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METRISED AMPLE LINE BUNDLES IN
NON-ARCHIMEDEAN GEOMETRY

by Yanbo FANG (*)

Abstract. — We study metrised ample line bundles on projective varieties over
non-Archimedean fields from the point of view of commutative Banach algebras
and analytic functions of several variables. Line bundle metrics induce sup norms
on the graded algebra of sections; the global metric positivity is interpreted as the
holomorphic convexity of the spectrum of the normed section algebra. A normed
extension property is established using spectral and functional methods: restricted
sections on a closed subvariety can be extended to sections on the ambient variety,
with a sub-exponential asymptotic distorsion of sup norms.

Résumé. — On étudie fibrés en droites amples métrisés sur variétés projectives
définies sur un corps non-archimédien, d’un point de vue d’algèbres de Banach
commutatives et fonctions analytiques à plusieurs variables. Une métrique sur un
fibré en droites induit une norme sup en l’algèbre graduée de sections; la positivité
au sens global de cette métrique est interprétée comme la convexité holomorphe du
spectre analytique de cette algèbre normée de sections. Une propriété d’extension
normée est établie par techniques spectrale et fonctionnel: on peut étendre une
section restreinte sur une sous-variété en une section sur la variété ambiante, avec
un contrôle sous-exponentiel de la distorsion asymptotique des normes sup.

1. Introduction

1.1. Overview

Non-Archimedean analytic geometry studies analytic varieties defined
over a non-Archimedean field such as Qp, Fp((t)) or C((t)). Like its pro-
totype complex analytic geometry, it provides a ground for investigating
algebraic varieties from an analytic point of view.

Keywords: Non-Archimedean geometry, holomorphic convexity, functional calculus.
2020 Mathematics Subject Classification: 32P05, 32E20, 46H30.
(*) This work is supported by École doctorale de Sciences Mathématiques de Paris
Centre.



1590 Yanbo FANG

In this article, we encode positively metrised ample line bundles on a
projective variety by certain Banach algebras of sections, and establish
quantitative properties of global sections with regard to the restriction map
to closed subvarieties. Such analytic objects and quantitative properties
appear naturally in Arakelov theory over local fields (see for example [3,
7, 10, 11, 13, 20, 30, 31]). We shall use the theory of Berkovich [2] for
non-archimedean analytic spaces.

The set-up is as follows: let (k, |·|) be a complete ultrametric non-trivially
valued field, X be a projective variety defined over k, and L be an ample
line bundle on X, we shall study line bundle metrics ϕ on the analytification
Lan.

1.2. Notions of metric positivity and the normed extension
property

In the complex analytic setting, one can use differentio-geometric tools to
study bundle metrics (see for example [17]). The positivity of a line bundle
metric can be defined locally by the definite positivity of its curvature
form (or current) ddc ϕ. This metric positivity is best manifested by the
so-called normed extension property for restricted sections. Given a closed
subvariety Y of X, if L is ample, its algebro-geometric positivity implies
that the restriction maps

H0(X,L⊗n) |Y−→ H0(Y, L|⊗nY ), sn 7→ tn

are surjective for all large n ∈ N, thanks to Serre’s vanishing theorem. Thus
restricted sections on Y can be extended to sections on X. The metric
positivity of ϕ improves this to a “quantitative surjectivity”, giving an
upper bound controlling the distorsion of sup norms in the asymptotic
sense:

(1.1) inf
sn∈H0(X,L⊗n)
sn|Y =tn ̸=0

∥sn∥nϕ
∥tn∥nϕ|Y

⩽ C(n), n→∞.

The following classical result gives a bound using the L2-method for ∂-
equations.

Theorem 1.1 ([6, 28]; [1, 24, 30]). — Let ϕ be a metric of strictly pos-
itive curvature. Assume that X is smooth, then there exists a polynomial
bound for (1.1). Namely, there are C ∈ R>0 and nY ∈ N that depend on
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(X,Y, L, ϕ), such that for any n ⩾ nY and any tn ∈ H0(Y, L|⊗nY ), one can
find sn ∈ H0(X,L⊗n) such that sn|Y = tn and

∥sn∥nϕ ⩽ Cnd · ∥tn∥nϕ|Y
.

As a consequence, take subvarieties of dimension zero, and let n goes to
infinity, one deduces that any line bundle metric with a positive curvature
can be approximated by a sequence of Fubini–Study metrics of various level
n, each one induced by some norm on the space of global sections of L⊗n.
In general, a sub-exponential bound as eϵn in (1.1), though weaker than
the polynomial one nd, is sufficient for this approximation. Thus the metric
positivity in terms of local curvatures can equivalently be described using
global norms.

In the non-Archimedean analytic setting, despite recent fast develop-
ments of a differentio-geometric structure [13, 21] underlying Xan

k , parallel
tools are not yet fully available. Traditionally, a continuous line bundle
metric is considered to be positive if it can be uniformly approximated
by Fubini–Study metrics, instead of meeting local curvature requirements.
This leads to the notion of semipositive metrics ([15, 30]) whose positivity
is formulated in terms of global norms. This replacement of definition raises
the question whether the normed extension property still holds for closed
subvarieties of general dimensions. Such a metric positivity notion is accom-
panied by the technique of integral models for (X,L): one views Fubini–
Study metrics as model metrics, and translates the concerned metric prop-
erties into algebro-geometric properties of these models, see for example [7,
8, 10, 11, 13, 20, 22, 30]. In this vein, a normed extension result is obtained
in [15, 31], which is not uniform in the sense that the asymptotic range nY
also depends on the choice of the restricted section (see Theorem 4.1).

1.3. Banach algebra techniques

We approach the normed extension property from a point of view of
Banach algebras and analytic functions of several variables. This strategy
originates from [5, 18, 26], where new proof of (1.1) is obtained with a
weaker sub-exponential bound; besides, the varieties are no longer supposed
to be smooth.

