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E-SERIES OF CHARACTER VARIETIES OF
NON-ORIENTABLE SURFACES

by Emmanuel LETELLIER & Fernando
RODRIGUEZ-VILLEGAS

Abstract. — In this paper we are interested in two kinds of stacks associated
to a compact non-orientable surface Σ. (A) We consider simply the quotient stack
of the space of representations of the fundamental group of Σ to GLn. (B) We
choose a set S of k-punctures of Σ and a generic k-tuple of semisimple conjugacy
classes of GLn, and we consider the stack of anti-invariant local systems on the
orientation cover of Σ with local monodromies around the punctures given by the
prescribed conjugacy classes. We compute the number of points of these spaces over
finite fields from which we get a formula for their E-series (a certain specialization
of the mixed Poincaré series). In case (B), unexpectedly (see Remark 1.9), when
the Euler characteristic of Σ is even, our formulas turn out to be closely related to
those arising from the character varieties of punctured compact orientable surfaces
studied in [13] and [14].

Résumé. — Dans cet article nous nous intéressons à deux types de champs as-
sociés à une surface compacte non-orientable Σ. (A) On considère simplement le
champ quotient de l’espace des représentations du groupe fondamental de Σ dans
GLn. (B) On choisit un ensemble S de k points de Σ et un k-uplet générique de
classes de conjugaison semsimples de GLn et on considère le champ des systèmes
locaux anti-invariants sur le revêtement d’orientation de Σ\S avec monodromies
locales dans les classes de conjugaison choisies. On calcule le nombre de points de
ces champs sur un corps fini et on en déduit une formule pour leur E-série (une
certaine spécialisation de la série de Poincaré mixte). Dans le cas (B), étonnam-
ment (voir Remarque 1.9), lorsque la caractéristique d’Euler de Σ est paire, nos
formules sont très proches de celles provenant des variétés de caractères de surfaces
compactes orientables épointées étudiées dans [13] et [14].

1. Introduction

Let K an algebraically closed field of characteristic ̸= 2.
We let r be a non-negative integer, put ϱ = r − 2, and let Σ denote a

non-orientable compact surface of Euler characteristic −ϱ (the connected
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1386 Emmanuel LETELLIER & Fernando RODRIGUEZ-VILLEGAS

sum of r real projective planes). Let S = {α1, . . . , αk} be a set of k points
of Σ. Fix a base point b ∈ Σ\S. The fundamental group Π = π1(Σ\S, b)
has the following standard presentation

Π =
〈
a1, . . . , ar, x1, . . . , xk

∣∣ a2
1 · · · a2

rx1 · · ·xk = 1
〉

Here xi represents a small appropriately oriented loop encircling the i-th
puncture.

Put G = GLn(K) and let σ : G→ G be the Cartan involution g 7→ tg−1.
We let G+ = G ⋊ ⟨σ⟩ be the corresponding semi-direct product. Fix a k-
tuple C = (C1, . . . , Ck) of conjugacy classes of G and for ε ∈ ⟨σ⟩ consider
the representation variety Homε

C(Π,G+) of ρ ∈ Hom(Π,G+) such that

π ◦ ρ(ai) = ε, and ρ(xj) ∈ ι(Cj)

for all i = 1, . . . , r and j = 1, . . . , k, where π : G+ → ⟨σ⟩ is the quotient
map and ι : G→ G+ the natural inclusion.

The conjugation action of G on G+ induces an action on Homε
C(Π,G+)

and we consider the quotient stack

Mε
C :=

[
Homε

C(Π,G+)/G
]
.

If ε = 1 then Homε
C(Π,G+) is the space

HomC(Π,G) = {ρ ∈ Hom(Π,G) | ρ(xi) ∈ Ci, i = 1, . . . , k}

which has the following explicit description{
(A1, . . . , Ar, X1, . . . , Xk) ∈ Gr ×

k∏
i=1

Ci

∣∣∣∣∣A2
1 · · ·A2

rX1 · · ·Xk = 1
}
.

On the other hand, if ε = σ then Homε
C(Π,G+) is the set of

(A1, . . . , Ar, X1, . . . , Xk) ∈ Gr ×
k∏
i=1

Ci

satisfying the equation

A1σ(A1) · · ·Arσ(Ar)X1 · · ·Xk = 1.

The last space has an interpretation in terms of anti-invariant representa-
tions Π̃ → G of the fundamental group Π̃ of Σ̃, where p : Σ̃ → Σ is the
orientation covering (see Section 4.1 for details). As it will become clear
below, this space is much better behaved than the previous one.

In this paper we consider the following two cases :
(A) ε = 1 and S = ∅.

ANNALES DE L’INSTITUT FOURIER



E-SERIES OF CHARACTER VARIETIES 1387

(B) ε = σ, the k-tuple C = (C1, . . . , Ck) is generic and the Ci are
semisimple.

We prove that the corresponding stacksMε
C are rational count. In other

words, the number of points over generic finite fields is given by a fixed
rational function in the size of the field (see Definition 2.6 for the formal
definition). As in the case of polynomial count (see [15, Appendix]) the
corresponding counting rational function has a geometric meaning. Indeed,
by Theorem 2.9 it coincides with the E-series E(Mε

C ;x), which is the spe-
cialization t 7→ −1 of the mixed Poincaré series Hc(Mε

C ;x, t). This latter
series encodes the dimension of the successive subquotients of the weight
filtration on the compactly supported cohomology ofMε

C (see Section 2.2).
As we will see the genericity assumption on C will simplify the calculation

when ε = σ.
It is not clear how to impose genericity in the case ε = 1. For example,

if r = 1 = k then the equation

A2 = ξ In
defining Mε

C for a given ξ is just equivalent to the case ξ = 1 by replacing
A by

√
ξA.

1.1. E-series of Mε
C in case (A)

Put

Mϱ,n :=
[{

(A1, . . . , Ar) ∈ Gr |A2
1 · · ·A2

r = In
}
/G
]
, ϱ := r − 2,

and consider the generating function

(1.1) Mϱ(q, T ) =
∑
n⩾0

Mϱ,n(q)Tn := 1 +
∑
n⩾1

q−ϱ(n
2) |Mϱ,n(Fq)|Tn.

Let P be the set of all partitions. For λ ∈ P denote by

(1.2) Hλ(q) =
∏
x

(qh(x) − 1)

the hook polynomial (where x runs over the set of boxes of the Young
diagram of λ and h(x) is the hook length).

For an integer ϱ consider the generating function

(1.3) Zϱ(q, T ) :=
∑
λ∈P

(
q−n(λ)Hλ(q)

)ϱ
T |λ|,

where n(λ) =
∑
i>0(i− 1)λi if λ = (λ1, λ2, . . . ) ∈ P. Define

TOME 73 (2023), FASCICULE 4



1388 Emmanuel LETELLIER & Fernando RODRIGUEZ-VILLEGAS

{Vϱ,n(q)}n by the formula

(1.4)
∑
n⩾1

Vϱ,n(q)Tn := Log (Zϱ(q, T ))

and, following [12], let for any positive integer k

(1.5) Vϱ,n,k(q) :=
∑
m|k∞

m|n

1
m
Vϱ, n

m
(qm),

where m | k∞ means that m divides a sufficiently high power of k or
equivalently that m is only divisible by primes dividing k.

We have the following (see Section 3.4 for the proof).

Theorem 1.1.
(i) The stackMϱ,n has rational count for r = 1 (ϱ < 0) and polynomial

count for r > 1 (ϱ ⩾ 0).
(ii) Let

Wϱ,n(q) := 2Vϱ,n(q)+(q−2)V2ϱ,n/2(q)+ 1
2 (q−1)

(
Vϱ,n/2,2(q2)− V2ϱ,n/2,2(q)

)
,

where Vϱ,n and Vϱ,n,k are defined in (1.4) and (1.5) for integer n
and set to zero if n is not an integer. Then

Mϱ(q, T ) = Exp

∑
n⩾1

Wϱ,n(q)Tn


(iii) The E-series of Mϱ,n (see (2.1)) is given by

E(Mϱ,n; q) = qϱ(
n
2)CoeffTn

Exp

∑
n⩾1

Wϱ,n(q)Tn
 .

Remark 1.2. — Let Σg be a compact Riemann surface of genus g with
fundamental group Πg and set ϱ = 2g−2. It is interesting to point out that
the function Zϱ(q, T ) computes also the number of points of the quotient
stack [Hom(Πg,GLn)/GLn] over Fq, namely we have [15, Section 3.8]

1 +
∑
n⩾1

q−ϱ(n
2) ∣∣[Hom(Πg,GLn)/GLn](Fq)

∣∣Tn
= Exp

(q − 1)
∑
n⩾1

Vϱ,n(q)Tn
 .

We now give some examples to illustrate the theorem.

ANNALES DE L’INSTITUT FOURIER
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Example 1.3 (ϱ = −1). — Here r = 1 and

|M1,n(Fq)| =
In(q)

|GLn(Fq)|
,

where In(q) denotes the number of involutions in G(Fq), a polynomial in q.
Concretely,

In(q) := |{x ∈ G(Fq) |x2 = 1}|
with first few values

I1(q) = 2

I2(q) = q2 + q + 2

I3(q) = 2q4 + 2q3 + 2q2 + 2

I4(q) = q8 + q7 + 4q6 + 3q5 + 3q4 + 2q3 + 2

I5(q) = 2q12 + 2q11 + 4q10 + 4q9 + 6q8 + 4q7 + 4q6 + 2q5 + 2q4 + 2

We have (see Corollary 3.7)

(1.6) M−1(q, T ) =
∑
n⩾0

q(
n
2)In(q)

|GLn(Fq)|
Tn = Exp

(
2

(q − 1)T + 1
(q + 1)T

2
)
.

