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THE RELATIVE CANONICAL IDEAL OF THE
KUMMER–ARTIN SCHREIER–WITT FAMILY OF

CURVES

by Hara CHARALAMBOUS,
Kostas KARAGIANNIS & Aristides KONTOGEORGIS (*)

Dedicated to Prof. Jannis A. Antoniadis on the occasion of his 70th birthday.

Abstract. — We study the canonical model of the Kummer–Artin Schreier–
Witt flat family of curves over a ring of mixed characteristic. We first prove the
relative version of a classical theorem by Petri, then use the model proposed by
Bertin–Mézard to construct an explicit generating set for the relative canonical
ideal. As a byproduct, we obtain a combinatorial criterion for a set to generate
the canonical ideal, applicable to any curve satisfying the assumptions of Petri’s
theorem, except for plane quintics and trigonal curves.

Résumé. — Nous étudions le modèle canonique de la famille de courbes plate
de Kummer–Artin Schreier–Witt sur un anneau de caractéristique mixte. Nous
prouvons d’abord la version relative d’un théorème classique de Petri, puis uti-
lisons le modèle proposé par Bertin–Mézard afin de construire un ensemble de
générateurs explicite de l’idéal canonique relatif. De plus, nous obtenons un critère
combinatoire pour qu’un ensemble engendre l’idéal canonique, applicable à toute
courbe satisfaisante les hypothèses du théorème de Petri, á l’exception des planes
quintiques et des courbes trigonales.

1. Introduction

1.1. The canonical ideal

Let X be a complete, non-singular, non-hyperelliptic curve of genus g ⩾ 3
over an algebraically closed field F of arbitrary characteristic. Let ΩX/F

denote the sheaf of holomorphic differentials on X and, for n ⩾ 0, let Ω⊗n
X/F
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denote the n-th tensor power of ΩX/F . The following classical result is
usually referred to in the bibliography as Petri’s Theorem, even though it
is due to Max Noether, Enriques and Babbage as well:

Theorem 1.1.
(1) The canonical map

ϕ : Sym(H0(X, ΩX/F )) →
⊕
n⩾0

H0(X, Ω⊗n
X/F )

is surjective.
(2) The kernel IX of ϕ is generated by elements of degree 2 and 3.
(3) IX is generated by elements of degree 2 except in the following

cases:
(a) X is a non-singular plane quintic (in this case g = 6).
(b) X is trigonal, i.e. a triple covering of P1

F .

The standard terminology for the algebro-geometric objects relevant to
Petri’s Theorem uses the adjective canonical: the sheaf ΩX/F is the canon-
ical bundle, the ring

⊕
n⩾0 H0(X, Ω⊗n

X/F ) is the canonical ring, the map
ϕ is the canonical map and the kernel IX = ker ϕ is the canonical ideal.
More details on the canonical map will be given in section 2; for a modern
treatment over a field of arbitrary characteristic we refer to the article of
B. Saint-Donat [20].

The problem of determining explicit generators for the canonical ideal
has attracted interest by researchers over the years. A non-exhaustive list
of techniques employed includes the use of Weierstrass semigroups [17], the
theory of Gröbner bases [2], minimal free resolutions and syzygies [1]. The
latter are also central to Green’s conjecture, solved by Voisin in [28]. The
purpose of this paper is to study Petri’s Theorem in the context of lifts of
curves as discussed below.

1.2. Lifts of curves

Let k be a field of prime characteristic p > 0. A lift of k to characteristic
0 is the field of fractions L of any integral extension of the ring of Witt
vectors W (k), a classical construction by Witt [29] that generalizes the p-
adic integers Zp = W (Fp). In what follows the field k will be assumed to
be algebraically closed. Note that integral extensions of W (k) are discrete
valuation rings of mixed characteristic, with residue field k.

ANNALES DE L’INSTITUT FOURIER



THE RELATIVE CANONICAL IDEAL 1087

Consider a projective, non-singular curve X0 over k and let R be an in-
tegral extension of W (k). A lift of X0/k to characteristic 0, is a curve Xη

over L = QuotR, obtained as the generic fibre of a flat family of curves
X /R whose special fibre is X0/k. Such lifts have been extensively used by
arithmetic geometers to reduce characteristic p problems to the, much bet-
ter understood, characteristic 0 case. One of the earliest uses of the idea
of lifting is the approach of J.P. Serre [24] in an early attempt to define
an appropriate cohomology theory which could solve the Weil conjectures.
The lifting of an algebraic variety to characteristic zero is unfortunately not
always possible and Serre was able to give such an example, see [25]. The
progress made in deformation theory by Schlessinger [21] identified the lift-
ing obstruction as an element in H2(X, TX), see [23, 1.2.12], [11, 5.7 p.41].

1.3. Lifts of curves with automorphisms

Let X0/k be a projective, non-singular curve as in the previous section.
Such a curve can always lifted in characteristic zero, since the obstruction
lives in the second cohomology which is always zero for curves. However,
one might ask if it is possible to deform the curve together with its auto-
morphism group, see [5]. This is not always possible, since Hurwitz’s bound
for the order of automorphism groups in characteristic 0 ensures that the
answer for a general group G is negative, see [8, 15]. In the same spirit,
J. Bertin in [3] provided an obstruction for the lifting based on the Artin
representation which vanishes for cyclic groups. Note that, even in positive
characteristic, the order of cyclic automorphism groups is bounded by the
classical Hurwitz bound, see [14]. The existence of such a lift for cyclic p-
groups was conjectured by Oort in [18] and was laid to rest three decades
later by Obus–Wewers [16] and Pop [19].

In the meantime, the case for G = Z/pZ was studied by Oort himself
and Sekiguchi–Suwa [22, 27], who unified the theory of cyclic extensions
of the projective line in characteristic p (Artin–Schreier extensions) and
that of cyclic extensions of the projective line in characteristic 0 (Kummer
extensions). The unified theory is usually referred to as Kummer–Artin
Schreier–Witt theory or Oort–Sekiguchi-Suwa (OSS) theory. Using these
results, Bertin–Mézard in [5] provided an explicit description of the affine
model for the Kummer curve in terms of the affine model for the Artin–
Schreier curve. Following this construction, Karanikolopoulos and the third
author in [13] proposed the study of the Galois module structure of the
relative curve X /R. As a byproduct, they found an explicit basis of the
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R-module of relative holomorphic differentials H0(X , ΩX ), using Boseck’s
work [6] on holomorphic differentials.

The main result of this paper is the determination of an explicit gen-
erating set for the relative canonical ideal of the unified Kummer–Artin
Schreier–Witt theory, using the Bertin–Mézard model and the relative ba-
sis of [13] for 1-differentials. We conclude the introduction by giving an
outline of our arguments and techniques.

1.4. Outline

In Section 2 we give details on the canonical map and we prove a com-
binatorial criterion for a subset of the canonical ideal to be a generating
set. The main result of this section is Proposition 2.2 where we prove that
to check if a set G of homogeneous polynomials of degree 2 generates the
canonical ideal, it suffices to check whether dimF (S/⟨in≺(G)⟩)2 ⩽ 3(g −1).
The above criterion reduces the problem of finding a generating set for the
canonical ideal to counting initial terms; we note that the criterion is ap-
plicable to any curve satisfying the assumptions of Petri’s theorem, with
the exception of plane quintics and trigonal curves.