The strategy is sketched as follows. On the algebro-geometric level, by
the tautological construction, the study of sections of L on X is equivalent
to the study of functions on the total space of the dual line bundle V(L)
(or equivalently functions on its affine cone C(L) after contracting the
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1592 Yanbo FANG

zero section). The central idea is, on the normed level, the global norm
metric positivity for the metrised line bundle (L, ϕ) can be translated to
the holomorphic convexity of its dual unit disc bundle D∨(L, ϕ), which
is a pre-compact subset in V(L)an. Consequently, the desired extended
section with a norm control is obtained from Cartan’s vanishing theorem
for coherent sheaves on this domain and the open mapping theorem in
functional analysis. Besides, the local curvature positivity is translated to
the pseudo-convexity of the dual unit disc bundle, and its equivalence with
the global norm positivity is clearly shown by the classical Levi problem
(Oka’s theorem) in several complex variables.

We implement parts of these constructions concerning the global norm
metric positivity in the non-Archimedean setting, leaving aside the issue of
its equivalence with the local curvature positivity.

First, we give a normed tautological construction for a metrised line
bundle (L, ϕ), where L is ample and ϕ is not necessarily positive in any
sense. We consider the sup norm induced by nϕ on H0(X,L⊗n), gather
all these spaces into the graded algebra of sections R of L, and assemble
all these sup norms into a graded submultiplicative norm |||·|||ϕ on this
algebra. We take the completion of the normed algebra (R(L), |||·|||ϕ) to a
Banach algebra R(L, ϕ), and call it the normed section algebra for (L, ϕ).
The following identification relates the Fubini–Study envelope metric P(ϕ)
of ϕ and the Berkovich spectrum M of the normed section algebra, thus one
can view the later as a “normed affine cone” of the metrised pair (L,P(ϕ)).
It allows us to translate the global norm metric positivity of P(ϕ) to the
holomorphic convexity of this spectrum.

Theorem 1.2 (3.16). — The following diagram of maps between topo-
logical spaces, induced by the canonical inclusions and the contractions of
zero-sections pan, is Cartesian

D∨(L,P(ϕ))
pan
// //

� _

��

M(R(L, ϕ))� _

��
V(L)an pan

// // C(L)an

Second, once ϕ is supposed to be positive in the global sense, we use
the above geometric construction to get a normed extension property for
restricted sections from any closed subvariety Y , with two different ap-
proaches.

The spectral method exploits the holomorphic convexity of M(R(L, ϕ))
via the so-called holomorphic functional calculus in the theory of Banach
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algebras. This improves the earlier result of [15, 30] by making the choice
of nY uniform as in (1.1).

Theorem 1.3 (4.2). — Let ϕ be an asymptotic Fubini–Study metric on
L. Then there is a sub-exponential bound for (1.1). Namely, for any ϵ > 0,
there exists nY ∈ N such that for any n ⩾ nY and any tn ∈ H0(Y, L|⊗nY ),
one can find sn ∈ H0(X,L⊗n) such that sn|Y = tn and

∥sn∥nϕ ⩽ enϵ · ∥tn∥nϕ|Y
.

There is a technical modification in its proof compared to the construc-
tions in the C-analytic setting: one replaces the open disc bundle and
Frechét norms on the section algebra by the closed disc bundle and Ba-
nach norms. One reason for this change is that the vanishing properties for
(open) Stein domains in non-Archimedean geometry were not established
when this research was conducted (see however [23] for a recent advance),
instead we use the technique of holomorphic functional calculus on spec-
tra of Banach algebras to perform the normed extension. Besides, Banach
norms are more compatible with the norm reduction technique in non-
Archimedean analysis, which is related to the method of integral models
and shall be used in a further work.

The functional method makes explicit calculation of M(R(L, ϕ)) in the
diagonalizable Fubini–Study metric case and determines the normed section
algebra to be an affinoid algebra, whose finiteness property provides the
desired uniform bound in Theorem 1.3.

1.4. Scopes

We hope that our several analytic variables approach to metric positivity
problems could be helpful for connecting the algebro-geometric approach
via intersection theory on integral models, and the differentio-geometric
approach via differential forms on Berkovich spaces.

The normed extension property has various applications, notably to the
study of restricted volumes. Combination with the calculation of certain
determinant norms leads to an “arithmetic Hilbert–Samuel formula” in
Arakelov geometry over local fields, via the induction-by-dimension strat-
egy in [1]. This will be treated in a forthcoming work (note that in [7, 10]
this formula is established using intersection theory on integral models and
Deligne pairing techniques). The normed extension property has also been
applied in the proof of Nakai–Moishezon criterion of arithmetic ampleness,
cf. [30], see also [20].

TOME 73 (2023), FASCICULE 4
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Our article is organized as follows: in Section 2 we recall some basic
notions and properties about the analysis and the geometry over non-
Archimedean fields; in Section 3 we study the metric positivity of line
bundle metrics defined by global norms, and interpret it by the holomor-
phic convexity of their dual unit disc bundles; in Section 4 we obtain the
normed extension property with sub-exponential bounds for restricted sec-
tions from any closed subvariety, using two independent methods.

1.5. Acknowledgements

Results in this article constitute the main part of the author’s thesis. He’s
very grateful to his thesis advisor, Huayi Chen, for proposing this research
project and for numerous discussions. He would also like to thank José
Ignacio Burgos and Charles Favre as examiners of the thesis, and Sébastien
Boucksom, Atsushi Moriwaki, Walter Gubler, Klaus Künnemann for their
interests, suggestions and invitations to seminar talks.

2. Preliminaries on analysis over non-Archimedean fields

In this section, one recalls basics of functional analysis of normed vector
spaces and normed algebras over a complete ultrametric valued field, fol-
lowing [2, 4]. Results in Section 2.2.3, Section 2.3.2 and Section 2.4.2 are
particularly pertinent to our study.

Throughout the section, one denotes by k a field and by |·| a non-trivial
complete ultrametric absolute value. Unless specified, all k-algebras are
supposed to be commutative and unitary (with 0 ̸= 1), and by convention
all homomorphism of k-algebras are supposed to preserve the units.

2.1. Normed vector spaces

2.1.1. Basic notions

Let V be a vector space over k. A seminorm ∥·∥ on V is ultrametric if it
satisfies the ultrametric triangle inequality ∥u+ v∥ ⩽ max{∥u∥, ∥v∥}. The
couple (V, ∥·∥) is called a seminormed vector space over k. The seminorm
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restricts to a subseminorm on any subspace S by restriction and projects
to a quotient-seminorm on any quotient space Q as follows

S
ι−→ V

π−→ Q, ∀s ∈ S, ∥s∥sub := ∥ι(s)∥, ∀q ∈ Q, ∥q∥quot := inf
π(q′)=q

∥q′∥.