This is a q-analogue of the known generating series for the number of
involutions tn in the symmetric group Sn. Namely [16],∑

n⩾0

tn
n! T

n = eT+ 1
2T

2
.

Example 1.4 (ϱ = 0). — The first few terms of M0(q, T ) are

M0(q, T ) = 1 + 2T + (q + 3)T 2 + (2q + 6)T 3 + (q2 + 4q + 9)T 4 + · · ·

We have
Z0(q, T ) =

∏
n⩾1

(1− Tn)−1

and hence V0,n(q) = 1 for all n. It follows from Theorem 1.1 that

(1.7) Log (M0(q, T )) = 2T + qT 2 + 2T 3 + qT 4 + · · ·

or equivalently,

(1.8) M0(q, T ) =
∏
n⩾1

(1− T 2n−1)−2(1− qT 2n)−1.

Remark 1.5. — As pointed out by Frobenius and Schur [8] the change of
variables x 7→ xz−1 in an arbitrary group takes the equation x2z2 = 1 to
z−1xz = x−1. Hence M0,n(q) equals the number of real conjugacy classes in

TOME 73 (2023), FASCICULE 4
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G(Fq) (i.e. classes of elements conjugate to their inverses). In this form (1.8)
was first proved by Gow [11, 27].

Example 1.6 (ϱ > 0). — The expression for Mϱ,n(q) in Theorem 1.1 is
easy to program; we do not expect a closed formula. We give below the
first few values for r = 3, (ϱ = 1).

M1,1(q) = 2q − 2

M1,2(q) = 3q4 − 2q3 − 3q2 + 2

M1,3(q) = 2q9 − 2q8 + 4q7 − 12q6 + 10q5 − 6q4 + 6q3 − 2q2 + 2q − 2

Remark 1.7.
(i) Consider the affine variety

Ur :=
{

(A1, . . . , Ar) ∈ Gr
∣∣A2

1 · · ·A2
r = In

}
, r ⩾ 1.

By the Weil conjectures the leading coefficient of the polynomial
|Ur(Fq)| equals the number of irreducible components of largest
dimension of Ur over the complex numbers. It is not difficult to
deduce from Theorem 1.1 the value of this leading coefficient. (In
general, counting points over Fq would not yield anything about
components of non-maximal dimension.)

On the other hand the number of irreducible components and
their dimensions is computed in [3, Thms 2.1, 2.2, 2.3, 3.2 and
Prop. 3.4]. It is a pleasant exercise to verify that everything checks
out. Here is a sketch on determining the leading coefficients of the
counting polynomials. It is enough to compute the leading coeffi-
cient of Wρ,n. We start by verifying that the highest power of q in
Vρ,n(q) is ρn(n + 1)/2. Hence the first term in Wϱ,n(q) dominates
for n odd and contributes 2 as its leading coefficient. The first term
also dominates with coefficient 2 for n even as long as ρn(n+ 1)/2
is bigger than 1+ρ(n/2+1)n/2. This happens if ρ > 1 or ρ = 1 and
n > 2. In the special case ρ = 1 and n = 2 all the terms in Wϱ,n(q)
actually contribute giving a total leading coefficient of 3. If ρ = 0
and n is even on the other hand, the remaining terms in Wϱ,n(q)
rather than the first term are the ones that contribute to the highest
power of q with coefficient 1 = 1 + (1/2− 1/2) + (1/4− 1/4) + · · · .
The case ρ = −1 is easy to check (see also 3.2).

Here is a small table of leading coefficients summarizing the sit-
uation.

ANNALES DE L’INSTITUT FOURIER
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r

n 1 2 3 4 5 · · ·

1 2 1 2 1 2 · · ·
2 2 1 2 1 2 · · ·
3 2 3 2 2 2 · · ·
4 2 2 2 2 2 · · ·
5 2 2 2 2 2 · · ·
...

...
Notice the already mentioned special case r = 3, n = 2 where the
leading coefficient is 3 breaking the pattern; see [3, Section 3] for
the explicit description of the irreducible components.

(ii) It seems that Mϱ,n(q) ≡ 0 mod 2 for all ϱ > 0 and n odd. Perhaps
this is a consequence of the involution A 7→ −A in G acting without
fixed points on the irreducible components of Ur, as it happens for
r = 1 (see Remark 3.2), but we have not pursued this further.

1.2. E-series of Mε
C in case (B)

We now consider the case (B) where ϵ = σ and to alleviate the notation
we write MC instead of Mε

C . For i = 1, . . . , k, let xi be an infinite set of
commuting variables and consider for a positive integer r, as in [13], the
Cauchy function

Ω(z, w) = Ωr,k(z, w) :=
∑
λ∈P

Hr,λ(z, w)
(

k∏
i=1

H̃λ(xi; z2, w2)
)
,

where
Hr,λ(z, w) :=

∏ (z2a+1 − w2l+1)r

(z2a+2 − w2l)(z2a − w2l+2)
is the (z, w)-deformed hook function with exponent r and H̃λ(xi, z, w) de-
notes the modified Macdonald symmetric function in the variables xi. As
in [15, (2.4.11)] it is easily checked that

(1.9) Hr,λ(√q, 1/√q) = q− 1
2ϱ⟨λ,λ⟩Hλ(q)ϱ, ϱ = r − 2.

We stress the fact that unlike [13], however, the integer ρ is not neces-
sarily even. In particular, exchanging z and w involves a sign if r is odd.
More precisely,

(1.10) Hr,λ(w, z) = (−1)rHr,λ′(z, w),

where λ′ is the dual partition.

TOME 73 (2023), FASCICULE 4
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For a k-tuple of partitions µ = (µ1, . . . , µk) of n let

(1.11) Hµ(z, w) := (z2 − 1)(1− w2) ⟨Log (Ω(z, w)) , hµ⟩ ,

where hµ = hµ1(x1) · · ·hµk (xk) and hµi(xi) is the complete symmetric
function in the variables xi.

We obtain the following (see Section 4.1.2 for the proof).

Theorem 1.8. — We have

(1.12) E(MC ; q) = qdµ/2

q − 1Hµ
(
√
q,

1
√
q

)
,

where µ is defined from C as in Section 4.1.2 and dµ is as in Theorem 4.5.

Remark 1.9.
(i) It follows from Theorem 1.8 that if r = 2h is even and Σ′ is an

orientable compact Riemann surface of Euler characteristic r − 2
and punctures S′ = {α′

1, . . . , α
′
k}, then comparison with [13] shows

that the right hand side of (1.12) is also the E-series of the quotient
stack

M′
C :=

[{
ρ ∈ Hom

(
π1(Σ′\S′)

)
,G
∣∣ ρ(zi) ∈ Ci

}
/G
]
.

where zi is a single loop around the puncture α′
i. We thus have

E(MC ; q) = E(M′
C ; q).

(ii) We may construct a correspondence between MC and M′
C in (i),

which gives some indication of how these stacks are related. We
only give a sketch of the construction here for the case r = 2. For
fixed h ∈ GLn consider the following varieties:

A := {(x, z) | xzσ(x)z−1 = h} ⊆ GLn×GLn,

B := {(x, z) | xzx−1z−1 = h} ⊆ GLn×GLn,

as well as

C := {(x, z, u) | tx = uxu−1, x(zu)z(zu)−1 = h} ⊆ GLn×GLn×GLn .

Note that changing x to xz−1 and then z to tz yields an isomor-
phism between A and the variety {(x, z) |xσ(x)zσ(z) = h}.

We have natural maps

C
pA

��

pB

��
A B

ANNALES DE L’INSTITUT FOURIER
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where pA(x, z, u) := (x, z) and pB(x, z, u) = (x, zu). These maps
are equivariant for the natural action of GLn on the three varieties
given by

x 7→ gxg−1, z 7→ gztg, u 7→ tg−1ug−1, g ∈ GLn .

Since any x ∈ GLn is conjugate to its transpose the maps pA, pB
are surjective with fibers isomorphic to the stabilizer of x in GLn.
In particular, for any finite field #A(Fq) = #B(Fq).

(iii) Our surface Σ arises from a pair (Σ̃, σ) with Σ̃ an orientable com-
pact Riemann surface and an orientation-reversing involution on Σ̃
whose fixed-point set Σ̃σ is empty. In [1], the authors compute the
E-polynomials of some character varieties coming from pairs of the
form (Σ̃, σ) with Σ̃σ ̸= ∅.

Remark 1.10.

(i) As in [13], there is a natural deformation of the formula for E(MC;q)
to two variables. One might be tempted to extend the conjecture
on Hodge numbers made there but this may not be that straight-
forward. We do however check one potential case of the putative
conjecture when r = k = 1 in Section 4.2 (see Theorem 4.7).