In Section 3 we formalize the lifting problem for the canonical ideal of
the relative curve. First, we review the results of Bertin–Mézard on the
explicit construction of the relative curve X /R. Then, in Theorem 3.1, we
define the relative canonical map and prove an analogue of Petri’s Theorem
for the relative curve X /R, by constructing a diagram

0 // IXη

� � // SL := L[ω1, . . . , ωg]
ϕη // //

∞⊕
n=0

H0(Xη, Ω⊗n
Xη/L) // 0

0 // IX
� � //?�

⊗RL

OO

⊗RR/m

����

SR := R[W1, . . . , Wg]
ϕ // //

?�

⊗RL

OO

⊗RR/m

����

∞⊕
n=0

H0(X , Ω⊗n
X /R) //

?�

⊗RL

OO

⊗RR/m
����

0

0 // IX0
� � // Sk := k[w1, . . . , wg]

ϕ0 // //
∞⊕

n=0
H0(X0, Ω⊗n

X0/k) // 0

whose rows are exact and where each square is commutative. In Theo-
rem 3.2, we give a Nakayama-type criterion that reduces the problem of
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finding a generating set for the relative canonical ideal IX to finding com-
patible generating sets for the canonical ideals on the two fibres. In short,
we prove that if G is a set of homogeneous polynomials in IX such that
G ⊗R L generates IXη

and G ⊗R k generates IX0 then G generates IX .
In Section 4 we state and prove results on the generators of the canonical

ideal which are common for the two fibres. To facilitate the counting, we
set a correspondence between the variables of the polynomial ring in Petri’s
Theorem and a discrete set of points A ⊆ Z2. In Proposition 4.2 we find
a binomial ideal contained in the canonical ideal, leading us to build the
generating sets for the two fibres on sets of binomials. Further, in Proposi-
tion 4.6, we extend the correspondence between the variables and the set A

to a correspondence between the binomials and the Minkowski sum A + A,
see [30, p. 28]. The cardinality of the Minkowski sum turns out to be too
big, and we thus devote Section 4.3 to identify and study subsets of A + A

whose cardinalities are bounded by 3(g − 1).
It turns out that these subsets of the Minkowski sum match exactly to

the missing generators for the canonical ideals of the two fibers. These
are studied in Section 5, which contains the main result of this paper,
Theorem 5.5: The generators of the canonical ideal of the relative curve
are either binomials of the form

WN1,µ1WN ′
1,µ′

1
− WN2,µ2WN ′

2,µ′
2

or polynomials of the form

WN,µWN ′,µ′ − WN ′′,µWN ′′′,µ′′′ +
p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−iWNj ,µi

WN ′
j
,µ′

i
.

The reader will have to refer to Section 5 for the details on the indices of
the variables and the coefficients. For the proof of Theorem 5.5 we make
essential use of our Nakayama-type Theorem 3.2 and Theorem 3.1, our
analogue to Petri’s Theorem, as reduction and thickening – à la Faltings [7]
– are checked on the category of vector spaces, instead of the category of
rings. To demonstrate our results, we use as a running example a genus 12
Kummer curve, see Examples 4.10, 4.13 and 5.4 .

Acknowledgments
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2. A criterion for generators of the canonical ideal

Throughout this section, X is a complete, non-singular, non-hyperelliptic
curve of genus g ⩾ 3 over an algebraically closed field F of arbitrary char-
acteristic, which is neither a plane quintic nor trigonal. As in the intro-
duction, let ΩX/F denote the sheaf of holomorphic differentials on X and,
for n ⩾ 1, let Ω⊗n

X/F be the n-th tensor power of ΩX/F ; its global sections
H0(X, Ω⊗n

X/F ) form an F -vector space of dimension dn,g where

(2.1) dn,g =
{

g, if n = 1
(2n − 1)(g − 1), if n > 1.

The direct sum of the F -vector spaces H0(X, Ω⊗n
X/F ) is equipped with the

structure of a graded ring: multiplication in
⊕
n⩾0

H0(X, Ω⊗n
X/F ) is defined

via

H0(X, Ω⊗n
X/F ) × H0(X, Ω⊗m

X/F ) → H0(X, Ω⊗(n+m)
X/F )

fdx⊗n · gdx⊗m 7→ fgdx⊗(n+m).

Choosing coordinates ω1, . . . , ωg for Pg−1
F one can identify the symmetric

algebra Sym(H0(X, ΩX/F )) of Petri’s Theorem with the graded polynomial
ring S := F [ω1, . . . , ωg] and we have that

(2.2) S =
⊕
n⩾0

Sn where Sn = {f ∈ S : deg f = n}.

Choosing a basis v = {f1dx, . . . , fgdx} for H0(X, ΩX/F ) allows us to extend
the assignment ωi 7→ fidx and define a homogeneous map of graded rings

ϕ : F [ω1, . . . , ωg] →
⊕
n⩾0

H0(X, Ω⊗n
X/F )

ωa1
1 · · · ωag

g 7→ fa1
1 · · · fag

g dx⊗(a1+···ag).

Note that when an emphasis on the basis v is desired, the map ϕ will be
denoted by ϕv. The kernel of ϕ, denoted by IX , is a graded ideal, so that
in analogy to eq. (2.2) we may write

IX =
⊕
n⩾0

(IX)n where (IX)n = {f ∈ IX : deg f = n}.

In the context we are working, Petri’s Theorem can be rewritten as follows:

Theorem 2.1. — The canonical map ϕ is surjective and IX = ⟨(IX)2⟩.

ANNALES DE L’INSTITUT FOURIER
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We fix a term order ≺ and note that each f ∈ S has a unique leading
term with respect to ≺, denoted by in≺(f). We define the initial ideal of
IX as in≺(IX) = ⟨in≺(f) : f ∈ IX⟩. If Sn, (IX)n and in≺(IX)n are the
n − th graded pieces of S, IX and in≺(IX) respectively, then both (IX)n

and in≺(IX)n are F -subspaces of Sn and, since quotients commute with
direct sums, we have that

(S/I)n
∼= Sn/In and (S/in≺(I))n

∼= Sn/in≺(I)n.

The proposition below gives a criterion for a subset of the canonical ideal
to be a generating set:

Proposition 2.2. — Let G ⊆ IX be a set of homogeneous polynomials
of degree 2 in IX . If

dimF (S/⟨in≺(G)⟩)2 ⩽ 3(g − 1),

then IX = ⟨G⟩.

Proof. — We note that since G ⊆ IX , ⟨in≺(G)⟩2 is a subspace of in≺(IX)2.
Therefore

dimF (S/in≺(IX))2 = dimF S2/in≺(IX)2(2.3)
⩽ dimF S2/⟨in≺(G)⟩2 = dimF (S/⟨in≺(G)⟩)2 .

Moreover, by [26, Prop. 1.1]

dimF (S/in≺(IX))2 = dimF (S/IX)2 and(2.4)
dimF (S/⟨in≺(G)⟩)2 = dimF (S/⟨G ⟩)2 .

By Petri’s Theorem and eq. (2.1), we have that

(2.5) dimF (S/IX)2 = dimF H0(X, Ω⊗2
X/F ) = 3(g − 1).

