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ON EXTENDING POTENTIAL THEORY
TO ALL STRONG MARKOV PROCESSES (*)

by C.T. SHIH

Introduction.

By a strong Markov process we mean one with stationary tran-
sition probabilities, taking values in a locally compact separable metric
space, and having almost all paths right continuous ; moreover, the
a-fields relative to which stopping times and so the strong Markov
property are defined are required to be right continuous and com-
pleted, and the resolvent is assumed to map bounded Borel measu-
rable functions into such functions(1). Such a process (X^) is called
a standard process (respectively a Hunt process) provided it satisfies
the quasi-left-continuity on [0 , {), ^ the lifetime (respectively on
[0 ,°°)) : if a sequence of stopping times T^ increases to T, X(T^)
converges to X(T) almost surely on {T < {;} (respectively on {T < oo},
with Xy defined to be the point at infinity for t > ^). The following
facts are proved in [3] for a Hunt process (X^) : (i) for any analytic
set A in the state space, the (first) hitting time

T\(co) = mf{t > 0 | X^(co) e A}

is a stopping time ; (ii) given such a set A and a fixed initial distribu-
tion for the process, there exists an increasing sequence of compact
subsets F^ of A such that Tp decreases to T^ almost surely ; (iii) if

(*) This work was supported by National Science Foundation Grant GP-6549.

(1) This last condition is assumed in [1] in its definition of a standard process but
not in [6] ; in view of the right continuity of the paths this condition is sa-
tisfied if the transition function P(r, x , B) is Borel measurable in x for each
t and Borel B. If the state space is only homeomorphic to a Borel set of a
locally compact separable metric space while other conditions are satisfied,
then as pointed out in [6] the process can be imbedded in a process as des-
cribed here, consequently our results below (with the word analytic changed
to Borel) hold for such a process.
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the initial distribution does not charge the set of points in A but ir-
regular for A, there exists a decreasing sequence of open supersets
U^ of A such that Ty increases to T^ almost surely. Although of a
rather technical nature, these properties are instrumental in the deve-
lopment of Hunt's theory. For a standard process the same proof
shows that (i) and (ii) are also valid ; while (iii) fails in general Blu-
menthal and Getoor [2] proved the following modification : (iii')
given any analytic set A and a fixed initial distribution, there exists a
decreasing sequence of finely open supersets U^ of A such that Ty

n
increases to T^ almost surely. As a result standard processes have
been taken as the basic class of processes to study potential theory,
as is done in [1].

Now (i) is in fact true for any right continuous process (Xy) on
a locally compact separable metric space with right continuous and
completed a-fields, and in particular true for a strong Markov process.
This follows from a general result, see [5 ; p. 72]. However, (ii) and
(iii') have not been known to hold for an arbitrary strong Markov
process. The main result (Theorem 1) of this article is that this is
indeed the case. In fact we are able to prove (ii) and (iii') in slightly
stronger versions. Also proven is a result (Theorem 2) which may
perhaps be a sufficient substitute for the quasi-left-continuity itself
in many important situations. Thus it seems reasonable to expect
that basic potential theory can be studied for any strong Markov
process.

The approach is to study the path behavior of a given strong
Markov process in an enlarged state space which is again locally com-
pact separable metric. In this enlarged space the resolvent operators
map continuous functions vanishing at infinity into such functions.
Thus this article is related to the papers of many authors (D. Ray,
H. Kunita and T. Watanabe, F.B. Knight, P.A. Meyer, and J.L. Doob)
on constructing strong Markov processes with nice path behavior from
resolvents, where various ideas of enlarging the state space appear.
The interested reader may like to compare the enlargement here with
that in these papers, although our problem is different. Also, there
have appeared in some of these papers results similar to Theorem 2
(for the processes constructed there).
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1. Preliminaries and Results.