(ii) It was conjectured in [13], in particular, that for r even Hµ(z, w) is
a polynomial with integer coefficients. This was recently proved by
Mellit [21]. Note that in general Hµ(z, w) is not in fact polynomial
for r = 1 (see for example Lemma 4.3). It appears, however, that
in general for r odd the denominator is fairly small. For example,
for k = 1 we seem to just have denominator q2 + 1 and then only
for n ≡ 2 mod 4 and when all parts of µ are divisible by 2. On the
other hand, note that the specialization qdµ/2Hµ

(√
q, 1√

q

)
for any

r > 1 is a polynomial by (1.9).
(iii) In any case, we infer a purely combinatorial identity involving Mac-

donald polynomials. Namely, we conjecture (see Conjecture 4.4)
that

(z2−1)(1−w2) Log
(∑
λ∈P

∏ (z2a+1 − w2l+1)
(z2a+2−w2l)(z2a−w2l+2)H̃λ(x; z2, w2)

)

= (z − w)m(1)(x) + 1
z2 + 1m(2)(x) +m(12)(x)

where for a partition λ, we denote by mλ(x) the corresponding
monomial symmetric function.
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2. Preliminaries

2.1. Log and Exp

We let Λ be the field Q(x1, . . . , xr) where x1, . . . , xr are indeterminate
which commute and ΛJT K the ring of series with coefficients in Λ.

Consider

ψn : ΛJT K→ ΛJT K, f(q, T ) 7→ f(xn1 , . . . , xnr , Tn).

The ψn are called the Adams operations.
Define Ψ : TΛJT K→ TΛJT K by

Ψ(f) =
∑
n⩾1

ψn(f)
n

.

Its inverse is given by

Ψ−1(f) =
∑
n⩾1

µ(n)ψn(f)
n

where µ is the ordinary Möbius function.
Define Log : 1 + TΛJT K → TΛJT K and its inverse Exp : TΛJT K →

1 + TΛJT K as
Log(f) = Ψ−1 (log(f))

and
Exp(f) = exp (Ψ(f)) .

They satisfy the following obvious properties.

Log(f · g) = Log(f) + Log(g), Exp(h+ l) = Exp(h) · Exp(l).

They also commute with the Adams operations, namely for any integer
r > 0, we have

Log ◦ ψr = ψr ◦ Log, Exp ◦ ψr = ψr ◦ Exp .

ANNALES DE L’INSTITUT FOURIER
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Remark 2.1. — Note that the map T 7→ −T is not preserved under Log
and Exp as 1 + qiT j = (1− q2iT 2j)/(1− qiT j).

Remark 2.2. — Let f ∈ 1 + TΛJT K. If we write

Log(f) =
∑
n⩾1

1
n
UnT

n, Log(f) =
∑
n⩾1

VnT
n,

then
Vr(q) = 1

r

∑
d|r

µ(d)ψd(Ur/d).

We have the following results (details may be found for instance in Moz-
govoy [22]).

For g ∈ Λ and n ⩾ 1 we put

gn := 1
n

∑
d|n

µ(d)ψn
d

(g).

This is the Möbius inversion formula of ψn(g) =
∑
d|n d · gd.

Lemma 2.3. — Let g ∈ Λ and f1, f2 ∈ 1 + TΛJT K such that

Log(f1) =
∞∑
d=1

gd · Log(ψd(f2)).

Then
Log(f1) = g · Log(f2).

2.2. Mixed Poincaré series

Let K be Fq and choose a prime ℓ which does not divide q. Let Xo
be an algebraic stack of finite type defined over Fq, whose lift to K is
denoted by X. We denote by Hi

c(X,Qℓ) the compactly supported i-th ℓ-
adic cohomology group of X as defined in [17, 18].

We denote by F : X → X the geometric Frobenius and by F ∗ the in-
duced Frobenius on ℓ-adic cohomology. Let W k

• be the weight filtration on
Hk
c (X,Qℓ), i.e. the F ∗-stable increasing filtration such that for all integer

n > 0, the eigenvalues of (F ∗)n on the subquotient W k
m/W

k
m−1 are pure of

weight nm.
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We define then the mixed Poincaré series of X, a power formal series
in x1/2, as

Hc(X;x, t) :=
∑
k,m

dim (W k
m/W

k
m−1)xm/2tk.

When it is well defined (i.e. when the sum
∑
k(−1)kdim (W k

m/W
k
m−1) is

finite) we let the E-series of X be

(2.1) E(X;x) := Hc(X;x,−1) =
∑
m

∑
k

(−1)kdim (W k
m/W

k
m−1)xm/2.

Remark 2.4. — Let X/C be a separated scheme of finite type over C. The
compactly supported cohomology groups Hi

c((X/C)an,Q) carry a mixed
Hodge structure defined by Deligne and so one can define the corresponding
E-polynomial

E(X/C; a, b) =
∑
i,j

∑
k

(−1)khi,j;kc (X/C)aibj ,

where {hi,j;kc (X/C)}i,j are the mixed Hodge numbers of Hk
c ((X/C)an,C).

We then consider

E(X/C;x) := E(X/C;
√
x,
√
x) =

∑
r

∑
k

(−1)k
∑
i+j=r

hi,j;kc (X/C)xr/2.

If X/C is projective and smooth then the cohomology is pure of weight k,
i.e. hi,j;kc are zero unless i+ j = k, and so

E(X/C;x) =
∑
k

(−1)kdimHk
c (X/C,C)xk/2.

Let R be a subring of C which is finitely generated as a Z-algebra and let
X/R be an R-scheme of finite type such that X/C is obtained from X/R

by scalar extension. Then there is an open subset U of Spec(R) for which
the following is true : for any ring homomorphism φ : R → Fq such that
the image of Spec(Fq)→ Spec(R) is in U we have

E(X/C;x) = E(X/φFq;x).

If X/C is smooth projective then this is true because Hk
c (X/C,C) and

Hk
c (X/φFq,Qℓ) are pure of weight k [4, Théorème I.6].
The general case reduces to the smooth projective case using that we

always have a decomposition

[X/C] = [S/C]− [T/C]

in the Grothendieck group of the category of separated C-schemes of fi-
nite type with S/C and T/C both projective and smooth [15, Appendix,
Lemma 6.1.1], and that E-polynomials are additive.
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Theorem 2.5. — Let G be a connected linear algebraic group over K
acting on a separated scheme X of finite type over K. Assume that X, G
and the action are all defined over Fq. The E-series of the quotient stack
[X/G] is well-defined and

E([X/G];x) = E(X;x) E(B(G);x),

where B(G) := [Spec(K)/G] is the classifying stack of G.

Proof. — We consider the cartesian diagram

X //

��

[X/G]

��
Spec(K) // B(G)

Following the same lines as in [2, Section 2.5] with compactly supported
cohomology instead, we show that we have an E2 spectral sequence of
finite-dimensional Qℓ-vector spaces

Hi
c(B(G),Qℓ)⊗Hj

c (X,Qℓ)⇒ Hi+j
c ([X/G],Qℓ)

which is compatible with the action of F ∗. The theorem now follows from
the above spectral sequence as in the proof of the Lefschetz trace formula
in [2, Section 2.5]. □

Definition 2.6. — An algebraic stack of finite type X defined over Fq
has rational count if there exists a rational function Q(t) ∈ Q(t) such that
for all integer n > 0, we have

|X(Fqn)| = Q(qn).

Remark 2.7. — Note that if X and G are as in Theorem 2.5 then

|[X/G](Fq)| =
|X(Fq)|
|G(Fq)|

and so [X/G] has rational count if and only if X has polynomial count.
Indeed, if [X/G] has rational count, it follows that X has rational count
and therefore by Lemma 2.8 it has polynomial count.

Lemma 2.8. — Let S ∈ Q(t)be a rational function. If S(xr) is an integer
for infinitely many integers x1 < x2 < · · · then S ∈ Q[t].

Proof. — Write S = P/T with P, T ∈ Q[t] and let Q,R ∈ Q[t] be such
that

P = QT +R, deg(R) < deg(T ).
Let Q′ ∈ Z[X] and N ∈ Z be such that Q = Q′/N .
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We thus have
NS = Q′ + NR

T
.

There exists r′ such that for all x > xr′∣∣∣∣NR(x)
T (x)

∣∣∣∣ < 1

Hence for all r > r′, we have

NS(xr) = Q′(xr)

since S(xr) ∈ Z, and so S is a polynomial. □

Theorem 2.9. — Let X and G be as in Theorem 2.5. If [X/G] has
rational count with counting rational function Q(t), then

E([X/G];x) = Q(x).

Proof. — By Theorem 2.5 we are reduced to the prove the theorem in
the two following cases :

(i) G = 1.
(ii) X is a point.

The case (ii) follows from an explicit computation of the dimension of
Hi
c(B(G),Qℓ) which is pure of weight i (see [5, 2]).
Let us prove (i). We have for all r > 0

(2.2) |X(Fqr )| =
∑
k

(−1)kTr
(
(F ∗)r, Hk

c (X,Qℓ
)
.

For a complex number ξ ∈ C and a finite dimensional Qℓ vector space
V with an action of F ∗ let mξ(V ) be the multiplicity of ξ as a root of
det(1− F ∗|V T ).

If X has polynomial count with counting polynomial P (T ) =
∑
n cnT

n

then by definition P (qr) = |X(Fqr )| for all r > 0. Considering the gener-
ating series summing over all r > 0 and taking logarithmic derivative we
conclude that∑

ξ∈C

∑
k

(−1)k
∑
i

mξ(W k
i /W

k
i−1) ξT

1− ξT =
∑
n

cn
qnT

1− qnT .