Combining eq. (2.3), (2.4), (2.5), and the hypothesis dimF (S/⟨in≺(G)⟩)2 ⩽
3(g − 1) gives

dimF

(
S/IX

)
2 = dimF

(
S/⟨G⟩

)
2 ⇒ (IX)2 = ⟨G⟩2 ⇒ IX = ⟨(IX)2⟩ = ⟨G⟩

completing the proof. □

3. The canonical ideal of relative curves

Let k be an algebraically closed field of prime characteristic char(k) =
p > 0. Denote by W (k)[ζ] the ring of Witt vectors over k extended by a
p-th root of unity ζ and let λ = ζ−1. By [12, Sec. 8.10] W (k)[ζ] is a discrete
valuation ring with maximal ideal m and residue field isomorphic to k. Let

TOME 73 (2023), FASCICULE 3
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m ⩾ 1 be a natural number not divisible by p; for any 1 ⩽ ℓ ⩽ p − 1 we
write m = pq − ℓ and consider, as in [13, Sec. 3], the local ring

R =
{

W (k)[ζ]Jx1, . . . , xqK if ℓ = 1
W (k)[ζ]Jx1, . . . , xq−1K if ℓ ̸= 1

with maximal ideal mR = ⟨m, {xi}⟩. We write

K = Quot (R/m) =
{

Quot (kJx1, . . . , xqK) if ℓ = 1
Quot (kJx1, . . . , xq−1K) if ℓ ̸= 1

and consider the extension of the rational function field K(x) given by
X0 : Xp − X = xℓ

a(x)p , where

(3.1) a(x) =
{

xq + x1xq−1 + · · · + +xq−1x + xq if ℓ = 1
xq + x1xq−1 + · · · + xq−1x if ℓ ̸= 1.

Bertin–Mézard proved in [4, Sec. 4.3] that the curve above lifts to a curve
over L = Quot(R) given by Xη : yp = λpxℓ + a(x)p for y = a(x)(λX + 1),
which is the normalization of R[x] in L(y). This gives rise to a family
X → Spec(R), with special fibre X0 and generic fibre Xη:

(3.2)
Spec(k)×Spec(R) X = X0 X Xη = Spec(L)×Spec(R) X

Spec(k) Spec(R) Spec(L)

For n ⩾ 1, we write Ω⊗n
X /R for the sheaf of holomorphic polydifferen-

tials on X . We remark that since H0(X , Ω⊗n
X /R) ⊗R k ∼= H0(X0, Ω⊗n

X0/k)
and H0(X , Ω⊗n

X /R) ⊗R L ∼= H0(Xη, Ω⊗n
Xη/L), by [10, Lemma II.8.9] the R-

modules H0(X , Ω⊗n
X /R) are free of rank dn,g for all n ⩾ 1, with dn,g given

by eq. (2.1). We select generators W1, . . . , Wg for the symmetric algebra
Sym(H0(X , ΩX /R)) and identify it with the polynomial ring R[W1, . . . , Wg].
Similarly, we identify the symmetric algebras Sym(H0(Xη, ΩXη/L)) and
Sym(H0(X0, ΩX0/k)) with the polynomial rings L[ω1, . . . , ωg], k[w1, . . . , wg]
respectively. Our next result concerns the canonical embedding of the
Bertin–Mézard family:

ANNALES DE L’INSTITUT FOURIER
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Theorem 3.1. — Diagram (3.2) induces a deformation-theoretic dia-
gram of canonical embeddings
(3.3)

0 // IXη

� � // SL := L[ω1, . . . , ωg]
ϕη // //

∞⊕
n=0

H0(Xη, Ω⊗n
Xη/L) // 0

0 // IX
� � //
?�

⊗RL

OO

⊗RR/m

����

SR := R[W1, . . . , Wg]
ϕ // //

?�

⊗RL

OO

⊗RR/m

����

∞⊕
n=0

H0(X , Ω⊗n
X /R) //

?�

⊗RL

OO

⊗RR/m
����

0

0 // IX0
� � // Sk := k[w1, . . . , wg]

ϕ0 // //
∞⊕

n=0
H0(X0, Ω⊗n

X0/k) // 0

where IXη = ker ϕη, IX = ker ϕ, IX0 = ker ϕ0, each row is exact and each
square is commutative.

Proof. — Exactness of the top and bottom row of diagram (3.3) are due
to Theorem 2.1, the classical result of Enriques, Petri and M. Noether. To
define the map ϕ of the middle row, we choose generators f1dx, . . . , fgdx

for H0(X , ΩX /R) such that fidx ⊗R 1R/mR
= ϕ0(wi) ∈ H0(X0, ΩX0/k)

(this is possible by Nakayama’s Lemma) for i = 1, · · · , g and note that
the assignment Wi 7→ fidx gives rise to a homogeneous homomorphism of
graded rings

ϕ : R[W1, . . . , Wg]
ϕ //

∞⊕
n=0

H0(X , Ω⊗n
X /R).

To prove surjectivity of ϕ, we write ϕ =
⊕∞

n=0 (ϕ)n, where for each n ∈ N

(ϕ)n : R[W1, . . . , Wg]n
ϕn // H0(X , Ω⊗n

X /R)

is a homomorphism of finitely generated R-modules. By construction, (ϕ)n⊗
1R/mR

= (ϕ0)n is surjective for all n. Nakayama’s Lemma then implies that
(ϕ)n is surjective for all n, and thus ϕ is surjective as well. □

We proceed with establishing a Nakayama-type criterion for a subset of
the kernel IX to generate the relative canonical ideal:

Theorem 3.2. — Let G be a set of homogeneous polynomials in IX
such that G ⊗R L generates IXη and G ⊗R k generates IX0 . Then:

TOME 73 (2023), FASCICULE 3
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(1) For any n ∈ N, the R-modules (SR/⟨G⟩)n are free of rank dn,g.
(2) IX = ⟨G⟩.

Proof.

For (1). — Let n ∈ N. Since by assumption G⊗R L and G⊗R k generate
IXη

and IX0 respectively, we have that

(SR/⟨G⟩)n ⊗R L ∼=
(
SL/IXη

)
n

and (SR/⟨G⟩)n ⊗R k ∼=
(
Sk/IX0

)
n
.

By Petri’s Theorem 2.1 we get that(
SL/IXη

)
n

∼= H0(Xη, Ω⊗n
Xη/L) and

(
Sk/IX0

)
n

∼= H0(X0, Ω⊗n
X0/k)

and by eq. (2.1)

dimL

(
SL/IXη

)
n

= dimk

(
Sk/IX0

)
n

= dn,g.

The result follows from [10, lemma II.8.9].
For (2). — let s ∈ IX and assume for contradiction that s /∈ ⟨G⟩. Since

s ⊗ 1L ∈ IXη
and G ⊗R L generates IXη

, there exist gi ∈ G and si ∈ SL

such that s ⊗ 1L =
∑

si(gi ⊗ 1L). Choosing d ∈ R to be the gcd of the
denominators of the coefficients of the si, we may clear denominators to
obtain ds ⊗ 1L =

∑
dsi(gi ⊗ 1L), with dsi ∈ SR or equivalently ds =∑

dsigi with dsi ∈ SR, implying that ds ∈ ⟨G⟩. If s /∈ ⟨G⟩, then s is a
torsion element of SR/⟨G⟩, with its homogeneous components being torsion
elements of the R-modules (SR/⟨G⟩)n for some n ∈ N. By (i), the latter
are free R-modules, so we conclude that if s /∈ ⟨G⟩ then s must be zero,
completing the proof. □

Theorem 3.2 reduces the problem of determining the generating set of
the relative canonical ideal to determining compatible generating sets for
the canonical ideals of the two fibers. Thus, in the next section we study
the canonical embeddings of the two fibers, while compatibility is studied
in Section 5.

4. The Canonical Embedding of the Two Fibers

The family’s generic fibre, given by Xη : yp = λpxℓ + a(x)p, for y =
a(x)(λX + 1), is a cyclic ramified covering of the projective line and, by
assumption, the order of the cyclic group is prime to the characteristic p.
Boseck in [6] gives an explicit description of a basis for the global sections

ANNALES DE L’INSTITUT FOURIER



THE RELATIVE CANONICAL IDEAL 1095

of holomorphic differentials of such covers. Following the notation of [13],
Boseck’s basis b for H0(Xη, ΩXη/L) is given by

(4.1) b =
{

xN y−µdx :
⌊

µℓ

p

⌋
⩽ N ⩽ µq − 2, 1 ⩽ µ ⩽ p − 1

}
.