Let K be a compact metric space, with its metric denoted by p
and a-field of Borel sets by d3. Let OK be the space of bounded real-
valued Borel measurable functions on K and & be its subspace of
continuous functions. Let A be a fixed point in K. We shall consider
a strong Markov process X = (Sl, §?, ̂  , X ^ , 6^ , P") with K as its
state space, in which A is the death point. Our notation follows that
of [1]. Thus in the above ^ is the completion of a(X^ , t > 0), the
a-field generated by all the X^ , with respect to the family of measures
P^, ^ a probability measure in (K , (B), and ^ is the completion of
a(Xy,s<t) with respect to S1 and the family of measures P^. A
stopping time T is of course one relative to (S^), i.e., satisfying
{T < 1} G ̂  for every r. The definition of the hitting time T^ of a
set A in K is already given. The time D^(^) = inf{r > 0 | X^(c^) e A}
(of course D^(o) == oo if X^(o;) G A for no t) will be called the (first)
entry time of A. We assume that X satisfies the following conditions :
(1) the paths t ——> X^((^) are right continuous almost surely (2) ;
(2) ̂  = ^+ = H ^ for every r(3) ; (3) for every a > 0, /GJR,

U^/Qc) = / e•-<ftEX[f(X^]dt is in OH. It should be remarked that

the existence of shift operators for X is unessential, and for the same
reason the lack of shift operators for the process Y introduced in
section 2 does not cause difficulty.

We shall now define a new metric p on K. It is proved by
Knight [4 ; Lemma 1] that there exists a subalgebra OL of OTC that
contains (°, has a countable dense subset, and is such that U^((Sl) C OL
for all a > 0. In fact, QL may be obtained as follows. Choose {a^}
dense in (0 , °°) ; define QL^ inductively by setting 0^ = 6, and after
choosing {f^n) dense in the unit ball of QL^ , setting QLn+i to ^e ̂
minimal algebra containing both QL^ and {U^. /n^ ,^> 1 ,m > 1}.
Then let QL = U QL^ . To define the metric p choose {^} dense in
the unit ball of QL and let

(2) "Almost surely" (a.s.) means a.s. P^ for every probability measure p, in (K , (B) ;
this meaning will not be changed when we discuss the process Y below.

(3) This is the case if and only if (Sl ,S?, S?̂  , X ^ , ̂  , P^) is strong Markov.
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p(x.y)=p(x,>0+ H ^-"a^V g^(x)-V g^(y)\.
m,k K K

Let (K, p) be the completion of (K , p) ; it is compact. The func-
tions in QL are uniformly continuous under p, therefore have conti-
nuous extensions on K. Thus QL can be regarded as a subalgebra of
e, the space of real-valued continuous functions on K. Clearly OL se-
parates points of K, and so is dense in 6. Thus the U^ are extended
by continuity as operators on (°, and then through the Riesz repre-
sentation theorem extended as operators on OTC, the space of bounded
real-valued Borel measurable functions on K. Let (B denote the a-field
of Borel sets in K. Then clearly ti3 = (B H K. We also have Ke(B.
For if 17 is the continuous extension on K of the identity mapping
from (K , p) to (K , p), then K = {z E K | U^(r? (z)) = V^g^z)
for all m and k}, U^ g^ being the extended functions. Now (X^) can
be regarded as a process in (K ,d3), and as such we have for/E OTC,
x^K,a>0

lVOc)= /V^E"[/(X,)]dr ,

where U^ is the extended operator on Oil. Our results can now be
stated as follows.

THEOREM 1. — Let A be an analytic set in (K , p). Then given
any initial distribution /x, there exist an increasing sequence of p-
compact(4) subsets F^ of A and a decreasing sequence of p-open
supersets LL of A such that Dp ^ D^ a.s. P'' and Dy t D^ a.s. P^.

n n

THEOREM 2. — There exists a Markov kernel (transition probabi-
lity) v(z , B) on (K , fiS) such that with G = {z | v(z , K) = 1} we have :
for any sequence of stopping times T increasing to T, i) p-limit

n
X(T^) G G a.s. on {T < 00} ; ii) given any initial distribution ^,/EOTl,

E^AXCT)) | ^ a?(T^)} = / ^(p-limit X(T^), dx)f(x)(5)

(4) I.e. compact with respect to p ; p-open, p-right-continuous, etc. have similar
meanings.