The seminorm induces a topology on V and one can take the completion
of V with respect to it. A linear map between two normed vector spaces
is continuous if and only if it is bounded in operator norm. A complete
normed k-vector space is a Banach space over k. Classical fundamental
results such as the open mapping theorem, the closed graph theorem, the
equivalent norm theorem, are valid for Banach spaces over k ([9, §1.3.3]).
A continuous linear map is admissible if on its image, the induced quotient
norm and the subspace norm are equivalent.

The space of norms on V is equipped with a pseudo-distance d(∥·∥,∥·∥′) :=
supv∈V \{0}|log(∥v∥/∥v∥′)| (it is a distance if V is of finite dimension).
Two norms are equivalent ∥·∥ ∼ ∥·∥′ if there is C ∈ R+ such that
d(∥·∥, ∥·∥′) ⩽ C.

In the rest of this article, all (semi)norms are supposed to be ultrametric.

2.1.2. Orthogonal basis

Let (V, ∥·∥) be a normed vector space over k. A set of vectors {vi} is
orthogonal ([4, Definition 2.4.1.1]) if the ultrametric equality holds for any
finite sum

∀(λ1, . . . , λn) ∈ kn,

∥∥∥∥∥∥
∑

i∈{1,...,n}

λiei

∥∥∥∥∥∥ = max
i∈{1,...,n}

∥λiei∥.

A norm ∥·∥ is diagonalizable ([7, Definition 1.10]) if there exists an orthog-
onal basis.

Proposition 2.1. — Let V be a k-vector space of finite dimension. In
the space of norms on V , diagonalizable norms are dense. ([15, Proposi-
tion 2.2][7, Proposition 1.19])

2.2. Banach algebras

2.2.1. Basic constructions

Let A be a k-algebra (with the unit 1) and ∥·∥ be a seminorm on A

(viewed as a vector space over k). It is sub-multiplicative if

∀(a, b) ∈ A×A, ∥ab∥ ⩽ ∥a∥ · ∥b∥.

TOME 73 (2023), FASCICULE 4
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It is moreover power-multiplicative if the equality holds in the case a = b

and is multiplicative if the equality holds for general a, b. We call it an
algebra seminorm on A if it is sub-multiplicative and ∥1∥ = 1, and denote
it by |||·||| in the following. The couple (A, |||·|||) is a seminormed algebra.
An algebra seminorm induces algebra seminorms on subalgebras or quotient
algebras because the submultiplicativity is preserved under restriction or
taking quotient. A k-algebra homomorphism between two normed algebras
is a homomorphism of normed algebras if it is continuous (or equivalently
if it is bounded in operator norm).

Let (A, |||·|||) be a normed algebra. It is a Banach algebra if the induced
topology on A is complete, and is denoted in calligraphic style by A. If the
norm is not complete, one can take the completion (A, |||·|||)⇝ A.

2.2.2. Spectrum

Let A be a Banach algebra over k. Its (Berkovich) spectrum M(A) is the
topological space consisting of points z as multiplicative algebra seminorms
|·|z that are bounded from above by |||·|||, equipped with the weak topology
that makes applications |f | : z ∈ M 7→ |f |z continuous for all f ∈ A. For
any subset V of M(A), we denote by Intt(V ) the topological interior of V .

Points in the spectrum are in bijective correspondence to pairs (pz, |·|z)
consisting of a closed ideal of A (the null-space of |·|z) and an absolute
value on the residue algebra (the projection of |·|z) for which the canonical
quotient homomorphism is continuous. The residue field at pz is denoted
by κ(z) and its completion with respect to |·|z is denoted by H(z).

Let A be a k-Banach algebra. Then M(A) is a non-empty compact Haus-
dorff topological space ([2, Theorem 1.2.1]). A homomorphism of Banach
algebras ϕ : A1 → A2 induces a map ϕ⋆ : M(A2) → M(A1) sending any
element z ∈ M(A2) to the point corresponding to the seminorm |ϕ(·)|z,
which is continuous with respect to the canonical topologies; if ϕ has dense
image, then ϕ∗ is injective on spectra. ([2, Remark 1.2.2 (iii)]).

2.2.3. Spectral seminorm

Let (A, |||·|||) be a seminormed k-algebra. The spectral algebra seminorm
is given by

∀f ∈ A, |||f |||sp := lim
n→∞

|||fn||| 1
n .

In general, |||·|||sp is only a seminorm even if |||·||| is a norm, and one has
|||·|||sp ⩽ |||·|||. It is ultrametric if the original algebra seminorm is so. Its
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null-space is the radical rad of the seminormed algebra, and if it is {0}, the
seminormed algebra is semisimple. Let A is a Banach algebra, though |||·|||
is complete on A, the projection of its spectral |||·|||sp to A/ rad(A) may not
be complete, the completion of the normed algebra (A/ rad(A), |||·|||sp) is
the spectral completion of A and is denoted by Asp. One has a canonical
homomorphism A sp−→ Asp.

The fundamental result of spectral seminorms due to Gelfand still holds
true.

Proposition 2.2. — Let A be a k-Banach algebra. Then sp induces an
isomorphism on spectra M(A) ≃M(Asp). For any f ∈ A, one has

|||f |||sp = max
z∈M(A)

|f |z.

([2, Theorem 1.3.1, Corollaries 1.3.3, 1.3.4]).

2.3. Affinoid algebras

Affinoid algebras are a special kind of k-Banach algebras possessing nice
finiteness properties.

2.3.1. Basic constructions

Affinoid algebras are k-Banach algebras that are quotient Banach alge-
bras of Tate algebras. Consider the multi-variate polynomial algebra k[T ]
with T := (T1, . . . , Tn) for a multi-radius r = (r1, . . . , rn) ∈ Rn>0, the Gauss
norm of multi-radius r on this algebra is defined by∥∥∥∥∥

∣∣∣∣∣ ∑
J∈Nn

aJ · T J

∣∣∣∣∣
∥∥∥∥∥

Tn(r)

= max
J

{
|aJ | · rJ

}
.