Comparing poles on both sides of this equality and considering that

mξ(W k
i /W

k
i−1) > 0

implies that |ξ| = qi/2 we deduce that i = 2n must be even and∑
ξ∈C

∑
k

(−1)kmξ(W k
2n/W

k
2n−1) ξT

1− ξT =
∑
k

(−1)kmqn(W k
2n/W

k
2n−1) = cn.
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We also have dim(W k
i /W

k
i−1) =

∑
ξ∈Cmξ(W k

i /W
k
i−1) and therefore∑

k

(−1)k dim(W k
2n/W

k
2n−1) = cn

proving our claim. □

2.3. Mass formula

Consider the group Π with presentation

Π =
〈
a1, . . . , ar, x1, . . . , xk

∣∣ a2
1 · · · a2

rx1 · · ·xk = 1
〉
.

Let G = GLn(Fq), let σ : G → G be the involution g 7→ tg−1 and
consider the semi-direct product G+ = G ⋊ ⟨σ⟩. Consider on G the Fq-
structure induced by the Frobenius that raises coefficients of matrices to
their q-th power and fix a k-tuple C = (C1, . . . , Ck) of conjugacy classes of
G(Fq). For ε = (ε1, . . . , εr) ∈ ⟨σ⟩r consider the representation variety

Homε
C(Π,G+(Fq))

:=
{
ρ∈Hom(Π,G+(Fq))

∣∣∣∣∣ ϵ(ρ(ai)) = ε,

ρ(xj)∈ ι(Cj)
for all 1⩽ i ⩽ r and 1⩽ j⩽ k

}
,

where ϵ : G+ → ⟨σ⟩ is the quotient map and ι : G → G+ the natural
inclusion.

Recall that for an irreducible complex character χ of some finite group
U , the Schur indicator cχ ∈ {−1, 0, 1} is defined as

cχ := 1
|U |

∑
u∈U

χ(u2).

An irreducible character of U is afforded by a real representation (we call
its character real) if and only if cχ = 1. We denote by Û the set of irre-
ducible complex characters of U and by Ûreal the subset of real irreducible
characters. It is known [11] that for U = G(Fq) the Schur indicator cχ is
either 0 or 1. Frobenius and Schur [8, (9), p. 197] proved the mass formula

(2.3) 1
|U |
|{a2

1 · · · a2
r = 1}| =

∑
χ

cχ

(
|U |
χ(1)

)r−2
,

where the sum is over all irreducible characters of U .
We need the following generalization of (2.3) for our setting.
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Theorem 2.10 (Mass formula). — We have

(2.4) |Homε
C(Π,G+(Fq))|
|G(Fq)|

=


∑
χ∈Ĝ(Fq)

(
|GF |
χ(1)

)r−2∏k
i=1

χ(CF
i ) |CF

i |
χ(1) , if εi = σ for all i,∑

χ∈Ĝ(Fq)real

(
|GF |
χ(1)

)r−2∏k
i=1

χ(CF
i ) |CF

i |
χ(1) , otherwise.

Proof. — Let C(G(Fq)) denote the C-vector space of central functions
G(Fq)→ C. It is equipped with a convolution product ∗ defined as

(f1 ∗ f2)(g) =
∑
xy=g

f1(x)f2(y),

for f1, f2 ∈ C(G(Fq)) and g ∈ G(Fq).
Define the function ηε : G(Fq)→ C by

ηε(y) = #{(a1, . . . , ar) ∈ (G(Fq))r |Eε1(a1) · · ·Eεr
(ar) = y}

where E1(a) := a2 and Eσ(a) = aσ(a).Then

(2.5)
∣∣Homε

C(Π,G+(Fq))
∣∣ = (ηε ∗ 1C1 ∗ · · · ∗ 1Ck

)(1),

where 1Ci denotes the function on G(Fq) that takes the value 1 on elements
of Ci and 0 elsewhere.

Denote by F(Ĝ(Fq)) be the C-vector space of complex valued functions
on Ĝ(Fq) and let F : F(G(Fq))→ F(Ĝ(Fq)) be defined by

F(f)(χ) :=
∑

g∈G(Fq)

f(g)χ(g)
χ(1) .

It satisfies F(f ∗ g) = F(f) · F(g) where · denotes the pointwise multipli-
cation on F(Ĝ(Fq)).

By [13, Proposition 3.1.1], for all f ∈ C(G(Fq)) we have

f(1) = 1
|G(Fq)|

∑
χ∈Ĝ(Fq)

χ(1)2F(f)(χ).

We thus deduce from (2.5) that

|Homε
C(Π,G+(Fq))|
|G(Fq)|

=
∑

χ∈Ĝ(Fq)

χ(1)2

|G(Fq)|2
F(ηε)(χ)

k∏
i=1

χ(Ci) |Ci|
χ(1) .
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On the other hand we have ηε = ηε1 ∗ · · · ∗ ηεr . Hence

|Homε
C(Π,G+(Fq))|
|G(Fq)|

=
∑

χ∈Ĝ(Fq)

χ(1)2

|G(Fq)|2
r∏
i=1
F(ηεi)(χ)

k∏
i=1

χ(Ci) |Ci|
χ(1) .

By [9], [11, Theorem 3] we have

ησ(y) = |{x ∈ GLn(Fq) |, xxσ = y}|
∑

χ∈Ĝ(Fq)

χ(y)

for all y ∈ G(Fq) and so

F(ησ)(χ) =
∑

g∈G(Fq)

∑
ψ∈Ĝ(Fq)

ψ(g)
ψ(1)χ(g) = |G(Fq)|

χ(1) .

The claim now follows from

F(η1)(χ) = |G(Fq)|
χ(1) cχ,

since, as mentioned, c2
χ = cχ [11]. □

3. Character varieties of non-orientable surfaces

Consider
Π =

〈
a1, . . . , ar

∣∣ a2
1 · · · a2

r = 1
〉
.

As before, we consider on G the Fq-structure induced by the Frobenius that
raises coefficients of matrices to their q-th power.

In this section, we prove that the quotient stack

M = [Hom(Π,G)/G]

has rational count and we compute its E-series by counting points over
finite fields thanks to Theorem 2.9.

3.1. Case r = 1: involutions

For n ∈ Z⩾0 let In(q) be the number of involutions in G(Fq), i.e.,

In(q) := |{x ∈ G(Fq) | x2 = 1}|.

We have, using standard notation[
n

r

]
:= (q)n

(q)r(q)n−r

with (a)n :=
∏n−1
k=0(1− aqk), the following.
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Proposition 3.1.

(3.1) In(q) =
n∑
r=0

qr(n−r)
[
n

r

]
Proof. — If x ∈ G(Fq) is such that x2 = 1 then it must be conjugate to

a diagonal matrix with, say, r eigenvalues equal to 1 and n− r eigenvalues
equal to −1. A calculation shows that the size of this conjugacy class is
qr(n−r) [n

r

]
. □

In particular, In is a polynomial in q with non-negative integer coeffi-
cients (see Section 3.1 for the first few values).

Remark 3.2.

(i) Note that the map x 7→ −x induces an involution of the affine
variety U := {x ∈ G |x2 = 1} permuting the conjugacy classes of
semisimple elements with eigenvalues in {−1, 1}. When n is odd this
involution does not fix any of these conjugacy classes. This explains
why the polynomials In(q), with n odd, are divisible by 2.

(ii) These conjugacy classes are the irreducible components of

U = Hom(π1(Σ), GLn(C)),

where Σ is the real projective plane ([3, Thm 2.1]).

Comparison to the untwisted, orientable case discussed in [15, Section 3.8]
suggests considering the generating series∑

n⩾0

qn
2/2In(q)
|G(Fq)|

Tn.

To avoid dealing with powers of √q we consider instead

(3.2) I(q, T ) :=
∑
n⩾0

(−1)nq(
n
2)In(q)

|G(Fq)|
Tn,

which amounts to shifting T by a factor of√q; the factor of (−1)n simplifies
later formulas. Alternatively,

(3.3) I(q, T ) =
∑
n⩾0

In(q)
(q)n

Tn,

since

(3.4) |G(Fq)| = (−1)nq(
n
2) (q)n.
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It follows from the Mass formula (2.10) that

(3.5) In(q) =
∑
χ

χ(1),

where the sum is over the real irreducible characters of G(Fq). Hence we
also have

(3.6) I(q, T ) =
∑
n⩾0

∑
χ real

χ(1)
|G(Fq)|

(−1)nq(
n
2)Tn.

Proposition 3.3. — The following identity holds

(3.7) (q − 1) Log (I(q, T )) = −2T + T 2

or equivalently

(3.8) I(q, T ) =
∏
n⩾0

(1− qnT 2)
(1− qnT )2 .

The identity (3.7) will follow from a more general formula that we now
describe. Using (3.1) we have

I(q, T ) =
∑
n⩾0

n∑
r=0

qr(n−r)

(q)r(q)n−r
Tn.

This suggests that we introduce another variable and consider the series

(3.9) I∗(q,X, Y ) :=
∑
r⩾0

∑
s⩾0

qrs

(q)r(q)s
XrY s,

with
I(q, T ) = I∗(q, T, T ).

The following generalization of Proposition 3.3 holds.

Proposition 3.4.

(3.10) (q − 1) Log (I∗(q,X, Y )) = −X − Y +XY

or equivalently

(3.11) I∗(q,X, Y ) =
∏
n⩾0

(1− qnXY )
(1− qnX)(1− qnY ) .