(5) We use the convention X^ = A. S»(S) for a stopping time S is the o-fleld of
sets A satisfying A n { S < r t € E g ^ for every t, and v ^(T^) is the minimal
o-field containing all the S?(T^). "
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on {T < oo}, where p-limit X(T^) stands for any limit point of X(T^)
in K, (necessarily, the measure ^(p-limit X(T^), •) is independent of
the choice of the limit point, a.s. on {T < °°}).

Theorem 1 implies properties (ii) and (iii') about hitting times
stated in the introduction (see [1] or [6]) ; in fact for(ii) the compact
sets may be chosen among p-open sets. That p-open sets are finely
open follows from the fact that almost all paths are p-right-continuous,
which will be established on the way of proving Theorem 1. Theorem
2 and the strong Markov property imply that if stopping times T^
increase to T, then for any 11 and bounded ^-measurable ^

E^ftr) I ^ ^(T^)} = / ^(p-limit X(T^) , dx) E^ (<p)

on {T < oo}.
In the proof of the above theorems we shall not need the full

force of U^(G) C(° for all a > 0 but only U^(6) C Q for a sequence
of a increasing to infinity. Thus if we choose c^ ——> oo, find a
subalgebra OL of OTI containing Q and a countable dense subset and
such that U^ (QL) C QL for all k, and define p with the same formula,
the same results will hold.

2. An Auxiliary Process (6).

We shall now regard X as a process in (K , (K) (any initial distri-
bution has to concentrate on K). The right continuity of almost all
paths is then lost ; but as we shall see eventually it is only apparently
so. Define a new process (Y^) as follows. First let

(6) Professor P.A. Meyer has pointed out that it is unnecessary to introduce the
auxiliary process Y. Indeed, from his theorem [6 ; XIV, Ti l ] it follows that
almost all paths of X are p-right-continuous. Using this fact our proofs would
be somewhat simplified (Theorem 1 would then be proved at the end of
section 2). However, the proof of the important [6 ; XIV, Ti l ] is based on
the deep theorem [5 ; VIII, T21], also due to Meyer. The present paper esta-
blishes the approximation property (ii) of hitting times directly and using
this property one can also prove [6 ; XIV, Ti l ] (see [1 ; p. 75]). Hence we
have kept the present proof of Theorem 1 for the interest of exhibiting an
alternative proof of [6 ; XIV, Til].
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Y^ = X^ , t > 0 rational .

Now given a > 0, /e3TC, the function r ——> U^/(X^(c<;)) on the
non-negative rationals has right hand limits at all s G [0 , oo) (and left
hand limits at all s G (0 , oo)) almost surely. Letting a run through
{o^} and / run through {g^} and using the right continuity of X in
(K , p), we obtain the following : almost surely t ——> Y^ (co) has
right hand limits in (K , p) at all s E [0 , oo) (and has left hand limits
in (K , p) at all s E (0 , oo) for which it has a left hand limit in (K , p)).
Now for any irrational t define Y^(o;) to be the limit of Y,(o?) in
(K , p) as s ^ t through the rationals, if this limit exists, and any
point in K otherwise.

If stopping times T^ ^ T^ , then for a > 0, /G 01̂  ,

lim U^/(X(T^)) = U^/(X(TJ) a.s.

This is because for f> 0, {e~<t^n U^/(X(T^)), §?(T^), 1 < n < 00}
is a reversed submartingale with respect to any P^,

W {e-^n U^/(X(T^)) |g?(To,)} t E^^lVWToo)) |g?(T.)}

and
^(Too) = n §?(!„),

i<^<~

the last fact following from the right continuity of (^). It follows
that X(T^) converges to X(T<») under p almost surely. The same ar-
gument shows that if t ^ s through the rationals, then X(t) converges
to X(s) under p almost surely ; this implies immediately i) of the
following.

PROPOSITION 2.1. - i) t ——> Y^(co) is p-right-continuous a.s.
ii) For any stopping time T, Y(T) = X(T) a.s. (by convention
X(oo) = Y(oo) = A), iii) (Y^) and (X^) are equivalent under and P".
iv) Y = (12 , S, ̂ , Y ^ , P^is a strong Markov process, and {U^ ,a > 0}
w rA^ resolvent of Y OM OTI.