Note that the Gauss norm is multiplicative. The Banach algebra completion
into convergent power series is the Tate algebra over k with multi-radius
r and is denoted by Tn(r). It is strict if r = (1, . . . , 1), in which case it is
simply denoted by Tn.

Thus a k-Banach algebra A is affinoid if there is a surjective homomor-
phism of Banach algebras Tn(r) → A for some n and r. It is strict if the
Tate algebra can be taken to be strict, and in general, one can enlarge the
base field to make an affinoid algebra strict. The Banach algebra norm on
an affinoid algebra A is called an affinoid algebra norm.

TOME 73 (2023), FASCICULE 4
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Proposition 2.3. — Let (A, |||·|||) be a normed k-algebra (with com-
pletion A) where A is finitely generated. Then there exists an (in fact,
many) algebra norm on A, denoted by |||·|||♢, such that |||·||| ⩽ |||·|||♢ and
the completion A♢ of (A, |||·|||♢) is affinoid with a homomorphism of Banach
algebras A♢ → A.

Proof. — Choose a set of generators of A and one can present A as a
quotient of k[T ]. Equip the later with a Gauss–Tate algebra norm with
multi-radius r, and take the quotient algebra norm on A to be |||·|||♢. If
r is sufficiently large then one has |||·||| ⩽ |||·|||♢ by the ultrametricity and
the submultiplicativity of algebra norms. The completion A of (A, |||·|||♢)
is the corresponding quotient of the Tate algebra T (r), hence is affinoid.
The inequality implies that the identity homomorphism on A extends to a
homomorphism of Banach algebras A♢ → A. □

2.3.2. Finiteness properties

Affinoid algebras enjoy nice finiteness properties thanks to the validity
of Weierstrass division theorem ([4, Theorem 5.2.1.2]). As a consequence
affinoid algebras are all Noetherian and their ideals are all closed ([2, Propo-
sition 2.1.3]). In particular, Noether normalization still holds true for strict
affinoid algebras.

Proposition 2.4. — For a strict affinoid algebra A, there exists an
injective and admissible Banach algebra homomorphism Td → A for some
d ∈ N, which endows A with a structure of finite Banach algebra over Td.
Moreover, d equals the Krull dimension of A ([4, Corollary 6.1.2.2]).

As a consequence, the spectral operation on an affinoid algebra seminorm
enjoys a finiteness property in the following sense.

Proposition 2.5. — Let A be an affinoid algebra. Then the spectral
seminorm |||·|||A,sp is a complete norm on A/ radA, and the later is Asp. If
A is reduced, the spectral norm is equivalent to the original Banach norm,
that is to say, there exists C ∈ R+ such that

|||·|||A ⩽ C · |||·|||A,sp.

([4, Theorem 6.2.4.1], [2, Proposition 2.1.4.ii]).

Another consequence is an automatic continuity property of homomor-
phisms of Banach A-modules. In particular, one has
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Proposition 2.6. — Let A be an affinoid algebra. Then the category of
finite Banach A-algebras is equivalent to the category of finite A-algebras.
Concretely, let B be a Banach algebra and γ : A⊕e → B be a finite ho-
momorphism of A-modules for some e ∈ N, then the quotient module
norm γ(|||·|||⊕eA ) is equivalent to the Banach algebra norm |||·|||B ([2, Propo-
sition 2.1.12]). In particular, |||·|||B is an affinoid algebra norm.

Proof. — To show that |||·|||B is an affinoid algebra norm, look at the
homomorphism of A-algebras γ′ : A{r−1

1 T1, . . . , r
−1
e Te} → B defined by

Ti 7→ γ(1i) where 1i ∈ A is the unit in the i-th component of A⊕e and
ri = |||γ(1i)|||B. By construction γ′ is both surjective and continuous. By
the open mapping theorem of Banach spaces, |||·|||B is equivalent to the
quotient of the algebra norm on A{r−1

1 T1, . . . , r
−1
e Te} which is affinoid, so

|||·|||B is also affinoid. □

Corollary 2.7. — Let A and B be reduced k-algebras and γ : A→ B

be an injective finite homomorphism of algebras. Assume that any element
of B has a power in A. Let |||·|||2 be a power-multiplicative algebra norm
on B and |||·|||1 be its restriction on A. If the completion A of (A, |||·|||1) is
an affinoid algebra, so is the completion B of (B, |||·|||2).

Proof. — The k-algebra B′ := A ⊗A B is a finite A-algebra, denote by
γ the corresponding A-module homomorphism. By the above Proposition,
there is an affinoid algebra norm |||·|||′ on B′ with |||·|||′ ∼ γ(|||·|||⊕e1 ). Since
B′ is affinoid, so is its spectral completion B′

sp by Proposition 2.5, the
later is equipped with the spectral norm |||·|||′sp. It suffices to show that
|||·|||′sp = |||·|||2. Taking restriction on A, one gets [γ(|||·|||⊕e1 )] ⇂A∼ [|||·|||′] ⇂A.
Since [γ(|||·|||⊕e1 )] ⇂A∼ |||·|||1, one gets [|||·|||′] ⇂A∼ |||·|||1. Taking the spectral
seminorm one gets [|||·|||′sp] ⇂A= |||·|||1. By the assumption that every element
in B has a power in A, one deduces that |||·|||′sp = |||·|||2 as algebra norms
on B, because they are both power-multiplicative. □

2.3.3. Locally ringed space structure

It is possible to endow the spectrum of an affinoid algebra with a locally
ringed space structure. Let A be an affinoid algebra with spectrum Z. An
affinoid domain is a closed subset V of Z homeomorphic to (ιV )⋆(M(AV ))
for some affinoid algebra AV and Banach algebra homomorphism ιV : A →
AV which satisfies the universal mapping property (the existence of a fac-
torization) for any other affinoid algebra homomorphism ϕ : A → C with
ϕ⋆(M(C)) contained in V .
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A finite intersection of affinoid domain is an affinoid domain, and affinoid
domain of V is also an affinoid domain of Z. A G-open set is a finite union
of affinoid domains in Z, and the G-topology on Z is the one with G-
open sets as admissible opens and finite coverings as admissible coverings.
One denotes by ZG the space equipped with this G-topology. Note that
any point z ∈ Z has a fundamental system of (closed) neighbourhoods
consisting of affinoid domains ([2, Proposition 2.2.3]).