Proof. — Following Fadeev–Kasahev [7], start with the q-binomial the-
orem ∑

n⩾0

(X)n
(q)n

Y n = (XY )∞

(Y )∞
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and replace (X)n by (X)∞/(Xqn)∞. Now use Euler’s formula

(u)−1
∞ =

∑
n⩾0

un

(q)n

with u = Xqn to finish the proof. □

Remark 3.5. — As the characteristic is different from 2, involutions are
in bijection with projections

{x2 = 1} ←→ {e2 = e}

x←→ 1
2 (1− x).

Hence In(q) equals the q-Stirling number Sn,2 that counts the number of
non-trivial splittings of a vector space of dimension n over Fq into two
direct summands [26, Example 5.5.2(b), pp. 45–6], [6].

Proposition 3.6. — The following identity holds

(3.12) Log (Z−1(q, T )) = T

(q − 1) + T 2

(q2 − 1)(q − 1) ,

Proof. — The identity is a specialization of a corresponding identity for
the Schur symmetric functions. Indeed from [19, p. 45] we know that

sλ(1, q, q2, . . .) = (−1)|λ|Hλ′(q)−1.

On the other hand [19, p. 76]∑
λ

sλ(x1, x2, . . .) =
∏
i

(1− xi)−1
∏
i<j

(1− xixj)−1

and (Cauchy’s formula)∑
λ

sλ(x1, x2, . . .)sλ(y1, y2, . . .) =
∏
i,j

(1− xiyj)−1.

It follows that

Z−1(q, T ) =
∑
λ

Hλ(q) (−T )|λ|

=
∏
i⩾0

(1 + qiT )−1
∏

0⩽i<j
(1− qi+jT 2)−1

=
∏
i⩾0

(1− qiT )
∏
i⩾0

(1− q2iT 2)−1
∏

0⩽i<j
(1− qi+jT 2)−1

and hence
Log (Z−1(q, T )) = T

∑
i⩾0

qi + T 2
∑

0⩽i⩽j
qi+j .

Summing the series finishes the proof. □
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We leave to the reader to deduce the following corollary from the iden-
tity (3.12).

Corollary 3.7. — We have

(3.13) Log (M−1(q, T )) = 2
(q − 1)T + 1

(q + 1)T
2.

Comparing (3.2) with (1.1) we see that M−1(q, T ) = I(q,−T ) hence
Corollary 3.7 also follows from (3.7) (keeping in mind Remark 2.1).

Remark 3.8. — Proposition 3.4 is essentially the quantum version of the
5-term relation of the dilogarithm of Fadeev–Kasahev [7]. Indeed, if we let
u, v satisfy the relation vu = quv then

I∗(q, u, v) = E(q, v)E(q, u),

where
E(q, T ) :=

∑
n⩾0

Tn

(q)n
=
∏
n⩾0

(1− qnT )−1.

We also have
E(q, T )−1 =

∑
n⩾0

(−1)nqn(n−1)/2

(q)n
Tn.

It is easily checked by induction that

vrus = qrsusvr, (vu)n = qn(n−1)/2unvn.

A calculation now shows that if

E(q,X)E(q, Y )E(q,XY )−1 =
∑
m,n⩾0

cm,n(q)XnY m

then
E(q, u)E(q,−vu)E(q, v) =

∑
m,n⩾0

cm,n(q)unvm

and hence Proposition 3.4 is equivalent to

E(q, v)E(q, u) = E(q, u)E(q,−vu)E(q, v).

3.2. Z× Z/2Z-orbits on a set

Fix an infinite set X. Let F : X → X be an automorphism of infinite
order such that for all x ∈ X, the set {F i(x) | i ∈ Z} is finite, and let
σ ∈ Aut(X) be an involution that commutes with F . Consider the action
of Γ := Z × Z/2Z on X where the first factor acts via F and the second
factor via σ.
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For x ∈ X, let r = r(x) be the smallest non-negative integer such that

F r(x) = σ(x),

if one exists, otherwise set r =∞. Let also d = d(x) be the degree of x, i.e.
the size of its F -orbit. We will call ν = (r, d) the Γ-degree of the Γ-orbit of
x; these are of the following three kinds.

ν |ν|
(i) (0, d) d

(ii) (r, 2r) 2r
(iii) (∞, d) 2d

where |ν| denotes the size of the corresponding Γ-orbit and r > 0 in case (ii).
Orbits of the first kind are of the form {x, F (x), . . . , F d−1(x)} with x ∈ Xσ.
Orbits of the second kind are of the form {x, F (x), . . . , F 2r−1(x)} with x

of degree 2r satisfying F r(x) = σ(x). Finally, orbits of the third kind are
of the form

{x, F (x), . . . , F d−1(x), σ(x), . . . , F d−1σ(x)},

where x has degree d and does not satisfy any equation of the form F r(x) =
σ(x).

For ν a given Γ-degree let Ñν(q) be the number of Γ-orbits of Γ-degree
ν. For integers r, d > 0, define

Nd := |{x ∈ Xσ |F d(x) = x}|, N ′
r := |{x ∈ X −Xσ |F r(x) = σ(x)}|,

N#
d := |{x ∈ X −Xσ |F d(x) = x}|.

We denote by µ the ordinary Möbius function.

Proposition 3.9. — We have

(i) Ñ(0,d) = 1
d

∑
r|d

µ

(
d

r

)
Nd.

Let Ñ#
d be the number of F -orbit of X −Xσ of size d. Then

Ñ#
d = 1

d

∑
e|d

µ

(
d

e

)
N#
e .

(ii) Ñ(r,2r) = 1
2r

∑
s|r, r/s odd

µ
(r
s

)
N ′
s.

(iii) Ñ(∞,d) = 1
2Ñ

#
d −

{
1
2Ñ(d/2,d) if d is even
0 otherwise.
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Proof. — We only prove (ii). Put

X ′
r := {x ∈ X −Xσ |F r(x) = σ(x)},

and let X(s,2s) be the subset of elements x of X ′
s such that r(x) = s. Since

σ is an involution we have:

X ′
r =

⋃
s|r, r/s odd

X(s,2s).

Hence

N ′
r =

∑
s|r, r/s odd

|X(s,2s)|

From the Möbius inversion formula we find that

|X(r,2r)| =
∑

s|r, r/s odd

µ
(r
s

)
N ′
s.

We thus deduce (ii) by noticing that Ñ(r,2r) = 1
2r |X(r,2r)|. □

3.3. Colorings on varieties, infinite products formulas

The first part of this section is a minor extension of [23] which we recall
for the convenience of the reader.

We keep the notation of Section 3.2 but here we assume that X is an
algebraic variety over Fq which is defined over Fq and that F : X(Fq) →
X(Fq) is the corresponding Frobenius endomorphism (for any integer r ⩾ 1,
we have XF r = X(Fqr )). Here we use the notation Ñ(0,d)(q), Ñ(d,2d)(q) and
Ñ(∞,d)(q) instead of Ñ(0,d), Ñ(d,2d) and Ñ(∞,d).

We also make the assumption that there exists polynomials in Q[T ]

Ñ(0,1)(T ), Ñ(1,2)(T ), Ñ(∞,1)(T )

such that for any finite field extension Fqd of Fq, we have

Ñ(0,1)(qd) = Ñ(0,d)(q)

Ñ(1,2)(qd) = Ñ(d,2d)(q)

Ñ(∞,1)(qd) = Ñ(∞,d)(q)

Then there exist also polynomials in Q[T ]

N1(T ), N ′
1(T ), N#

1 (T ),

such that for any finite field extension Fqd we have

N1(qd) = Nd, N ′
1(qd) = N ′

d, N#
1 (qd) = N#

d .
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Denote by P the set of all partitions and denote by 0 the unique par-
tition of 0. For λ ∈ P, we denote by |λ| the size of λ. Assume given a
weight function Wλ : P → Q(T ), λ 7→ Wλ(T ) with W0(T ) = 1. Let X/Γ
denotes the set of Γ-orbits of X(Fq). For a map f : X/Γ → P we let
|f | :=

∑
γ∈X/Γ |γ| · |f(γ)| ∈ Z⩾0 ∪ {∞} be the size of the support of f .

We also denote by O0, O1, O∞ the union of the orbits of the first kind, the
second kind and the third kind respectively (so that O0∪O1∪O∞ = X/Γ).

Then for f : X/Γ→ P with finite support, we put

Wf (q) :=
∏
γ∈O0

Wf(γ)

(
q|γ|
) ∏
γ∈O1

Wf(γ)

(
q|γ|
) ∏
γ∈0∞

Wf(γ)

(
q|γ|/2

)2
.

Consider

Z(q, T ) :=
∑
λ

Wλ(q)T |λ|, Z2(q, T ) :=
∑
λ

Wλ(q)2T |λ|.

Proposition 3.10. — We have

(3.14)
∑

{f :X/Γ→P, |f |<∞}

Wf (q)T |f |

=
∏
d⩾1

Z(qd, T d)Ñ(0,d)(q)
∏
r⩾1

Z(q2r, T 2r)Ñ(r,2r)(q)
∏
d⩾1

Z2(qd, T 2d)Ñ(∞,d)(q).

Proof. — We have∑
{f :X/Γ→P, |f |<∞}

Wf (q)T |f |

=

 ∑
f :O0→P

∏
γ∈O0

Wf(γ)

(
q|γ|
)T |f |

 ∑
f :O1→P

∏
γ∈O1

Wf(γ)

(
q|γ|
)T |f |


×

 ∑
f :O∞→P

 ∏
γ∈O∞

Wf(γ)

(
q|γ|/2

)2
T |f |


=
∏
γ∈O0

(∑
λ

Wλ

(
q|γ|
)
T |γ|·|λ|

)
·
∏
γ∈O1

(∑
λ

Wλ

(
q|γ|
)
T |γ|·|λ|

)

·
∏

γ∈O∞

(∑
λ

Wλ

(
q|γ|/2

)2
T |γ|·|λ|

)
□
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In order to express the left hand side of 3.14 as an infinite product in
the variables q and T , we need to compute the Log of the right hand side
of (3.14) (see [23] for more details). It is convenient to work formally and
consider the following general case.