Using this analysis, the authors of [13] found an explicit basis for the global
sections of holomorphic differentials on the special fibre, compatible to b
in the sense of Theorem 3.2. The basis c for H0(X0, ΩX0/k) is given by
(see [13, eq. (25), p. 2381]):

(4.2) c =
{

xNa(x)p−1−µXp−1−µdx :
⌊

µℓ

p

⌋
⩽N ⩽µq −2, 1⩽µ⩽ p−1

}
.

The elements of b and c are determined by the values of (N, µ), so we
proceed with the study of the respective index set.

4.1. The index set A and the corresponding multidegrees

Let

(4.3) A =
{

(N, µ) :
⌊

µℓ

p

⌋
⩽ N ⩽ µq − 2, 1 ⩽ µ ⩽ p − 1

}
⊆ N2.

and note that by [6, eq. (34) p. 48]

(4.4) |A| =
p−1∑
µ=1

(
µq −

⌊
µℓ

p

⌋
− 1
)

= g.

Let {zN,µ : (N, µ) ∈ A} be a set of variables indexed by A. To each variable
zN,µ we assign the multidegree mdeg(zN,µ) = (1, N, µ) ∈ N3. Thus, if
S = F [{zN,µ}] is the polynomial ring over F , by assigning the multidegree
(0, 0, 0) to the elements of F , we get a multigrading on S via

(4.5) mdeg(zN1,µ1zN2,µ2 · · · zNd,µd
)

= (d, N1 + N2 + · · · Nd, µ1 + µ2 + · · · + µd).

We will refer to the first coordinate of the multidegree (4.5) as the standard
degree.

Next, we consider the two polynomial rings L[{ωN,µ}] and k[{wN,µ}] with
variables indexed by the points (N, µ) ∈ A. The results of this subsection
apply to both fibers, so we introduce the following notation: We will write
X to refer to either curve Xη or X0, F to refer to either field L or k, {zN,µ}
to refer to either set of variables {ωN,µ} or {wN,µ}, S = F [{zN,µ}] to refer
to either polynomial ring L[{ωN,µ}] or k[{wN,µ}] and fN,µdx to refer to the
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basis elements of either b or c. Note that the multiplication in the canonical
ring in particular implies that for any two 1-differentials fN,µdx, fN ′,µ′dx

we have fN,µdx · fN ′,µ′dx = fN+N ′,µ+µ′dx⊗2.

Definition 4.1. — Let ≺t be the lexicographic order on the variables
{zN,µ : (N, µ) ∈ A}. We define a new term order ≺ on the monomials of S

as follows:

zN1,µ1zN2,µ2 · · · zNd,µd
≺ zN ′

1,µ′
1
zN ′

2,µ′
2

· · · zN ′
s,µ′

s
if and only if

(1) d < s or
(2) d = s and

∑
µi >

∑
µ′

i or
(3) d = s and

∑
µi =

∑
µ′

i and
∑

Ni <
∑

N ′
i

(4) d = s and
∑

µi =
∑

µ′
i and

∑
Ni =

∑
N ′

i and

zN1,µ1zN2,µ2 · · · zNd,µd
≺t zN ′

1,µ′
1
zN ′

2,µ′
2

· · · zN ′
s,µ′

s
.

4.2. The binomial part of the canonical ideal

For each n ∈ N we write Tn for the set of monomials of degree n in S

and observe that the binomials below are contained in IX .

Proposition 4.2. — Let zN1,µ1zN ′
1,µ′

1
, zN2,µ2zN ′

2,µ′
2

∈ T2 be such that
mdeg(zN1,µ1zN ′

1,µ′
1
) = mdeg(zN2,µ2zN ′

2,µ′
2
). Then zN1,µ1zN ′

1,µ′
1
−zN2,µ2zN ′

2,µ′
2

∈ IX .

Proof. — Since mdeg(zN1,µ1zN ′
1,µ′

1
) = mdeg(zN2,µ2zN ′

2,µ′
2
), we have that

N1 + N ′
1 = N2 + N ′

2 and µ1 + µ′
1 = µ2 + µ′

2, so

ϕ(zN1,µ1zN ′
1,µ′

1
− zN2,µ2zN ′

2,µ′
2
)

= fN1+N ′
1, µ1+µ′

1
dx⊗2 − fN2+N ′

2, µ2+µ′
2
dx⊗2 = 0. □

We collect the binomials of Proposition 4.2 in the set below.

Definition 4.3. — Let

G1 =

zN1,µ1zN ′
1,µ′

1
−zN2,µ2zN ′

2,µ′
2

∈ S :
zN1,µ1zN ′

1,µ′
1
, zN2,µ2zN ′

2,µ′
2

∈ T2

and mdeg(zN1,µ1zN ′
1,µ′

1
)

= mdeg(zN2,µ2zN ′
2,µ′

2
)

.

Next, we consider the Minkowski sum of A with itself, defined as

A + A = {(N + N ′, µ + µ′) : (N, µ), (N ′, µ′) ∈ A} ⊆ Z2

and note the following correspondence between points of A + A and mono-
mials in T2:
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Corollary 4.4. — (ρ, T ) ∈ A + A ⇔ ∃ zN,µzN ′,µ′ ∈ T2 such that

mdeg(zN,µzN ′,µ′) = (2, ρ, T ).

Proof. — Follows directly from the definition of A given in eq. (4.3),
since

(N, µ) ∈ A ⇔ ∃ zN,µ ∈ F [{zN,µ}] such that mdeg(zN,µ) = (1, N, µ). □

The correspondence of Corollary 4.4 is not one-to-one: for any (ρ, T ) ∈
A + A, we set

Bρ,T := {zN,µzN ′,µ′ ∈ T2 : (ρ, T ) = (N + N ′, µ + µ′)}

and observe that the differences of elements of Bρ,T are in G1. Next, we
define the map of sets:

Definition 4.5.

σ : A + A → T2

(ρ, T ) 7→ min
≺

Bρ,T .

We will use the map σ to show that A+A is in bijection with a standard
basis of (S/⟨in≺(G1)⟩)2:

Proposition 4.6. — |A + A| = dimF (S/⟨in≺(G1)⟩)2

Proof. — Let (ρ, T ) ∈ A + A. By Corollary 4.4, Bρ,T is non-empty and,
since ≺ is a total order, it has a unique minimal element. Hence, the map
σ is well-defined, 1 − 1 and it is immediate that σ(A + A) = T2 \ in≺(G1).
Since ⟨in≺(G1)⟩ is a monomial ideal generated in degree 2 we remark that
dimF (S/⟨in≺(G1)⟩)2 = |T2 \ in≺(G1)|, completing the proof. □

4.3. A subset of A + A of cardinality 3(g − 1)

By Proposition 2.2 and Proposition 4.6, the binomials of Definition 4.3
would generate IX if |A + A| ⩽ 3(g − 1). It turns out that this is not the
case in general. Thus we need to identify an appropriate subset of A + A

whose points are in bijection with the monomials that do not appear as
leading terms of the generators of IX . To do so, we introduce and study
appropriate subsets C(i) ⊆ A + A for 0 ⩽ i ⩽ p, which we will use in
Section 5 to give the generators for the relative canonical ideal (see remark
after Definition 5.2).