Let W =
⋃
i∈I Vi be a G-open set in M(A) where I is a finite set and

{Ai} are associated affinoid algebras, one associate to W the Banach k-
subalgebra

AW := ker

∏
i∈I
AVi
→

∏
i,j∈I

AVi∩Vj

 ,

Denote by |||·|||W the sup seminorm on W , and the spectral completion
of AW with respect to this seminorm AW,sp. One obtains the structural
pre-sheaf of affinoid algebras on M(A)G and it is a sheaf thanks to a deep
acyclicity theorem of Tate ([4, Proposition 8.2.2.5]) ([2, Proposition 2.2.5]).
Passing to the canonical topology by assigning an open set U of Z the limit
lim←−W⊆U AW where W is a G-open set, one obtains the structural sheaf OZ

of Z, which is a sheaf of local rings ([2, Section 2.3]).
The algebra of analytic functions around a closed subset Σ in an affinoid

space Z is the limit lim−→Γ(U,OZ) where U runs through open neighbour-
hoods of Σ, denoted by Γ(Σ,OZ). It is equipped with the sup seminorm
f 7→ supz∈Σ|f |z which is denoted by |||·|||Σ ([2, Section 2.6]).

2.4. Spectral calculus
Gelfand–Shilov theory allows one to do multi-variable spectral calculus

for (commutative) Banach algebras over C. In particular, one can localize a
homomorphism of Banach algebras onto a neighbourhood of its spectrum.
Its non-Archimedean analogue is developed in [2, Chapter 7] following some
studies in [29].

2.4.1. Holomorphic convex envelope
Definition 2.8. — Let A be a Banach k-algebra. Let K be a compact

subset of M(A). The holomorphic convex envelope of K in M(A) is defined
as the subset

K̂ :=
{
z ∈M(A) | ∀f ∈ A, |f |z ⩽ sup

z′∈K
|f |z′

}
The subset K is said to be holomorphically convex in M(A) if K̂ = K.
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Let A and B be Banach k-algebras, and ϕ : A → B be a homomorphism
of Banach algebras. The spectrum of the homomorphism ϕ is defined as the
image of M(B) in M(A) under ϕ⋆, and is denoted by Σϕ. The holomorphic
convexity of Σϕ depends on the density of the image of ϕ.

Proposition 2.9. — Let A be a k-affinoid algebra, B be a Banach k-
algebra. Let ϕ : A → B be a homomorphism of Banach k-algebras. Let B′

be the closed subalgebra generated by the image of ϕ of A in B and let
ϕ′ : A → B′ be the restricted homomorphism. Then Σ̂ϕ = Σϕ′ . If ϕ has
dense image, then Σϕ is holomorphically convex. ([2, Proposition 7.3.1])

In case where the spectrum of a homomorphism is not holomorphically
convex, one can add variables to the source algebra so that spectrum of
the extended homomorphism is holomorphically convex. The following is
an analogue of Arens–Calderón theorem.

Proposition 2.10. — Let A be a k-affinoid algebra, B be a Banach
k-algebra. Let ϕ : A → B be a homomorphism of Banach k-algebras. Then
for any open neighbourhood U in M(A) of the spectrum Σϕ, there exists
a homomorphism of Banach algebras extending ϕ

ϕ↑ : A↑ := A{r−1
1 T1, . . . , r

−1
n Tn} → B

such that pr(Σ̂ϕ) ⊆ U , where pr : M(A↑)→M(A) is the canonical projec-
tion. ([2, Proposition 7.3.3])

2.4.2. Holomorphic functional calculus

It is easy to localize the homomorphism of Banach algebras to any neigh-
bourhood of its spectrum if the spectrum is holomorphically convex; oth-
erwise, one uses Proposition 2.10 to perform such a localization.

Theorem 2.11. — Let ϕ : A → B be a homomorphism of Banach
algebras from an affinoid algebra to a Banach algebra. Let W ⊆M(A) be
a G-open set that is a neighbourhood of Σϕ. Then there exists a Banach
algebra homomorphism

θϕ : AW,sp → B
satisfying ϕ = θϕ◦ιW , where ιW : A → AW → AW,sp is the Banach algebra
homomorphism induced by the inclusion W ⊆M(A). ([2, Theorem 7.3.2])

Remark 2.12. — The original proof shows the existence of a Banach al-
gebra homomorphism AW → B that factorizes through the normed al-
gebra Γ(Σϕ,O) which is equipped with sup norm. The restriction homo-
morphism AW,sp → Γ(Σϕ,O) (both equipped with sup norms) induced by
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Σϕ ↪→ W is bounded, and its composition with the bounded homomor-
phism Γ(Σϕ,O)→ B is our θϕ.

2.5. Analytification of schemes of finite type

2.5.1. Analytification

Schemes of finite type over Spec k can be analytified to Berkovich analytic
spaces. Locally, for a finitely generated k-algebra AZ with Zariski spectrum
Z, one first obtains a topological space Zan consisting of (equivalent classes
of) multiplicative seminorms equipped with the weak (canonical) topology.
A locally ringed space structure is obtained by considering the sheaf OZan

of analytic functions, which to any open set U ⊆ Zan associates functions
h : U →

∐
z∈U H(z) that are local uniform limits of rational functions.

A morphism between affine schemes induces a morphism between their
analytifications. Globally, the analytification Xan of a finite type scheme
X over Spec k is obtained via a process of glueing [2, §3].

2.5.2. Topological properties on the analytification

We list some topological properties that will be useful. The next one fol-
lows directly from the construction of Berkovich spectrum and its Hausdorff
compactness.

Proposition 2.13. — Let (A, |||·|||) be a normed algebra where A is a
finitely generated k-algebra, and denote by A its k-Banach algebra com-
pletion. Then the canonical homomorphism of k-algebras from A to A
induces a continuous map which embeds the Berkovich spectrum M(A)
into (SpecA)an as a compact closed subspace, and the canonical topology
on M(A) coincides with the induced topology from the canonical topology
on (SpecA)an. ([2, Remark 3.4.2])

Below are more fundamental ones concerning scheme-theoretic proper-
ties.