A-oo/ - To show ii) choose stopping times T^ taking rational
values and decreasing to T. Then Y(T^) = X(T^) converges to X(T)
under p a.s. Now ii) follows from i). iii) of course needs no proof.
iv) follows from ii), iii), and the strong Markov property of X.
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Note that both X and Y cannot start at points in K - K. Also
Y does not have shift operators ; but as remarked earlier it does not
concern us. We now study the entry times r^ = inf{r > 0 | Y^ E A},
A C K, for the process Y. Because of a result stated in the introduction
T^ is a stopping time for any analytic A in (K , p). In the rest of this
section only the space (K , p) will be involved, and we shall avoid
mentioning it every time. Let {/„} be dense in € and let

EI = {z G K | Jun^ al^/Jz) = /^(z) for all n} ,

E^ = {z G K | Urn aU^/^ (z) exists for all n} - E^ ,

E3 = K - EI - E^ .

These are Borel sets in K since iiin QiV^fn and lim ^ccfn are
<t~>QO a->»»

Borel measurable, OtU^f^ being continuous. Note that

Jim^aU^(z)=^(z)

for all n implies lim aU^/(z) =/(z) for all /G e. We shall showtf—>00

that both Tg and Tp are infinite almost surely.

PROPOSITION 2.2. - K C E^ .

Proof. - Let /E<°, x G K. Then

aV^f(x)=a feoe-(ttEX[f(^)]dt=EX f'ae-^ f(\,)dt ——>f(x)

as a ——> oo, by Proposition 2.1.
Let E 4 = U U U n {zek| |aU^/^(z)-^(z) |> 1/m}. Then

E^ C E^ C K — E^ and E4 is a-compact. Now if F is a compact subset
of K - E^ , then Y(Tp) G K - E^ a.s. on {rp < 00} ; but Tp being a
stopping time, we have Y(Tp) = X(Tp) a.s. from Proposition 2.1. Hence
Proposition 2.2 implies Tp = oo a.s. If follows that r^ = °° a.s. and
so we have
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PROPOSITION 2.3. - TE = o° a.s.

In order to prove T^ = °° a.s. we introduce the (first) contact
times for the process Y. The contact time o^ of a subset A of K is
defined by : _____

a^) = inf{r > 0 | Y(O^(O;) 0 A ̂  0}

where Y(o, r ] (a?) ^ the closure of the set {z G K |z = Y/o;) for some
s in [0 , r]}. Since almost all paths of Y are right continuous, it is
clear that for an open set U, a^j is a stopping time and Oy = Ty a.s.
If F is compact and U^ are decreasing open sets with U^ ^ F, then
clearly Oy ^ Op. Based on this fact one can apply Choquefs capacity
theorem to establish the following result (see [6] or [1]).

PROPOSITION 2.4. — Let A be an analytic set in K. Then i) a^ is
a stopping time ; ii) given any ^, there exist an increasing sequence of
compact subsets F^ and a decreasing sequence of open supersets V^
of A such that Op ^ a^ a.s. P^ and Oy t a^ a.s. P^.a a

Since o^ < i\ for any A, we shall prove Tg = °° a.s. by showing
o^ = oo a.s. In view of ii) of the above proposition it suffices to
prove the following

PROPOSITION 2.5. — a?. = °° a.s. for any compact subset F ofE^ .

Proof. - Let U^ be open with U^ ^ F. Set T^ == o^ and

T = lim T-. == ay . For a fixed P" let Q(o;, B) be a regular conditional
n "

probability distribution of Y(T) given v §<(T^). (Recall Y^ == A). Sincen
Y(T)EK a.s., Q(o;, •) is concentrated on K a.s. P^dcj). We show
that for any a > 0, /€ 3TC

lim iy(Y^(a;)) = / Q(c^ , dz) U, /(z) (2.1)

a.s. P^dcj) on {T < oo}. That the left hand side exists a.s. on{T < 00}
follows from Proposition 2.1. An easy application of the strong Markov
property of Y shows