Put

F0 :=
∏
d⩾1

(
Ω0(qd, T d)

)Ñ(0,d)(q)
, F1 :=

∏
r⩾1

(
Ω1(q2r, T 2r)

)Ñ(r,2r)(q)
,

F∞ :=
∏
d⩾1

(
Ω∞(qd, T 2d)

)Ñ(∞,d)(q)

for some Ωi(q, T ) ∈ 1 + TΛJT K with i ∈ {0, 1,∞}.
For i = 1,∞, define {Hi,n(q)}n by

∑
n⩾1

Hi,n(q)Tn = Log (Ωi(q, T )) .

Theorem 3.11. — We have

(i) Log(F0) = N1(q) Log (Ω0(q, T )) .

(ii) Log(F1) = 1
2N

′
1(q)

∑
m⩾1

v2(m)∑
j=0

1
2jH1,m/2j (q2j+1

)

T 2m.

(iii) Log(F∞) = 1
2N

#
1 (q)

∑
m⩾1

H∞,m(q)T 2m

− 1
2N

′
1(q)

∑
m⩾1

v2(m)∑
j=1

1
2jH∞,m/2j (q2j

)T 2m.

where v2 denotes the valuation at 2 and H1,x = H∞,x = 0 if x is
not an integer.

Proof. — The first identity follows from Lemma 2.3 and Proposi-
tion 3.9(i). For the second identity, we compute Log(F1) using the two
steps procedure mentioned in Remark 2.2. We thus define {Rn(q)}n⩾1 by

Log(Ω1(q, T )) =
∑
n⩾1

Rn(q)T
n

n
.
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We have

Log(F1) =
∑
r⩾1

Ñ(r,2r)(q) Log(Ω1(q2r, T 2r))

=
∑
r⩾1

Ñ(r,2r)(q)
∑
n⩾1

Rn(q2r)T
2rn

n

=
∑
m⩾1

∑
r|m

2rÑ(r,2r)(q)Rm
r

(q2r)

 T 2m

2m

=
∑
N⩾1

CN (q)T
N

N

where

CN (q) :=
{∑

r| N
2

2rÑ(r,2r)(q)R N
2r

(q2r) if N is even
0 otherwise.

Then

Log(F1) =
∑
n⩾1

Vn(q)Tn

where Vn(q) := 1
n

∑
d|n µ(d)Cn/d(qd).

Hence Vn(q) = 0 if n is odd and

V2m(q) = 1
2m

∑
{d|2m, 2m

d even}

µ(d)C2m/d(qd)

= 1
2m

∑
d|m

µ(d)C2m/d(qd)

= 1
2m

∑
d|m

µ(d)
∑
r| m

d

2rÑ(r,2r)(qd)Rm
rd

(q2rd)

= 1
m

∑
k|m

∑
d|k

µ(d)k
d
Ñ( k

d ,2
k
d )(qd)Rm

k
(q2k)

= 1
m

∑
k|m

Rm
k

(q2k)
∑
d|k

µ(d)k
d
Ñ( k

d ,2
k
d )(qd)

= 1
m

∑
k|m

Rm
k

(q2k)
∑
d|k

µ

(
k

d

)
dÑ(d,2d)(qk/d)
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By Proposition 3.9 we have

rÑ(r,2r)(q) = 1
2

∑
s|r, r/s odd

µ
(r
s

)
N ′

1(qs)

= 1
2
∑
s|r′

µ(s)N ′
1(qr/s),

where r′ := r/2v2(r).
Put gs(q) :=µ(s)N ′

1(q1/s) and fr(q) :=
∑
s|r gs(q). Note that rÑ(r,2r)(q) =

1
2fr′(qr). We thus have

V2m(q) = 1
2m

∑
k|m

Rm
k

(q2k)
∑
d|k

µ

(
k

d

)
fd′(qk)

= 1
2m

∑
k|m

Rm
k

(q2k)
∑
d|k′

v2(k)∑
j=0

µ

(
2v2(k)−j k

′

d

)
fd(qk)

= 1
2m

∑
k|m

Rm
k

(q2k)
∑
d|k′

fd(qk)

v2(k)∑
j=0

µ

(
2v2(k)−j k

′

d

)

Since in the above sum k′/d is odd, the sum on the right hand side equals
0 unless v2(k) = 0. Hence

V2m(q) = 1
2m

∑
{k|m, k odd}

Rm
k

(q2k)
∑
d|k

µ

(
k

d

)
fd(qk)

By the Möbius inversion formula we have∑
d|k

µ

(
k

d

)
fd(q) = gk(q).

Hence

V2m(q) = 1
2mN ′

1(q)
∑

{k|m, k odd}

µ(k)Rm
k

(q2k)

= 1
2mN ′

1(q)
∑
k|m′

µ(k)Rm
k

(q2k)

= 1
2N

′
1(q)

v2(m)∑
j=0

1
2jH1,m/2j (q2j+1

)

 ,

from which we deduce the second identity.
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By Proposition 3.9(iii) we have

F∞ =

∏
d⩾1

Ω∞(qd, T 2d) 1
2 Ñ

#
d

(q)

 ·
∏
n⩾1

Ω∞(q2n, T 4n)− 1
2 Ñ(n,2n)(q)

 .

where Ñ#
d (q) is the number of F -orbits in X(Fq)−Xσ(Fq) of size d. Hence

Log(F∞) = 1
2N

#
1 (q) Log

(
Ω∞(q, T 2)

)
+ Log

∏
n⩾1

Ω∞(q2n, T 4n)− 1
2 Ñ(n,2n)(q)

 .

The result is then a consequence of the fact that

Log Ω∞(q, T 2) =
∑
m⩾1

H∞,m(q)T 2m. □

3.4. Proof of Theorem 1.1

By Theorem 2.10 we have

(3.15)
∣∣{(x1, . . . , xr)∈G(Fq)r |x2

1 · · ·x2
r = 1

}∣∣
|G(Fq)|

=
∑

χ∈Ĝ(Fq)real

(
|G(Fq)|
χ(1)

)r−2
.

To describe the real characters of G(Fq) we will use the idea of colorings
on varieties [23]. Let σ ∈ Aut(Gm) be the involution σ(x) := x−1 We
have an action of Γ := Z × Z/2Z on Gm(Fq), where the first factor acts
via the Frobenius F and the second via σ. These orbits are described in
Section 3.2. However note that here we have Gσm = {1,−1}, and so in the
case i) we have only two orbits of the kind (0, 1) which are {1} and {−1}.
For ν a given Γ-degree let Ñν(q) be the number of Γ-orbits of Γ-degree ν.
The following formulae for these quantities hold (see Proposition 3.9).

Proposition 3.12.
(i) Ñ(0,1) = 2

(ii) Ñ(r,2r) = 1
2r

∑
s|r, r/s odd

µ
(r
s

)
(qs − 1)

(iii) Ñ(∞,d) = 1
2Ñ

#
d (q)−

{
1
2Ñ(d/2,d) if d is even
0 otherwise.
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with
Ñ#
d (q) = 1

d

∑
e|d

µ

(
d

e

)
(qe − 3).

A real character of G(Fq) is uniquely described by a map Λ from Γ-orbits
(technically on the dual of Gm(Fq) but for convenience we will still think
of Gm(Fq)) to the set of partitions such that

|Λ| :=
∑

γ∈Gm/Γ

|γ| · |Λ(γ)| = n.

Recall that for an integer ϱ we defined (see (1.3))

Zϱ(q, T ) =
∑
λ

Hλ(q)ϱ T |λ|,

where Hλ(q) is the hook polynomial (1.2), and {Vϱ,n(q)}n by the formula
(see (1.4)) ∑

n⩾1
Vϱ,n(q)Tn := Log (Zϱ(q, T )) .

Note that Vϱ,n(q) is a rational function of q for ϱ < 0 and a Laurent
polynomial for ϱ ⩾ 0.

By the Mass Formula (3.15) we have

Mϱ,n(q) :=
∣∣{(x1, . . . , xr) ∈ G(Fq)r | x2

1 · · ·x2
r = 1

}∣∣
|G(Fq)|

(3.16)

=
∑

{Λ:Gm/Γ→P, |Λ|=n}

(
|G(Fq)|
χΛ(1)

)ϱ
,(3.17)

with ϱ = r − 2. Using the formula for χ(1) in terms of hook polynomials
(see for instance [20, IV, 6.7]) we obtain the following.

q−ϱ(n
2)Mϱ,n(q) =

∑
{Λ:Gm/Γ→P, |Λ|=n}

HΛ(q)ϱ,

By Formula (3.14) we obtain the following

Proposition 3.13.

Mϱ(q, T ) = 1 +
∑
n⩾1

q−ϱ(n
2)Mϱ,n(q)Tn

=
∏
d⩾1

Zϱ(qd, T d)Ñ(0,1)(q)
∏
r⩾1

Zϱ(q2r, T 2r)Ñ(r,2r)(q)

×
∏
d⩾1

Z2ϱ(qd, T 2d)Ñ(∞,d)(q).
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Now we can complete the proof of Theorem 1.1: (ii) follows by combin-
ing Proposition 3.13 with Theorem 3.11; (i) is a direct consequence of (ii)
given the above observation on the nature of Vϱ,n(q); (iii) is just a restate-
ment of (ii).