Proposition 2.14. — Let ϕ : X → Y be a morphism of schemes of
locally finite type over Spec k. Then it induces a morphism of locally ringed
spaces ϕan : Xan → Y an. In particular, the space map ϕan is continuous,
and it is (1) separated, (2) injective, (3) surjective, (4) an open immersion
and (5) an isomorphism if and only if ϕan has the same property. ([2,
Proposition 3.4.6])

Theorem 2.15. — If X is proper, then Xan is Hausdorff and compact.
([2, Theorem 3.4.8])
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3. Normed section algebra and its spectrum

In this section, we lay the framework for our study of a metrised line bun-
dle (L, ϕ) by globally defined objects. We gather the normed vector spaces
of global sections of L⊗n equipped with the sup norm induced by nϕ, to
form a normed algebra of sections R(L, ϕ). We relate its Berkovich spec-
trum to the dual unit disc bundle of (L,P(ϕ)), and interpret geometrically
the global norm metric positivity of P(ϕ) as the holomorphic convexity of
this spectrum in the analytic affine cone.

3.1. Section algebra and norms on it

We review the classical affine cone construction from the section algebra,
and the ways to put norms on them.

3.1.1. Graded algebras

We only consider N-graded algebras. The inclusion S → R of a graded k-
subalgebra is (TN)-isomorphic if the inclusion Sn → Rn is an isomorphism
of k-linear space for n large enough. The Proj construction gives k-scheme
Proj(R) and invertible sheaf O(1)R. Denote the affine cone and its cone
vertex, the total space of O(1)−1

R and its zero section by

C(R) := Speck R←↩ 0R, V(R) := SpecProj(R) Sym OR(1)←↩ OR,

and the canonical contraction by

V(R) p−→ C(R).

If S → R is (TN)-isomorphic, it induces isomorphisms

Proj(R)→ Proj(S), V(R)→ V(S), C(R) \ 0R → C(S) \ 0S .

3.1.2. Section algebras

Let k be a field. Let π : X → Spec k be a scheme of finite type over
Spec k. For any invertible OX -module L and any n ∈ N⩾1, denote the
k-vector space of sections and the k-graded algebra of sections by

Rn(L) := H0(X,L⊗n), R(L) :=
⊕
n∈N

Rn(L)
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The corresponding geometric objects of R(L) are denoted by

C(L) := SpecR(L)←↩ 0L, V(L) := SpecOX
(SymL)←↩ OL,

V(L) pL−−→ C(L).

These schemes are related as follows.

Proposition 3.1. — Assume that X is separated and quasi-compact,
and that L is ample. Then the following diagram is commutative.

X

π

��

OL // V(L)

pL

��

πL // X

π

��
Spec k

0L

// C(L)
ϖL

// Spec k

Moreover, the restriction of pL to V(L) \ OL(X) is an open immersion,
whose image is contained in C(L)\0L. If X is proper, then pL restricted to
V(L)\OL(X) defines an isomorphism between V(L)\OL(X) and C(L)\0L.
([19, Proposition 8.8.2, Remark 8.8.3])

For any x ∈ X with residue field κ(x), the base change induces:

L(x) := L⊗OX
κ(x), V(L)(x) := V(L)⊗OX

κ(x) = Specκ(x) Symκ(x) L(x)

R(L)(x) := R(L)⊗k κ(x), γL(x) : R(L)(x) −→ Symκ(x) L(x)
where γL(x) is a (TN)-isomorphic homomorphism of graded κ(x)-algebras.

Let Y be a closed subscheme of X. The restriction Y gives an OY invert-
ible sheaf L|Y and induces homomorphisms of k-vector space and k-graded
algebras

Rn(L)↠ Rn(LX|Y ) ↪→ Rn(L|Y ), R(L)↠ R(LX|Y ) ↪→ R(L|Y ),

where the middle terms are images of the composition restriction homo-
morphisms.

3.1.3. Analytifications

One may consider Berkovich analytifications for schemes and morphisms
in the previous part, to get Xan and an OXan -invertible sheaf Lan, together
with C(L)an, V(L)an and analytified morphisms such as pan

L .
For any x ∈ Xan, denotes by H(x) the completed residual field at x, the

analytic base change induces:

L(x) := L⊗OX
H(x),

V(L)an(x) := V(L)an ⊗OX
H(x) = (SpecH(x) SymL(x))an
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Tautologically, any w ∈ V(L)an corresponds to a pair (x,wx) where
x ∈ Xan, wx ∈ V(L)an(x) are induced by the valued field extensions
H(w)/H(x)/k.

3.1.4. Global graded algebra norms

Let R be a graded k-algebra. For any n ∈ N, let ∥·∥n be a norm on Rn.
The family of norms (∥·∥n)n∈N is said to be sub-multiplicative if

(3.1) ∀(m,n) ∈ N2, sm ∈ Rm, sn ∈ Rn, ∥sm · sn∥m+n ⩽ ∥sm∥m · ∥sn∥n,

power-multiplicative if moreover equality holds in (3.1) for sm = sn and
multiplicative if equality holds for products of general homogeneous ele-
ments. The orthogonal sum

⊕
n∈N∥·∥ is the norm onR defined by (sn)n∈N 7→

supn∈N ∥sn∥n.
Let |||·||| be a norm on R. By restriction to homogeneous components

{Rn}, one gets a family of norms denoted by {|||·|||⇃n}n∈N, and the orthogo-
nal sum of this family gives back a norm on R denoted by |||·|||+ (explicitly,
|||s|||+ = maxn∈N |||sn|||). By construction one has |||·||| ⩽ |||·|||+, and if the
equality holds, one says that |||·||| is graded (or orthogonal) for {Rn}. If |||·|||
is an algebra norm, namely if it is submultiplicative with |||1||| = 1, then
|||·|||+ is also submultiplicative, hence an algebra norm: if r = s · t, then

(3.2) ∀m ∈ N,

|||rm||| = |||
∑
n∈N

sn · tm−n||| ⩽ sup
n∈N

{
|||sn||| · |||tm−n|||

}
⩽ sup
n∈N
{|||sn|||} · sup

n∈N
{|||tn|||} = |||(sn)n∈N|||+ · |||(tn)n∈N|||+.