E^{U^/(Y(T)) | ^ §?(T^)} = E^lim U^/(Y(T^)) | ^ § )̂}
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on {T < °°} ; see e.g. [6 ; p. 52]. (Regard the integrand on the right
as 0 on {T = °°}, here and below). Thus (2.1) follows from the defi-
nition of Q(o?,B). Now there exists a P^-null set F such that if
o;E{T <oo}- r then the equality (2.1) holds symmultaneously for
all /E{/^}, and for all rational a > 0. We may assume furthermore
that for co ̂  F, Q(c*; , •) is concentrated on K and t ———> Y^(o;) is
right continuous. Let co e{T < 00} — F. Then as a ——> oo ,

fQ(o}, dz) alV^(z) ——>f Q(o;, dz) f^(z)

in view of Proposition 2.2. Hence lim ^U^^,(Y^ (co)) convergesit ^
as a ——> °°, for every m. But let z be a limit point of Yj. (cj),
say z = lim Y^ (co) ; then since Yj. (co) € U^, we have z € F .
Now the continuity of U^ implies lim U^(Y^ (oj)) = U^/Jz).

The above then implies that aU^(z) converges as a ——> o°, for
every m. Since this contradicts the fact z € F C E3, we must have
^ < oo}- r = 0, so that T = ̂  a.s. P^.

As remarked before, we now have a^ = °° a.s. and so
3

COROLLARY 2.6. — TE = °° a.s.

PROPOSITION 2.7. — Tp = Op a.s. /or aw^ compact subset F o/
E,.

J^iroo/ - Again let U^ be open with U^ 4. F, and let T^ = a^
and T = lim T-. = Op. Since lim atL/,., = /^ on E, , the functions

n n cc->00

^dfm , w > 1, a rational, distinguish points in F. For a fixed P^,
there exists a P^-null set F such that if co e{ T <oo} - F, aV^ /(Y^ (co))
converges as w ——> °° for all f^{fn) an(l a11 rational a > 0, and
t ——> Y^(oj) is right continuous. For such an co, {Y^ (a?)} cannot
have two distinct limit points since they must be in F. Hence Y(T^)
converges a.s. P^ on {T < oo}. Now for /EG we have

E^{alV(Y(T)) ; T < 00} = E^lim aU^/(Y(T^)) ; T < 00}

= E^aU^/dim Y(T^)) ; T < 00} .
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Since Y(T) and lim Y(T^) are in E^ a.s. on{T < oo}, the above yields
as a ——> oo

E^AYCT)) ; T < 00} = E^{/(lim Y(T^)) ; T < 00} .

This being true for all /e©, it holds for all /GOTl. With /= lp we
obtain P^YCT) G F ; T<oo) = p^(iim Y(T^) G F ; T<oo) == p^(T < oo).
Thus Tp < T a.s. P" and so Tp = Oy a.s. P".

THEOREM 2.8. - Let A 6e fl^ analytic set in K. 77^ given any
jn, rA^? ex^r an increasing sequence of compact subsets F^ of A 0 E^
^A2d a decreasing sequence of open supersets U^ o/A H E^ 5McA rAar
TF 4- r. a.s. P^ and Tn t Tx a.s. P^.*'„ A Uy, A

Proo/ - In view of Proposition 2.3 and Corollary 2.6, we may
assume A C E^ . For a fixed P^, there exist increasing compact subsets
F^ of A such that Oy ^ a^ a.s. P^ (Proposition 2.4). Now o^ > r^
and by Proposition 2.7 Tp = Op a.s. P" for all n. Hence r^ ^ r.

" H ' • n * » A

a.s. P^. Since Ty = o^ a.s. for any open U, from Proposition 2.4
ii) there exist decreasing open supersets U^ of A such that Ty t T^
a.s. P".

3. Proof of Theorems 1 and 2.

Recall the continuous extension 17 on K of the mapping
x ——> x from (K , p) to (K , p). For A C K, let A = T? -1 (A). If
A is an analytic set in (K , p), A is an analytic set in (K , p). Since
Y^ = X^ for rational t, and almost surely t ——> X^(a;) is p-right-
continuous and t ——> Y, (a;) is p-right-continuous, we have for
almost all a?, i? (Y^(c*;)) = X^(a?) for all r. Thus for any A, {D^ ̂  r^}
is a P^-null set for every ^.