We proceed with a description of A+A in terms of bounding inequalities.
To this end, we fix the second coordinate of a point (ρ, T ) ∈ A + A and
determine the bounds of the first coordinate.
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Definition 4.7. — Let T ∈ Z such that (ρ, T ) ∈ A + A. We define

b(T ) = min
{⌊

µℓ

p

⌋
+
⌊

µ′ℓ

p

⌋
: all µ, µ′ s.t. T = µ+µ′ and 1 ⩽ µ, µ′ ⩽ p−1

}
Remark 4.8. — The properties of the floor function imply that b(T ) takes

one of the following values:

b(T ) =



⌊
T ℓ
p

⌋
, if ∀ 1 ⩽ µ, µ′ ⩽ p − 1 with T = µ + µ′

we have
⌊

µℓ
p

⌋
+
⌊

µ′ℓ
p

⌋
=
⌊

T ℓ
p

⌋⌊
T ℓ
p

⌋
− 1, if ∃ 1 ⩽ µ, µ′ ⩽ p − 1 with T = µ + µ′

and
⌊

µℓ
p

⌋
+
⌊

µ′ℓ
p

⌋
=
⌊

T ℓ
p

⌋
− 1.

For example, b(p) = ℓ − 1, since p = 1 + (p − 1) and
⌊

ℓ
p

⌋
+
⌊

(p−1)ℓ
p

⌋
=

ℓ − 1. Similarly, b(2p − 2) = 2ℓ − 2, since 2p − 2 = (p − 1) + (p − 1) and⌊
(p−1)ℓ

p

⌋
+
⌊

(p−1)ℓ
p

⌋
= 2ℓ − 2.

Definition 4.7 allows us to give an alternative description of A+A which
follows directly from the description of A given in eq. (4.3).

Lemma 4.9.
A + A = {(ρ, T ) : 2 ⩽ T ⩽ 2(p − 1), b(T ) ⩽ ρ ⩽ Tq − 4} ⊆ N2.

Example 4.10. — Consider the genus 12 Kummer curve with affine model
Xη : y5 = λ5x3 + (x2 + x1x)5. The Minkowski sum

A + A = {(ρ, T ) : 2 ⩽ T ⩽ 8, b(T ) ⩽ ρ ⩽ 2T − 4}

is depicted in Figure 4.1 below.

The following auxiliary lemma will also be useful.

Lemma 4.11. — If 2 ⩽ T ⩽ p − 1 and 0 ⩽ α ⩽ p − 1, then b(T + α) ⩽
b(T ) + α.

Proof. — If α = 0, the result follows trivially. If 1 ⩽ α ⩽ p − 1, then by
Definition 4.7 we can choose a decomposition T + α − 1 = µ + µ′ satisfying
1 ⩽ µ, µ ⩽ p−1 and b(T +α −1) =

⌊
µℓ
p

⌋
+
⌊

µ′ℓ
p

⌋
. Since T +α −1 ⩽ 2p−3,

we may assume without loss of generality that µ ⩽ p − 2 and thus T + α

can be decomposed as T + α = (µ + 1) + µ′. We then obtain that

b(T + α) ⩽
⌊

(µ + 1)ℓ
p

⌋
+
⌊

µ′ℓ

p

⌋
=
⌊

(µ + 1)ℓ
p

⌋
−
⌊

µℓ

p

⌋
+
⌊

µℓ

p

⌋
+
⌊

µ′ℓ

p

⌋
⩽ 1 + b(T + α − 1).
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ρ0 1 2 3 4 5 6 7 8 9 10 11 12

T

0

1

2

3
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5

6

7

8

ρ = 2T − 4

T = 8

Figure 4.1. The set A + A for p = 5, q = 2, ℓ = 3 corresponding to a
genus 12 curve.

The result follows since

b(T + α) ⩽ b(T + α − 1) + 1 ⩽ b(T + α − 2) + 2
⩽ · · · ⩽ b(T + 1) + α − 1 ⩽ b(T ) + α. □

We are ready to define the sets C(i).

Definition 4.12. — For 0 ⩽ i ⩽ p we let

jmin(i) =
{

0, if ℓ = 1
p − i, if ℓ ̸= 1

and define

C(i) =
{

(ρ, T ) ∈ A + A :
(ρ + ℓ, T + p) and (ρ + j, T + p − i) ∈ A + A

for jmin(i) ⩽ j ⩽ (p − i)q

}
.

Example 4.13. — For the genus 12 curve of Example 4.10, the red points
in Figure 4.2 correspond to the set C(0) = {(0, 2), (1, 3), (2, 3)}, which
satisfies |(A + A) \ C(0)| = 3(g − 1) = 33. In this particular case we have
that C(0) = C(1).

We note that a point a = (ρ, T ) ∈ C(i) determines the point a−1 =
(ρ+ℓ, T +p) ∈ A+A as well as the collection of points aj = (ρ+j, T +p−i)
of A + A for jmin(i) ⩽ j ⩽ (p − i)q.

Proposition 4.14. — C(0) =
⋂p

i=0 C(i).
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ρ0 1 2 3 4 5 6 7 8 9 10 11 12

T

0

1

2

3

4

5

6

7

8

Figure 4.2. The red points correspond to C(0) ⊆ A+A for p = 5, q =
2, ℓ = 3.

Proof. — It suffices to show that C(0) ⊆ C(i) for 0 ⩽ i ⩽ p. By Def-
inition 4.12, this is equivalent to showing that if (ρ, T ) ∈ A + A and
(ρ+j, T +p) ∈ A+A for all jmin(0) ⩽ j ⩽ pq then (ρ+j, T +p− i) ∈ A+A

for all jmin(i) ⩽ j ⩽ (p − i)q. First, we observe that

2 ⩽ T ⩽ T + p − i ⩽ p − 2 + p − i ⩽ 2(p − 1)

and

ρ + j ⩽ ρ + (p − i)q ⩽ Tq − 4 + (p − i)q ⩽ (T + p − i)q − 4.

For the lower bound of ρ, we distinguish the following cases:
• If ℓ = 1, then jmin(i) = 0. Since (ρ, T ) ∈ C(0), Definition 4.12 gives

that (ρ, T + p) ∈ C(0) and thus by Lemma 4.9 we get b(T + p) ⩽ ρ.
We then have

b(T + p − i) ⩽ b(T + p) ⩽ ρ ⩽ ρ + j.

• If ℓ > 1 then jmin(i) = p − i, and, by Lemma 4.11,

b(T + p − i) ⩽ b(T ) + p − i ⩽ ρ + p − i ⩽ ρ + j.

We conclude that 2 ⩽ T ⩽ 2(p−1) and that b(T +p− i) ⩽ ρ+ j ⩽ (T +p−
i)q −4 for jmin(i) ⩽ j ⩽ (p− i)q. Lemma 4.9 implies that (ρ+j, T +p− i) ∈
A + A, completing the proof. □

We proceed with an auxiliary lemma to bound the cardinality of (A +
A) \ C(0).
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Lemma 4.15. — The cardinality of C(0) satisfies

|C(0)| >

p−2∑
T =2

(Tq − b(T ) − 3) −
2p−2∑

T =p−1
b(T )=⌊ T ℓ

p ⌋

1.

Proof. — First we prove that the points of C(0) satisfy the following
bounding inequalities

(4.6) C(0) = {(ρ, T ) ∈ A + A : M ′ ⩽ ρ ⩽ Tq − 4, 2 ⩽ T ⩽ p − 2} ,

where

M ′ =
{

b(T ), if b(T + p) ⩽ b(T ) + ℓ

b(T ) + 1, if b(T ) + ℓ < b(T + p).