Proposition 3.2. — There is a bijective map between the set of graded
submultiplicative (resp. power-multiplicative, resp. multiplicative) norms
|||·||| on R and the set of submultiplicative (resp. power-multiplicative, resp.
multiplicative) families of norms (∥·∥n)n∈N on

⊕
n∈NRn, given respectively

by the restrictions and the orthogonal sum

∀n ∈ N, ∥·∥n := |||·|||⇃n; |||·||| :=
⊕
n∈N
∥·∥n.

Proof. — It suffices to check that the inverse map (the orthogonal sum)
preserves desired properties for multiplications. For submultiplicativity this
follows from (3.2). For multiplicativity, let n1 (resp. n2) be the smallest
homogeneous degree maximizing {|||sn|||}n∈N ({|||tn|||}n∈N), then as |||·||| is
multiplicative, (3.2) is an equality for m = n1+n2, because the term sn1 ·tn2
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is the unique one of maximal norm among all products contributing to rm,
hence the orthogonal sum is also multiplicative. For power-multiplicativity
the argument is similar. □

Corollary 3.3. — Let |||·||| be a seminorm on R. If it is sub-multipli-
cative (resp. power-multiplicative, resp. multiplicative), so is |||·|||+.

3.1.5. Spectral seminorm

Consider graded algebra R with a graded algebra norm |||·|||. Denote by
R(|||·|||) the Banach algebra completion and by M its Berkovich spectrum.
By (3.2) the radical is a homogeneous ideal of R. The spectral seminorm
|||·|||sp is given by a 7→ limn→∞|||an|||

1
n .

Lemma 3.4. — Let R be a graded k-algebra and |||·||| be a graded algebra
seminorm on R. If |·|z is a multiplicative seminorm on R, so is |·|+z . If |·|z is
bounded from above by |||·||| (hence corresponds to a point in M), so is |·|+z .

Proof. — The first assertion follows from Corollary 3.3. For the second
assertion, by the assumption there exists C > 0 such that

|s|+z = max
n∈N

|sn|z ⩽ C ·max
n∈N

|||s|||⇃n = C · |||s|||.

So |·|+z is also bounded from above by |||·||| and corresponds to a point
in M. □

Proposition 3.5. — Let R be a graded k-algebra and |||·||| be a graded
algebra seminorm, then its spectral seminorm |||·|||sp is also graded.

Proof. — By Corollary 3.3, the seminorm |||·|||+sp is power-multiplicative
since |||·|||sp is so, and one has |||·|||sp ⩽ |||·|||+sp. It suffices to show the reverse
inequality. For s ∈ R, let n0 ∈ N be a homogeneous degree maximizing
{|||sn|||sp}n∈N. Since M is compact and the function |sn0 |(·) is continuous
on it, one can find a point z0 such that supz∈M |sn0 |z is achieved at z0.
Then since |||·||| is graded, Lemma 3.4 implies that the point corresponding
to the graded multiplicative seminorm |·|+z0

also belongs to M. Thus with
Theorem 2.2, one has

|||s|||sp = sup
z∈M

|s|z ⩾ |s|+z0
= max

n∈N
|sn|z0 ⩾ |sn0 |z0 = |||sn0 |||sp = |||s|||+sp.

Hence |||·|||+sp is equal to |||·|||sp and is graded. □

Consider the one-variable symmetric algebra with the natural grading.
Graded algebra norms on them are rather rigid.
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Proposition 3.6. — Let S ⊆ k[T ] be a (TN)-isomorphic graded sub-
algebra, then any graded power-multiplicative seminorm |||·||| on S is the
restriction of the Gauss–Tate algebra norm of radius r := |||Tn||| 1

n (for any
large n). Let |·|z be a multiplicative algebra seminorm on k[T ], then it is
bounded from above by |||·||| if and only if |T |z ⩽ r.

Proof. — For any
∑
λn ·Tn ∈ S, since the norm is graded and is power-

mutliplicative,∥∥∥∣∣∣∑λn ·Tn
∣∣∣∥∥∥ = max

n∈N

{
|||λn·Tn|||

}
= max

n∈N

{
|λn|·|||Tn|||

}
= max

n∈N

{
|λn|·|||T |||n

}
,

thus |||·||| identifies with the restriction of a Gauss–Tate norm. For the
second assertion, if |·| ⩽ C · |||·|||, as |·| is mulitplicative then

|T |z = lim
n→∞

|Tn| 1
n ⩽ lim

n→∞
(C · |||Tn|||) 1

n = r;

conversly if |T |z ⩽ r, then |
∑
λn · Tn|z ⩽ |||

∑
λn · Tn||| for any

∑
λn · Tn

thanks to the ultrametricity of |·|z and the gradedness of |||·|||. □

Remark 3.7. — The above assertion is not true if one replaces k[T ] by
k[T1, . . . , Td] for d ⩾ 2. In fact, the Gauss–Tate norm is multiplicative, so
it is equal to its spectral norm. They are orthogonal with respect to the
grading by total degree, and even better, orthogonal with respect to the
multi-grading by the multi-degree of k[T1, . . . , Tn]. The particular feature
for n = 1 is that the two gradings coincide.

3.1.6. Metrics and dual disc bundle

A metric on Lan is given as the assignment to any x ∈ Xan a norm
|(·)|ϕ(x) on the H(x)-vector space L(x). It is upper (resp. lower) semicon-
tinuous if the function x 7→ |s(x)|ϕ is so for any local section s over any
Zariski open set. One writes additively the product of metrics, in particular
the dilation of ϕ by a factor eϵ (given by {|·|ϕ(x) · eϵ}x∈Xan) for some ϵ ∈ R
is denoted by ϕ(ϵ). The restriction of ϕ gives a metric ϕ|Y on L|Y .

