

TOME 68 (2018), FASCICULE 7
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Next, we are going to show that
(37) Bai= [ (o= oot~ [ (o= ool 0
X X

as min{j, k} — +oo. Indeed,

Let us denote by T, (j) the current wf A wy ™~ 1. Then

dd® [(¢ — or)Tp(5)] = dd°(o — @r) A Tp(j) + d(@ — r) A d°TL(4)
—d(p — i) ANdTR(5) + (v — r)dd“T,(35)
=: 51+ 82+ 53+ 5.

By integration by parts

By = [ a5 = w3t (0 = @0 T3(0)]

(3.8)

= / (uj —u)(S1+ Sz + S5+ Sa).
X

Now we shall estimate each term in the right hand side. First, since S; =
(wtp - ws&k /\ 1, ( )

(3.9) ‘/ u—u;)S

as j — +oo.
Next, we estimate [y (u —u;)S2. As d°T},(j) = d°w A T} (j), where T} (5)
is a sum of terms of the form C’gwﬁj Awl (the constant C3 depending only

<=l ([ ot wa) A0 ) 0

on n,p), we apply the Cauchy—Schwarz inequality [19, Proposition 1.4] to
get that

(3.10) ‘/X(u—uj)dap/\sz

< Cllu — 4| {/ dcp/\dccp/\w/\TI')(j)] [/ w2/\TI/,(j)} .
X b's
Moreover,
2/ dtp/\dcgp/\TZQ(j)z/ ddc<p2/\T1§(j)—/ 20w, AT, (j)
X X b's

(3.11) +2/XwAT,§(J')

<c ( [+ ||so||’;o||uj||z:o||uzo) ,
X

ANNALES DE L’INSTITUT FOURIER
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where in the last inequality we used [19, Proposition 1.5]. Therefore, we
conclude the right hand side of the previous inequality tends to 0 as j —
+o00. Similar estimates are also applied to the remaining terms with Ss, S4.
Thus we have shown that Ej;; — 0 as min{j, k} — +o0.

Combining (3.5), (3.6), and (3.7) we get a contradiction. The lemma thus
follows. ]

3.1. Existence of a continuous solution

Notice that

/hﬁ*¢ﬂ%@</W@nyML+/mWk*MMLHO
X X X

as min{j, k} — 4o0. Therefore, using Lemma 3.2 and the argument in [16,
Theorem 5.8] we get that {¢;};>1 is a Cauchy sequence in C°(X). Thus,

o =limyp; in C(X).
j

We conclude that ¢ € PSH(w) N C%(X) and it solves
(3.12) Wy = ¢,
where ¢ is defined in (3.3).

3.2. Hélder continuity of the solution

We shall show that the solution ¢ obtained in (3.12) is Holder continuous.
Fix 7 > 0 and set
— 1 1
a‘m‘“{1+(n+2><n+i>’°‘1}’
where aq is given in Lemma 2.8. By Corollary 2.2 p € H(7) and then
Proposition 2.4 holds with v = a.

Consider the regularization of ¢ as in (2.7). As explained in [15] and [6]
the result follows as soon as we show that

prp — p < Ct*

for ¢ small enough.
It follows from Lemma 2.7 that

© < ®sp < psp + K (5 +62).
< psp + 2K06.

TOME 68 (2018), FASCICULE 7
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Choose the level b = (§* — 2K¢) /A = O(§%) so that
(3.13) Ab+2K0 = 0“.

After fixing the level b, we write

(3.14) Bs5 := (1 — ) Dsp.

Then, by Lemma 2.7

(3.15) w+ dd®s > 6**w.

Since —Cy < ¢ < 0 and psp < 0 one obtains

(3.16) D5 < (1 —6%)(psp + Ko+ K§?) < 2K6.
It follows that

(3.17) b5 < Cy0”

for § < dp small. Therefore, by (3.16) and (3.17) we have
(3.18) D5 — o < Cy8% + (1 — 8% (psp + K& + K62 — ).

Next, the stability estimate Proposition 2.4 applied for &5 — C40* and ¢,
and v = « give us that

S;P(‘I)é —¢) < Cs[| max{®s — ¢ — C40%, 01|71 g,y + Cad”
< 05”,05(,0 + K6+ K(SQ — (PH%l(du) + 045047

where we used (3.18) for the second inequality. Hence, using Lemma 2.8,
we conclude that

(3.19) D5 — ¢ < Cg621.

For a fixed point z, the minimum in the definition of ®s;(2) is realized
for some tg = tp(z). Then, (3.14) and (3.17) imply

t
(1—-10%) <pt0<p+Kt0 + Kt3 — blogg0 — <p> < Cg0”.
Since pyp + Kt? + Kt — ¢ > 0, we have
t
b(1 — 6")10g§0 > —Ced”.

Combining this with b > 6%/(2A4), one gets that

2ACq >
(1-45)/"

where § is fixed, and x is a uniform constant.

(3.20) to(z) = 0k for Kk = exp (—

ANNALES DE L’INSTITUT FOURIER
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Now, we are ready to conclude the proof. Since ty = to(z) > dx and
t — pyp + Kt? is increasing,

prsp(2) + K(68)% + Kok — ¢(2) < prop(2) + Kitg + Kto — ¢(2)
Ps(2) — 0(2)

5(}
(0] P55 — ).
5o 5+ (P25 — )

Combining this, (3.17) and (3.19) we get that

prsp(2) — p(z) < Cr6™*.

The desired estimate follows by rescaling § := xd and increasing C7.
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