Indeed, by definition, for all jmin(0) ⩽ j ⩽ pq we have that

(ρ, T ) ∈ C(0) ⇔ (ρ, T ) ∈ A + A, (ρ + ℓ, T + p) ∈ A + A

and (ρ + j, T + p) ∈ A + A

⇔ 2 ⩽ T ⩽ p − 2 and M ⩽ ρ ⩽ Tq − 4 (by Lemma 4.9)

where M := max{b(T ), b(T + p) − ℓ, b(T + p) − jmin(0)}. We will show that
M = M ′:

• If ℓ = 1 then jmin(0) = 0 and b(T ) = b(T + p) = 0 since
⌊

µℓ
p

⌋
= 0

for all 1 ⩽ µ ⩽ p − 1. Hence M = b(T ) = 0.
• If ℓ > 1 then jmin(0) = p, so b(T + p) − jmin(0) < b(T + p) − ℓ and

thus
M = max{b(T ), b(T + p) − ℓ}.

If b(T +p) ⩽ b(T )+ℓ, then M = b(T ), whereas if b(T )+ℓ < b(T +p),
then it easily follows that

b(T ) =
⌊

Tℓ

p

⌋
− 1 and b(T + p) =

⌊
(T + p)ℓ

p

⌋
=
⌊

Tℓ

p

⌋
+ ℓ

and so M = b(T + p) − ℓ = b(T ) + 1.
We thus have that M = M ′, which completes the proof of eq. (4.6). We
then have that

|C(0)| =
p−2∑
T =2

(Tq − M − 3) =
p−2∑
T =2

(Tq − b(T ) − 3) −
p−2∑
T =2

b(T )+ℓ<b(T +p)

1.
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When 2 ⩽ T ⩽ p − 2, the condition b(T ) + ℓ < b(T + p) implies that

b(T + p) =
⌊

(T + p)ℓ
p

⌋
.

Therefore
p−2∑
T =2

b(T )+ℓ<b(T +p)

1 ⩽
2p−2∑

T =p+2
b(T )=⌊ T ℓ

p ⌋

1 <

2p−2∑
T =p−1

b(T )=⌊ T ℓ
p ⌋

1

where the last inequality is strict by Remark 4.8. □

Finally, we show that the cardinality of (A + A) \ C(0) is bounded by
3(g − 1).

Lemma 4.16. — |(A + A) \ C(0)| ⩽ 3(g − 1).

Proof. — We successively have

(4.7) |(A + A) \ C(0)|

=
2(p−1)∑

T =2
(Tq − b(T ) − 3) − |C(0)|, by Lemma 4.9

<

2(p−1)∑
T =p−1

(Tq − b(T ) − 3) +
2(p−1)∑
T =p−1

b(T )=⌊ T ℓ
p ⌋

1, by Lemma 4.15

=
2(p−1)∑
T =p−1

(
Tq −

⌊
Tℓ

p

⌋
−2
)

−
2(p−1)∑
T =p−1

(
¯

T )=⌊ T ℓ
p ⌋

1+
2(p−1)∑
T =p−1

b(T )=⌊ T ℓ
p ⌋

1, by Remark 4.8

=
2(p−1)∑
T =p+1

(
Tq −

⌊
Tℓ

p

⌋
− 2
)

+
(

(p − 1)q −
⌊

(p − 1)ℓ
p

⌋
− 2
)

+
(

pq −
⌊

pℓ

p

⌋
− 2
)

.

By eq. (4.4), we have that

(4.8)
p−1∑
T =1

(
Tq −

⌊
Tℓ

p

⌋
− 1
)

= g
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so we change the index in the sum of eq. (4.7) by setting T ′ = T − p:

(4.9)
2(p−1)∑
T =p+1

(
Tq −

⌊
Tℓ

p

⌋
− 2
)

=
p−2∑

T ′=1

(
(T ′ + p)q −

⌊
(T ′ + p)ℓ

p

⌋
− 2
)

=
p−2∑

T ′=1

(
T ′q −

⌊
T ′ℓ

p

⌋
+ m − 2

)
, since pq − ℓ = m

=
p−2∑

T ′=1

(
T ′q −

⌊
T ′ℓ

p

⌋
− 1
)

+ (m − 1)(p − 2).

Next, we observe that

(4.10)
p−2∑

T ′=1

(
T ′q −

⌊
T ′ℓ

p

⌋
− 1
)

+
(

(p − 1)q −
⌊

(p − 1)ℓ
p

⌋
− 2
)

=
p−1∑

T ′=1

(
T ′q −

⌊
T ′ℓ

p

⌋
− 1
)

− 1.

Combining relations (4.7), (4.8), (4.9) and (4.10) gives:

|(A + A) \ C(0)| <

p−1∑
T ′=1

(
T ′q −

⌊
T ′ℓ

p

⌋
− 1
)

− 1 + (m − 1)(p − 2)

+
(

pq −
⌊

pℓ

p

⌋
− 2
)

= g − 1 + mp − 2m − p + 2 + m − 2
= g + (m − 1)(p − 1) − 2
= 3g − 2

and changing < to ⩽ gives the desired

|(A + A) \ C(0)| ⩽ 3g − 3. □

Combining Proposition 4.14 and Lemma 4.16 we directly get the follow-
ing.

Corollary 4.17. — |(A + A) \
⋂p

i=0 C(i)| ⩽ 3(g − 1).
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5. Thickening and reduction

In the notation of Section 3, let X → Spec(R) denote the family of curves
with generic fiber

(5.1) Xη : yp = λpxℓ + a(x)p

and special fiber

(5.2) X0 : Xp − X = xℓ

a(x)p

where y = a(x)(λX + 1), and a(x) is given by

a(x) =
{

xq + x1xq−1 + · · · + +xq−1x + xq, if ℓ = 1
xq + x1xq−1 + · · · + xq−1x, if ℓ ̸= 1.

For each 0 ⩽ i ⩽ p, we expand the (p − i)-th power of a(x)

(5.3) a(x)p−i =
(p−i)q∑

j=jmin(i)

cj,p−ix
j

where jmin(i) is 0 if ℓ = 1 and p − i if ℓ ̸= 1 as in Definition 4.12, and for
jmin(i) ⩽ j ⩽ (p − i)q, the coefficients cj,p−i are given by

cj,p−i =
∑

(t0,...,tq)∈Nq

t1+2t2···+qtq=j

(
p − i

t0, . . . , tq

) q∏
s=0

xts
s .

In [13] the authors prove that the free R-module H0(X , ΩX /R) has basis

c =
{

xN a(x)p−1−µXp−1−µ

a(x)p−1(λX + 1)p−1 dx :
⌊

µℓ

p

⌋
⩽ N ⩽ µq − 2, 1 ⩽ µ ⩽ p − 1

}
.

Consider the canonical map

ϕc : S = R[{WN,µ}] →
⊕
n⩾0

H0(X , Ω⊗n
X /R),

which maps a monomial W a1
N1,µ1

· · · W ad

Nd,µd
to the differential

x(a1N1+···+adNd)(a(x)X)a1(p−1−µ1)+···+ad(p−1−µd)

a(x)(a1+...+ad)(p−1)(λX + 1)(a1+···+ad)(p−1) dx⊗(a1+···+ad).