THEOREM 3.1. - Z,er A be an analytic set in (K, p). Then given
any fi, there exists an increasing sequence of p-compact subsets F^ of
A such that Dp ^ D. a.s. P^.

- w A
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Proof. - Since A is analytic in (K , p), from Theorem 2.8 there
exist increasing p-compact subsets C,, of A such that Tp 4. r. a.s. P"n L,̂  A

Let F^ = T? (€„). Then the F^ are p-compact subsets of A. Since
€„ C F^ we have T(- < r^ . Hence Dp = Tp >). T. = D. a.s. P".

n ft n n —•

The above theorem implies that the same result holds for the
hitting times T^, Tp , in place of the entry times D^ , Dp . It then
follows that for a > 0, f G OTC , t ——> U^/(X^(co)) is "right con-
tinuous on [0 , oo) and has left hand limits on (0 , oo) almost surely ;
see [1 ; p. 75] and footnote 6). Hence we have the following.

COROLLARY 3.2. — Almost surely, t ——> X^(o;) is p-right-con-
tinuous (and has a p-left'hand-limit at any t > 0 for which a p-left-
hand-limit exists).

In view of the corollary we have almost surely, X^(o?) = Y^(o;)
for all r. Thus the two processes X and Y not merely are equivalent,
but have identical paths almost surely. In particular D^ = r^ a.s. for
any A C K.

Proof of Theorem 7. - We have A = A n K. Since A is analytic
in (K , p) and so is K, being a Borel set in fc, A is analytic in (K , p).
The theorem then follows from Theorem 2.8 and the remark preceding
the proof.

For z E E^ U E^ , aU^/(z) converges as a ——> oo for every
/E G. Hence there exists a probability measure v(z , •) on K such that
for /G C, lim^ aU^/(z) = f v(z , dz9) /(z'). Of course v(z , •) is the
unit mass at z for z € Ei . Define v(z , •) to be the unit mass at z for
z E £3 . Then v(z , B) is a Markov kernel (transition probability) on
(K,(B). Let G = { z e K | i / ( z , •) is concentrated on K}. We have
K C G C E ^ U E ^ .

Proof of Theorem 2. - Since o^ = °° a.s., {X,. (<^)} has no
3 n

limit point (under p) in E3 for almost every co with T(o;) < oo. Now
for any ^, /G 3TC, a > 0, and A € v ^(TJ

n n

E^aU,, /(X(T)) ; A , T < 00} = E''{lim aU^/(X(T^)) ; A , T < °° }.

(3.1)
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If/eg, the integrand on the right can be written as

aU,/(p-limit XT (a;)) (3.2)
M fln *n

on {T < <»}, where, again, p-limit X^ (a;) denotes any limit point of
{X^(cj)} in (K , p). Since p-limit X(T^) ̂ 3 a.s. on {T < oo}, (3.2)
converges as a ——> oo to

f ^(p-limit XT (a;), dz) f(z) (3.3)
"K n n

a.s. on {T < oo}. As / runs through a countable dense set in (°, we see
that for almost every co in {T < 00} the measure ^(p-limit XT (c*;), •)

n n
is independent of the choice of the limit point of {X^ (co)}. In parti-al
cular (3.3) stands unambiguously as an (^-function on {T < 00} for
any /€ 3TC, which is of course measurable with respect to

v ^(T^)H{T<oo}.

Letting a ——> oo in (3.1) we obtain

EM{/(X(T));A,T<oo}=EAA \f ^(p-limit X(T^) ,^z)/(z) ;A ,T<oo{i/.K
for all/G JJI. With/ = 1^ , the left hand side equals P^A n {T < oo )};
it follows that ^(p-limit X(T^), K) = 1 a.s. P" on A 0 {T < oo}. i) of
the theorem follows by taking A = Sl and ii) follows from i) and the
above equality.
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