Remark 3.14. — The statement (Theorem 1.1(i)) that Mϱ,n(q) is a poly-
nomial in q for r > 1 also follows from the main result of [10] as the
abelianization of the fundamental group

Π =
〈
a1, . . . , ar

∣∣ a2
1 · · · a2

r = 1
〉
.

is infinite for r > 1 (but finite for r = 1).

4. Orientation cover of non-orientable surfaces

4.1. Character varieties

Let r ⩾ 1 be an integer, put ϱ = r − 2 and denote by Σ a compact
non-orientable surface of Euler characteristic −ϱ (the connected sum of r
real projective planes). Consider a set S = {α1, . . . , αk} of k-points of Σ
(k ⩾ 1). Fix a base point b ∈ Σ\S. The fundamental group Π = π1(Σ\S, b)
has the presentation

Π =
〈
a1, . . . , ar, x1, . . . , xk

∣∣ a2
1 · · · a2

rx1 · · ·xk = 1
〉
.

Let K be an algebraically closed field and consider a generic k-tuple C =
(C1, . . . , Ck) of semisimple conjugacy classes of G = GLn(K) such that

k∏
i=1

det(Ci) = 1.

The genericity condition means that for any 1 ⩽ s < n, if we select s
eigenvalues of Ci for each i = 1, . . . , k (possibly with multiplicities), then
the product of the sk selected eigenvalues is not equal to 1.

We denote by σ the automorphism G→ G, g 7→ tg−1 and G+ the semi-
direct product G ⋊ ⟨σ⟩. We consider the representation varieties UC of the
ρ ∈ Hom(Π,G+) such that

∀j = 1, . . . , r ∀i = 1, . . . , k, ρ(aj) ∈ Gσ, ρ(xi) ∈ ι(Ci)

It can be explicitly described as the space of k + r-tuples

(A1, . . . , Ar, X1, . . . , Xk) ∈ Gr × C1 × · · · × Ck
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satisfying the equation

A1σ(A1) · · ·Arσ(Ar)X1 · · ·Xk = 1.

Let G act on UC by

Aj 7→ gAjσ(g−1), xi 7→ gxig
−1, g ∈ G

and we consider the quotient stack

MC := [UC/G].

Remark 4.1. — Note that unlike in the situation of [13], even though
the k-tuple C is assumed to be generic, the action of G is far from being
free. For instance, if r = 1, n = 2 and k = 1 with the central matrix
X1 = diag(−1,−1) at the puncture, then A = diag(1,−1) is a solution to
the equation

Aσ(A)X1 = I2

stabilized by the torus of diagonal matrices.

Remark 4.2. — The character stack MC has an alternative description
that can be found in [25, 24] and we now describe briefly. Denote by p :
Σ̃→ Σ the orientation covering of Σ. This is an unramified double covering
with Σ̃ a compact Riemann surface of genus g = r − 1. Considering the
homomorphism Gal(p)→ Aut(G) that maps the non-trivial element of the
Galois group of p to σ; let us identify Gal(p) with ⟨σ⟩. The orientation
character χ : Π→ ⟨σ⟩ maps a loop that preserves the orientation to 1 and
a loop that reverses the orientation to σ. It thus maps aj to σ and xi to 1.
Denote by Π̃ the fundamental group of Σ̃\p−1(S) with some base point b̃
above b.

A representation ρ ∈ UC defines (by restriction) a representation ρ̃ : Π̃→
G making the following diagram commutative

(4.1)

1 // Π̃
p∗ //

ρ̃

��

Π
χ //

ρ

��

⟨σ⟩ //

Id
��

1

1 // G ι // G+ π // ⟨σ⟩ // 1

In order to understand local monodromies we need to choose the generators
of Π precisely. For i = 1, . . . , k, we let Di be a small open neighbourhood
(homeomorphic to an open disc in C) of αi in Σ, such that p is trivial over
Di. Let βi be a point in Di and let λi be a path from x to βi. We choose
a single loop ℓi in Di based at βi around αi and we take the generator xi
of Π to be λ−1

i ℓiλi. The path λi lifts to a unique path λ̃i from b̃ to some
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point β̃i1 above βi. We let D̃i1 be the connected component of p−1(Di)
containing β̃i1, α̃i1 the unique point above αi in D̃i1 and ℓ̃i1 the loop in
D̃i1 based at β̃i1 around α̃i1 which lifts ℓi. Then we let xi1 be the generator
λ̃−1
i ℓ̃iλ̃i of Π̃. Let γσ ∈ Π be a loop reversing the orientation. If instead of

the path λi from x to βi we choose the path λiγσ, then we get into the
other connected component of p−1(Di) with punctures αi2 and we obtain
an other generator xi2 of Π̃ which is mapped to γ−1

σ xiγσ via p.
Therefore if ρ(xi) ∈ ι(Ci) then ρ̃(xi1) ∈ Ci and ρ̃(xi2) ∈ σ(Ci). Put

Cij = Ci if j = 1 and σ(Ci) if j = 2, and consider the representation
variety

ŨC :=
{
ρ̃ ∈ Hom(Π̃,G)

∣∣∣ ρ̃(xij) ∈ ι(Cij)
}

Say that a pair (ρ̃, hσ) ∈ ŨC ×G is σ-invariant if we have{
hσρ̃(z)h−1

σ = σ
(
ρ̃(γ−1

σ zγσ)
)

for all z ∈ Π̃
ρ̃(γ2

σ) = h−1
σ σ(h−1

σ )
.

If the two above conditions are satisfied then the representation ρ̃ can be
extended to an homomorphism ρ : Π → G+ making the diagram (4.1)
commutative. The group G acts on the space ŨC,σ of σ-invariant pairs as
follows

g · (ρ̃, hσ) = (g · ρ̃, σ(g)hσg−1),
where g · ρ̃ is the representation obtained by composing ρ̃ with the conju-
gation by g.

Then [25, Theorem 2.2.1] we have an isomorphism

MC ≃ [ŨC,σ/G].

The stack [ŨC,σ/G] can be described in terms of local systems L on Σ̃\p−1(S)
satisfying L ≃ σ∗(L∨) (where L∨ is the dual local system of L) with local
monodromy in Cij at the puncture αij , see [25, Section 6.1.2] for more
details.

4.1.1. The Cauchy function

Recall that in Section 1.2 we defined the Cauchy function Ω(z, w). Let
Hn(z, w) be the degree n component of (z2 − 1)(1−w2) Log (Ω(z, w)) and
for a k-tuple of partitions µ = (µ1, . . . , µk) of n let

(4.2) Hn(z, w) := (z2 − 1)(1− w2) ⟨Log (Ω(z, w)) , hµ⟩ ,

where hµ = hµ1(x1) · · ·hµk (xk) and hµi(xi) is the complete symmetric
function in the variables xi.
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For a partition λ denotes by mλ = mλ(x) the corresponding monomial
symmetric function in the variables x = {x1, x2, . . . }. A computation shows
that we have

Lemma 4.3. — If r = k = 1, we have

Hn(z, w) =
{

(z − w)m(1) n = 1
1

z2+1m(2) +m(12) n = 2.

Conjecture 4.4. — If r = 1 and k = 1. We have Hn(z, w) = 0 for
n ⩾ 2. Equivalently,

(z2 − 1)(1− w2) Log
(∑
λ∈P

∏ (z2a+1 − w2l+1)
(z2a+2 − w2l)(z2a − w2l+2)H̃λ(x; z2, w2)

)

= (z − w)m(1)(x) + 1
z2 + 1m(2)(x) +m(12)(x).

(The equivalence follows from Lemma 4.3.)

4.1.2. Proof of Theorem 1.8

Assume that K = Fq and we consider on G the Fq-structure induced by
the Frobenius that raises coefficients of matrices to their q-th power. We
also assume that the eigenvalues of the conjugacy classes C1, . . . , Ck are
in Fq.

As G is connected we have

|MC(Fq)|

= |UC(Fq)|
|G(Fq)|

=

∣∣∣{((Ai)i, (Xi)i)∈ (G(Fq))r×
∏k
i=1 Ci(Fq)

∣∣∣∏r
i=1 Aiσ(Ai)

∏k
i=1 Xi = 1

}∣∣∣
|G(Fq)|

.

For each i = 1, . . . , k, let µi = (µi1, µi2, . . . ) be the partition of n given by
the multiplicities of the eigenvalues of the conjugacy class Ci and let µ be
the k-tuple (µ1, . . . , µk).

Theorem 4.5. — The stack MC has rational count. More precisely,

|MC(Fq)| =
qdµ/2

q − 1Hµ
(
√
q,

1
√
q

)
.

with dµ = n2(r − 2 + k) + 2−
∑
i,j(µij)2.

TOME 73 (2023), FASCICULE 4



1418 Emmanuel LETELLIER & Fernando RODRIGUEZ-VILLEGAS

Proof. — Using Theorem 2.10 the proof is completely similar to that
of [13, Theorem 5.2.1]. □

Now Theorem 1.8 follows from Theorem 2.9.