We write IX = ker ϕc for the canonical ideal and note that the following
polynomials are in IX :
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Proposition 5.1. — Let 1 ⩽ i ⩽ p − 1. For jmin(i) ⩽ j ⩽ (p − i)q,
let WN,µWN ′,µ′ , WN ′′,µ′′WN ′′′,µ′′′ and WNj ,µi

WN ′
j
,µ′

i
be any monomials of

degree 2 in S satisfying

mdeg(WN ′′,µ′′WN ′′′,µ′′′) = mdeg(WN,µWN ′,µ′) + (0, ℓ, p),
mdeg(WNj ,µi

WN ′
j
,µ′

i
) = mdeg(WN,µWN ′,µ′) + (0, j, p − i).

Then

WN,µWN ′,µ′ − WN ′′,µWN ′′′,µ′′′

+
p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−iWNj ,µi

WN ′
j
,µ′

i
∈ IX .

Proof. — Let

f := WN,µWN ′,µ′ − WN ′′,µWN ′′′,µ′′′

+
p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−iWNj ,µi

WN ′
j
,µ′

i

where

(5.4)
N ′′ + N ′′′ = N + N ′ + ℓ, µ′′ + µ′′′ = µ + µ′ + p

and Nj + N ′
j = N + N ′ + j, µi + µ′

i = µ + µ′ + p − i.

We note that f ∈ R[{WN,µ}], since by [5, Sec. 4.3]

(5.5) p · λs ≡

{
0 mod m, for − (p − 1) < s < 0
−1 mod m, for s = −(p − 1),

which implies that λi−p
(

p
i

)
∈ m ⊆ mR ⊆ R for all 1 ⩽ i ⩽ p − 1. Applying

the canonical map ϕc to f gives

(5.6) xN+N ′ (a(x)X)2(p−1)−(µ+µ′)

(a(x)(λX + 1))2(p−1) dx⊗2

− xN ′′+N ′′′ (a(x)X)2(p−1)−(µ′′+µ′′′)

(a(x)(λX + 1))2(p−1) dx⊗2

+
p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−i

xNj+N ′
j (a(x)X)2(p−1)−(µi+µ′

i)

(a(x)(λX + 1))2(p−1) dx⊗2,
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and using the relations of eq. (5.4) we may rewrite eq. (5.6) as

ϕc(f) = h

1−xℓ (a(x)X)−p +
p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−ix

j (a(x)X)i−p

 ,

where

h := xN+N ′ (a(x)X)2(p−1)−(µ+µ′)

(a(x)(λX + 1))2(p−1) dx⊗2.

Combining with the expansion of a(x)p−i in eq. (5.3) we get that

ϕc(f) = h

(
1 − xℓ (a(x)X)−p +

p−1∑
i=1

λi−p

(
p

i

)
Xi−p

)

and simplify the expression as follows:

ϕc(f) = h

(
−xℓ (a(x)X)−p +

p∑
i=1

λi−p

(
p

i

)
Xi−p

)

= h

(
−xℓ (a(x)X)−p − λ−pX−p +

p∑
i=0

λi−p

(
p

i

)
Xi−p

)
= h

(
−xℓ (a(x)X)−p − λ−pX−p + λ−pX−p(λX + 1)p

)
.(5.7)

Finally, since y = a(x)(λX + 1), eq. (5.7) is equivalent to eq. (5.1), so
ϕc(f) ⊗R 1L = 0 and thus ϕc(f) = 0, completing the proof. □

We collect the polynomials of Proposition 5.1 in the set below:

Definition 5.2. — Let

Gc
2 =

{
WN,µWN ′,µ′ − WN ′′,µ′′WN ′′′,µ′′′

+
p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−iWNj ,µiWN ′

j
,µ′

i
∈ S :

mdeg(WN ′′,µ′′WN ′′′,µ′′′) = mdeg(WN,µWN ′,µ′) + (0, ℓ, p),
mdeg(WNj ,µiWN ′

j
,µ′

i
) = mdeg(WN,µWN ′,µ′) + (0, j, p − i),

for 0 ⩽ i ⩽ p, jmin(i) ⩽ j ⩽ (p − i)q
}

.
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Remark 5.3. — Let

g = WN,µWN ′,µ′ − WN ′′,µ′′WN ′′′,µ′′′

+
p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−iWNj ,µi

WN ′
j
,µ′

i

be an element of Gc
2 as above. By comparing the multidegree relations

defining Gc
2 with the description of C(i) in Definition 4.12, we observe that

the monomial WN,µWN ′,µ′ corresponds to the point (N+N ′, µ+µ′) of C(0).
Moreover, the monomial WN ′′,µ′′WN ′′′,µ′′′ of g corresponds to the point
a−1 (see the comment preceding Proposition 4.14), while the monomials
WNj ,µi

WN ′
j
,µ′

i
of g in the double sum correspond to the points aj .

Example 5.4. — In the context of Example 4.10 and Example 4.13, the
monomial W0,1W0,1 corresponds to the point (0, 2) ∈ C(0). The blue points
in the figure below correspond to the points a−1 and aj as in the above
discussion, and they define the element of Gc

2 with initial term W0,1W0,1.

ρ0 1 2 3 4 5 6 7 8 9 10 11 12

T

0

1

2

3

4

5

6

7

8

Figure 5.1. The blue points define the element of Gc
2 with initial term

W0,1W0,1.

We write Gc
1 for the set of binomials in Definition 4.3. The main result

of this section is the following:
Theorem 5.5. — IX = ⟨Gc

1 ∪ Gc
2⟩.

To prove Theorem 5.5, we will use the Nakayama-type criterion of The-
orem 3.2 by showing that

⟨(Gc
1 ⊗R k) ∪ (Gc

2 ⊗R k)⟩ = IX0 and ⟨(Gc
1 ⊗R L) ∪ (Gc

2 ⊗R L)⟩ ⊆ IXη .
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5.1. Compatibility with the special fiber

Rewrite the affine model for the family’s special fiber given in eq. (5) as

(5.8) X0 : 1 − xℓa(x)−pX−p − X−(p−1) = 0.

Let c be the basis for H0(X0, ΩX0/k) as in eq. (4.2) consider the canonical
map

ϕ0,c : S = k[{wN,µ}] −→
⊕
n⩾0

H0(X0, Ω⊗n
X0/k)

which maps a monomial wa1
N1,µ1

· · · wad

Nd,µd
to the differential

x(a1N1+···+adNd) (a(x)X)a1(p−1−µ1)+···+ad(p−1−µd)
dx⊗(a1+···+ad).

We write IX0 = ker ϕ0,c for the canonical ideal on the special fiber and note
that the polynomials of Proposition 5.1 reduce to the following polynomials
in IX0 :

Proposition 5.6. — We have that Gc
2 ⊗R k = Gc

2 ⊆ IX0 , where

Gc
2 =

{
wN,µwN ′,µ′−wN ′′,µ′′wN ′′′,µ′′′−

(p−1)q∑
j=jmin(1)

cj,p−1wNj ,µj
wN ′

j
,µ′

j
∈ S :

mdeg(wN ′′,µ′′wN ′′′,µ′′′) = mdeg(wN,µwN ′,µ′) + (0, ℓ, p),
mdeg(wNj ,µj

wN ′
j
,µ′

j
) = mdeg(wN,µwN ′,µ′) + (0, j, p − 1),

for jmin(1) ⩽ j ⩽ (p − 1)q
}

.

Proof. — Eq. (5.5) implies that in the expression

p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−iWNj ,µi

WN ′
j
,µ′

i

only the term for i = 1 survives reduction, giving thatp−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−iWNj ,µi

WN ′
j
,µ′

i

⊗R k

= −
(p−1)q∑

j=jmin(1)

cj,p−1wNj ,µj wN ′
j
,µ′

j
,
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and equivalently(
WN,µWN ′,µ′ − WN ′′,µWN ′′′,µ′′′

+
p−1∑
i=1

(p−i)q∑
j=jmin(i)

λi−p

(
p

i

)
cj,p−iWNj ,µi

WN ′
j
,µ′

i

)
⊗R k

= wN,µwN ′,µ′ − wN ′′,µ′′wN ′′′,µ′′′ −
(p−1)q∑

j=jmin(1)

cj,p−1wNj ,µj
wN ′

j
,µ′

j
,

completing the proof. □

Remark 5.7. — The fact that Gc
2 ⊆ IX0 follows from the relative canon-

ical embedding diagram of Theorem 3.1. However, the reader may also
verify directly that ϕ0,c

(
Gc

2
)

= 0.

We write Gc
1 for the set of binomials in Definition 4.3 and remark that

Gc
1 ⊗R k = Gc

1 ⊆ IX0 . To prove that IX0 = ⟨Gc
1 ∪ Gc

2⟩ we will use the
dimension criterion of Proposition 2.2 and a series of lemmas. We consider
the subset C(1) of A + A given by Definition 4.12

C(1) =
{

(ρ, T ) ∈ A + A :
(ρ + ℓ, T + p) and (ρ + j, T + p − 1) ∈ A + A

for jmin(1) ⩽ j ⩽ (p − 1)q

}
,

and study its image under the map σ : A + A → T2 given in Definition 4.5.

Lemma 5.8. — σ(C(1)) ⊆ in≺(Gc
2).

Proof. — If (ρ, T ) ∈ C(1) then by definition (ρ, T ) ∈ A + A, (ρ + ℓ,

T +p) ∈ A+A and (ρ+ j, T +p−1) ∈ A+A for all jmin(1) ⩽ j ⩽ (p−1)q.
Hence the monomials wN,µwN ′,µ′ := σ(ρ, T ), wN ′′,µ′′wN ′′′,µ′′′ := σ(ρ +
ℓ, T + p) and wNj ,µj wN ′

j
,µ′

j
:= σ(ρ + j, T + p − 1) give rise to a polynomial

g = wN,µwN ′,µ′ − wN ′′,µ′′wN ′′′,µ′′′ −
(p−1)q∑

j=jmin(1)

cj,p−1wNj ,µj
wN ′

j
,µ′

j
,

which, by construction, satisfies g ∈ Gc
2 and in≺(g) = σ(ρ, T ). □

Lemma 5.9. — dimk

(
S/⟨in≺

(
Gc

1 ∪ Gc
2
)
⟩
)

2 ⩽ |(A + A) \ C(1)|.

Proof. — By Proposition 4.6 we have that σ(A + A) = T2 \ in≺(Gc
1) and

by Lemma 5.8 we have that σ(C(1)) ⊆ in≺(Gc
2), so

(5.9) σ
(
(A + A) \ C(1)

)
⊇ T2 \

(
in≺(Gc

1) ∪ in≺(Gc
2)
)

.
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Since σ is one-to-one, eq. (5.9) gives

|(A + A) \ C(1)| = |σ
(
(A + A) \ C(1)

)
| ⩾

∣∣∣T2 \
(

in≺(Gc
1) ∪ in≺(Gc

2)
)∣∣∣ .

Finally, ⟨in≺(Gc
1) ∪ in≺(Gc

2)⟩ is a monomial ideal generated in degree 2 so

dimk

(
S/⟨in≺(Gc

1) ∪ in≺(Gc
2)⟩
)

2
=
∣∣∣T2 \

(
in≺(Gc

1) ∪ in≺(Gc
2)
)∣∣∣ ,

completing the proof. □

Theorem 5.10. — IX0 = ⟨Gc
1 ∪ Gc

2⟩.

Proof. — By Proposition 4.2 and Proposition 5.6 we get that ⟨Gc
1∪Gc

2⟩ ⊆
IX0 . By Lemma 5.9 and Proposition 4.14 we get that

dimk

(
S/⟨in≺(Gc

1 ∪ Gc
2)⟩
)

2
⩽ |(A + A) \ C(1)| ⩽ |(A + A) \ C(0)|

so Lemma 4.16 gives dimk

(
S/⟨in≺(Gc

1 ∪ Gc
2)⟩
)

2 ⩽ 3(g −1). Proposition 2.2
implies that IX0 = ⟨Gc

1 ∪ Gc
2⟩, completing the proof. □

5.2. Compatibility with the generic fiber

Let C(i) denote the subsets of A + A given in Definition 4.12, where
0 ⩽ i ⩽ p. By Proposition 4.14, C(0) =

⋂p
i=0 C(i). Thus, if (ρ, T ) ∈ C(0)

then (ρ, T ) ∈ A + A, (ρ + ℓ, T + p) ∈ A + A and (ρ + j, T + p − i) ∈
A + A for all jmin(i) ⩽ j ⩽ (p − i)q. Hence the monomials WN,µWN ′,µ′ :=
σ(ρ, T ), WN ′′,µWN ′′′,µ′′′ := σ(ρ + ℓ, T + p) and WNj ,µi

WN ′
j
,µ′

i
:= σ(ρ +

j, T + p − i) give rise to the polynomial

g = WN,µWN ′,µ′ − WN ′′,µWN ′′′,µ′′′

+
p−1∑
i=1

(p−i)q∑
j=jmin

λi−p

(
p

i

)
cj,p−iWNj ,µiWN ′

j
,µ′

i
∈ Gc

2.

We comment that in≺(g) = σ(ρ, T ).

Lemma 5.11. — dimL (S/⟨in≺ (Gc
1 ∪ Gc

2)⟩)2 ⊗R L ⩽ |(A + A) \ C(0)|.

Proof. — By Proposition 4.6 we have that

σ(A + A) = T2 \ (in≺(Gc
1) ⊗R L)

and by the preceding comment we have that σ(C(0)) ⊆ in≺(Gc
2) ⊗R L, so

(5.10) σ
(
(A + A) \ C(0)

)
⊇ T2 \ (in≺(Gc

1) ⊗R L ∪ in≺(Gc
2) ⊗R L) .
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Since σ is one-to-one, eq. (5.10) gives

|(A + A) \ C(0)| = |σ
(
(A + A) \ C(0)

)
|

⩾ |T2 \ (in≺(Gc
1) ⊗R L ∪ in≺(Gc

2) ⊗R L) |.

Finally, ⟨in≺(Gc
1) ⊗R L ∪ in≺(Gc

2) ⊗R L)⟩ is a monomial ideal generated in
degree 2 so

dimL (S/⟨in≺ (Gc
1 ∪ Gc

2)⟩)2 ⊗R L = |T2 \ (in≺(Gc
1) ⊗R L ∪ in≺(Gc

2) ⊗R L) |,

completing the proof. □

5.3. Proof of Main Theorem

Proof of Theorem 5.5. — By Proposition 5.6 and Theorem 5.10 we get
that ⟨(Gc

1 ⊗R k)∪(Gc
2 ⊗R k)⟩ = IX0 . By Proposition 4.2 and Proposition 5.1

we have that ⟨(Gc
1 ⊗R L) ∪ (Gc

2 ⊗R L)⟩ ⊆ IXη
. Lemma 5.11 and Proposi-

tion 4.16 imply that dimL (S/⟨in≺ (Gc
1 ∪ Gc

2)⟩)2 ⊗R L ⩽ |(A + A) \ C(0)| ⩽
3(g−1), so by Proposition 2.2 we have that ⟨(Gc

1 ⊗R L)∪(Gc
2 ⊗R L)⟩ = IXη

.
Hence, Theorem 3.2 gives that IX = ⟨Gc

1 ∪ Gc
2⟩. □
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