Remark 4.6. — If r = 2h is even, let Σ′ be a compact Riemann surface
of Euler characteristic r−2 and a subset S′ = {α′

1, . . . , α
′
k} ⊂ Σ′. Consider

the stacky character variety

M′
C =

[{
ρ ∈ Hom

(
π1(Σ′\S′)

)
,G
∣∣ ρ(zi) ∈ Ci

}
/G
]
.

where zi is a single loop around the puncture α′
i. Then by Theorem 4.5

and [13, Theorem 1.2.3] we have

E(M′
C ;x) = E(MC ;x).

4.2. Mixed Poincaré series in the case r = k = 1

Theorem 4.7. — Assume that r = k = 1. Then MC is empty unless
n = 1, 2 in which case we have

(4.3) Hc(MC ; q, t) =
(
t
√
q
)dµ

qt2 − 1 Hµ
(
t
√
q,− 1
√
q

)
.

Proof. — Consider the solutions to the equation

(4.4) Aσ(A) = X, A ∈ G,

where X := diag(ξ1, . . . , ξn). (For a calculation of the number of solutions
for arbitrary X see [9].)

For n = 1, we always have Aσ(A) = 1 and so the space MC is nothing
but the quotient stack [Gm/Gm] for the trivial action of Gm on itself. The
later is isomorphic to Gm × BGm. The mixed Poincaré polynomial of Gm
is t + qt2 and the mixed Poincaré series of the classifying stack BGm is
1/(qt2 − 1) [5, 9.1.1, 9.1.4], therefore by Künneth formula

Hc(MC ; q, t) = t+ qt2

qt2 − 1 ,

and so (4.3) is true when r = k = n = 1 by Lemma 4.3.
Going back to Equation (4.4), if A = (ai,j) this amounts to solving the

equations ξiaj,i = ai,j for i, j = 1, . . . , n. Hence if ξi ̸= 1 then ai,i = 0. The
equations imply ξiξjai,j = ai,j . If x is generic and n > 2 we do not have
ξiξj = 1 for i ̸= j or ξi = 1. Therefore the only solution is identically zero
and (4.4) has no solution in G.
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For n = 2 we have two possibilities for generic X:
(i) ξ1 = ξ2 = −1 and A =

( 0 α
−α 0

)
, with α non-zero or

(ii) ξ1 = ξ, ξ2 = ξ−1 for some ξ ̸= ±1 and A =
( 0 ξα
α 0

)
, with α non-zero.

In case (i), we see from the above calculation that MC is the quotient
stack [Gm/GL2] where GL2 acts on Gm by the determinant. Writing Gm
as the quotient GL2 / SL2, we find that [Gm/GL2] is the classifying stack
B(SL2) whose mixed Poincaré series is 1

qt2(qt2−1)(qt2+1) by [5, 9.1.1, 9.1.4].
Now (4.3) follows from Lemma 4.3.

In case (ii), the stackMC is isomorphic to the stack [Gm/T2], where the
group T2 ⊂ GL2 of diagonal matrices acts by the determinant. Writing Gm
as T2/T′

2, where T′
2 = T2 ∩ SL2 ≃ Gm, we find that

Hc(MC ; q, t) = 1
qt2 − 1 ,

from which, together with Lemma 4.3, we deduce (4.3) in this case. □

Remark 4.8. — Note that the combinatorial Conjecture (4.4) implies
that the right-hand side of (4.3) is zero for n > 2. In particular, the above
theorem together with Conjecture (4.4) imply that (4.3) is true for all n.

BIBLIOGRAPHY

[1] T. J. Baird & M. L. Wong, “E-polynomials of character varieties for real curves”,
https://arxiv.org/abs/2006.01288.

[2] K. A. Behrend, “The Lefschetz trace formula for algebraic stacks”, Invent. Math.
112 (1993), no. 1, p. 127-149.

[3] V. Benyash-Krivets & V. I. Chernousov, “Representation varieties of the funda-
mental groups of compact non-orientable surfaces”, Math. Sb. 188 (1997), p. 42-92.

[4] P. Deligne, “La conjecture de Weil. I”, Inst. Hautes Études Sci. Publ. Math.
(1974), no. 43, p. 273-307.

[5] ——— , “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math. (1974),
no. 44, p. 5-77.

[6] D. Ellerman, “The number of direct-sum decompositions of a finite vector space”,
https://arxiv.org/abs/1603.07619.

[7] L. D. Faddeev & R. M. Kashaev, “Quantum dilogarithm”, Modern Phys. Lett.
A 9 (1994), no. 5, p. 427-434.

[8] G. Frobenius & I. Schur, “Über die reellen Darstellungen der endlichen Gruppen.”,
Berl. Ber. 1906 (1906) (German), p. 186-208.

[9] J. Fulman & R. Guralnick, “Conjugacy class properties of the extension of
GL(n, q) generated by the inverse transpose involution”, J. Algebra 275 (2004),
no. 1, p. 356-396.

[10] C. Gordon & F. Rodriguez-Villegas, “On the divisibility of #Hom(Γ, G) by
|G|”, J. Algebra 350 (2012), p. 300-307.

[11] R. Gow, “Properties of the characters of the finite general linear group related to
the transpose-inverse involution”, Proc. London Math. Soc. (3) 47 (1983), no. 3,
p. 493-506.

TOME 73 (2023), FASCICULE 4

https://arxiv.org/abs/2006.01288
https://arxiv.org/abs/1603.07619


1420 Emmanuel LETELLIER & Fernando RODRIGUEZ-VILLEGAS

[12] M. Hausel, T. Mereb & F. Rodriguez-Villegas, “Mirror symmetry in the char-
acter table of SLn(Fq)”, in preparation.

[13] T. Hausel, E. Letellier & F. Rodriguez-Villegas, “Arithmetic harmonic anal-
ysis on character and quiver varieties”, Duke Math. J. 160 (2011), no. 2, p. 323-400.

[14] ——— , “Arithmetic harmonic analysis on character and quiver varieties II”, Adv.
Math. 234 (2013), p. 85-128.

[15] T. Hausel & F. Rodriguez-Villegas, “Mixed Hodge polynomials of character va-
rieties”, Invent. Math. 174 (2008), no. 3, p. 555-624, With an appendix by Nicholas
M. Katz.

[16] E. Jacobsthal, “Sur le nombre d’éléments du groupe symétrique Sn dont l’ordre
est un nombre premier”, Norske Vid. Selsk. Forh., Trondheim 21 (1949), no. 12,
p. 49-51.

[17] Y. Laszlo & M. Olsson, “The six operations for sheaves on Artin stacks. I. Finite
coefficients”, Publ. Math. Inst. Hautes Études Sci. (2008), no. 107, p. 109-168.

[18] ——— , “The six operations for sheaves on Artin stacks. II. Adic coefficients”, Publ.
Math. Inst. Hautes Études Sci. (2008), no. 107, p. 169-210.

[19] I. G. Macdonald, “Affine root systems and Dedekind’s η-function”, Invent. Math.
15 (1972), p. 91-143.

[20] ——— , Symmetric functions and Hall polynomials, second ed., Oxford Mathemat-
ical Monographs, The Clarendon Press, Oxford University Press, New York, 1995,
With contributions by A. Zelevinsky, Oxford Science Publications, x+475 pages.

[21] A. Mellit, “Integrality of Hausel–Letellier–Villegas kernels”, Duke Math. J. 167
(2018), no. 17, p. 3171-3205.

[22] S. Mozgovoy, “A computational criterion for the Kac conjecture”, J. Algebra 318
(2007), no. 2, p. 669-679.

[23] F. Rodríguez-Villegas, “Counting colorings on varieties”, Publ. Mat. 51 (2007),
p. 209-220, Proceedings of the Primeras Jornadas de Teoría de Números.

[24] F. Schaffhauser, “Lectures on Klein surfaces and their fundamental group”, in
Geometry and quantization of moduli spaces, Adv. Courses Math. CRM Barcelona,
Birkhäuser/Springer, Cham, 2016, p. 67-108.

[25] C. Shu, “Character varieties with non-connected structure groups”, https://
arxiv.org/abs/1912.04360.

[26] R. P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced
Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, xii+581 pages.

[27] W. C. Waterhouse, “The number of congruence classes in Mn(Fq)”, Finite Fields
Appl. 1 (1995), no. 1, p. 57-63.

Manuscrit reçu le 14 septembre 2020,
révisé le 25 juin 2021,
accepté le 4 novembre 2021.

Emmanuel LETELLIER
IMJ-PRG, Université Paris Cité (France)
emmanuel.letellier@imj-prg.fr
Fernando RODRIGUEZ-VILLEGAS
ICTP Trieste (Italy)
villegas@ictp.it

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/1912.04360
https://arxiv.org/abs/1912.04360
mailto:emmanuel.letellier@imj-prg.fr
mailto:villegas@ictp.it

	1. Introduction
	1.1. E-series of MC varepsilon in case (A)
	1.2. E-series of MC varepsilon in case (B)
	Acknowledgements

	2. Preliminaries
	2.1. Log and Exp
	2.2. Mixed Poincaré series
	2.3. Mass formula

	3. Character varieties of non-orientable surfaces
	3.1. Case r=1: involutions
	3.2. Z times Z/2Z-orbits on a set
	3.3. Colorings on varieties, infinite products formulas
	3.4. Proof of Theorem 1.1

	4. Orientation cover of non-orientable surfaces
	4.1. Character varieties
	4.1.1. The Cauchy function
	4.1.2. Proof of Theorem 1.8

	4.2. Mixed Poincaré series in the case r=k=1

	References