Proposition 3.8. — For any x ∈ Xan, any metric ϕ determines a fam-
ily of norms

{
|·|nϕ(x)

}
n∈N on the graded pieces

{
L⊗n(x)

}
n∈N of the graded

coordinate algebra SymH(x) L(x) of the fiber V(L)an(x). Its orthogonal sum
|||·|||ϕ(x) is a graded multiplicative seminorm on SymH(x) L(x) of Gauss–
Tate type. The Banach algebra of completion of (SymL(x), |||·|||ϕ(x)) is a
Tate algebra over H(x), whose spectrum is an affinoid disc in V(L)an(x).
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Proof. — The family is clearly multiplicative, the conclusions follow from
Proposition 3.2 and Proposition 3.6. □

The dual closed (resp. open) unit disc bundle of the metrised pair (L, ϕ)
are

D∨(L, ϕ) :=
{
w ∈ V(L)an : ∀e(x) ∈ L(x), |e(x)|wx ⩽ |e(x)|ϕ

}
,

D∨(L, ϕ) :=
{
w ∈ V(L)an : ∀e(x) ∈ L(x), |e(x)|wx < |e(x)|ϕ

}
.

they are subspaces of V(L)an equipped with subspace topology, where w
corresponds to the pair (x,wx). By Proposition 3.6, one knows that w ∈
D∨(L, ϕ) if and only if wx ∈ D∨(L, ϕ)(x).

3.1.7. Fubini–Study metrics

Let L be an invertible OX -sheaf. The evaluation maps R1(L)⊗kH(x) −→
L(x) induces quotient seminorms ∥·∥1,X|x (scalar extension of ∥·∥1 from k

to H(x)) on stalks Lan(x), and they are norms if the maps are surjective.
These norms give rise to a Fubini–Study metric on L denoted by FS(∥·∥1)
([15, §3.1]). Further, it is diagonalizable if the norm ∥·∥1 is diagonalizable
on R1(L) (note that [7, Definition 5.2, Corollary 7.18] includes this property
in their definition of F.-S. metrics).

Let |||·||| be an algebra norm on R(L), and {∥·∥n}n∈N be its restrictions
to homogeneous components. The evaluation map induces a quotient alge-
bra seminorm |||·|||X|x on SymH(x) L(x) and a sub-multiplicative family of
quotient seminorms ∥·∥n,X|x on homogeneous components.

The Fubini–Study envelope metric P(|||·|||) on L is given by the spectral
limit

(3.3) s(x) 7→ lim
n→∞

∥s⊗n(x)∥
1
n

n,X|x, |·|P(|||·|||)(x) = (|||·|||X|x;sp)⇃1.

In fact, such an envelope metric can be defined if |||·||| is an algebra norm
on a (TN)-isomorphic subalgebra S(L) of R(L).

A metric ϕ on L is said to be semipositive if it is a Fubini–Study envelope
metric (constructed from some family of norms {∥·∥n}n∈N) and is contin-
uous [15, §3.2]. The continuity requirement is equivalent to the uniformity
in x of the pointwise convergence of metrics, thanks to the compactness of
Xan by Theorem 2.15. We refer to [8, §5.4] and [7, §6.1] for a clear discus-
sion of other various notions of semipositivity that have been proposed and
studied historically in [8, 11, 14, 15, 20, 25, 30], etc.
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3.1.8. Global norms induced by a metric

Let |·|ϕ be an upper semicontinuous metric on L. If X is proper over k,
then Xan is compact. The sup norms on {Rn(L)}n∈N

∥·∥nϕ : sn 7→ sup
x∈Xan

|sn(x)|ϕ, |||·|||ϕ :=
⊕
∥·∥nϕ

give the sup algebra norm on R(L). For a reduced closed subscheme Y in X,
the restriction map R(L) → R(L|Y ) induce quotient norms on Rn(LX|Y )
and R(LX|Y )

∥·∥nϕ,X|Y := (∥·∥nϕ)quot, |||·|||ϕ,X|Y := (|||·|||ϕ)quot.

Proposition 3.9. — The family of norms {∥·∥nϕ}n∈N is sub-multipli-
cative and power-multiplicative, so is |||·|||ϕ. The family of quotient norms
{∥·∥nϕ,X|Y }n∈N is submultiplicative, so is the quotient norm |||·|||ϕ,X|Y . Both
are algebra norms.

Proof. — Multiplication properties for the sup norm family is verified as
follows: for sn ∈ Rn(L) and sm ∈ Rm(L), one has
∥sm · sn∥nϕ = sup

x∈Xan
|sm(x)|mϕ · |sn(x)|nϕ

⩽ sup
x∈Xan

|sm(x)|mϕ · sup
x∈Xan

|sn(x)|nϕ = ∥sm∥mϕ · ∥sn∥nϕ

and the equality is attained if sm = sn. By Proposition 3.2, the graded
norm |||·|||ϕ is also sub-multiplicative and power-multiplicative. Further one
has |||1|||0ϕ = 1 as 0ϕ is the trivial metric on OX with unit section 1.
The submultiplicative property of quotient norms follows from that of sup
norms. □

The completions (⇝) of normed k-algebras give Banach algebras

(R(L), |||·|||ϕ)⇝ R(L, ϕ), (R(LX|Y ), |||·|||ϕX|Y
)⇝ R(LX|Y , ϕX|Y ).

As X and Y are reduced and ϕ is a metric, both Banach algebras have
radicals as {0}, because |||·|||ϕ is a power-multiplicative norm and |||·|||ϕX|Y

is bounded from below by the power-multiplicative norm |||·|||ϕ|Y
.

3.1.9. Overall assumptions

In the rest of the article, we make assumptions that X is an integral
projective scheme over k and Y is a closed reduced subscheme; that L is an
ample line bundle on X and |·|ϕ is an upper-semicontinuous metric on it.

TOME 73 (2023), FASCICULE 4



1610 Yanbo FANG

3.2. Fubini–Study metrics

We list some basic properties for operations of passage between norm and
metric, which were obtained in [15] or in [7, Section 6], some arguments
are included.

3.2.1. Explicit expression for diagonalizable Fubini–Study metrics

Diagonalizable Fubini–Study metrics have explicit expressions. Below we
write scalar n-tuple of k (with |·|) and vector n-tuple of some V (with ∥·∥)
and the operations as

a := (a1, . . . , an) ∈ kn, b := (b1, . . . , bn) ∈ V n,

a · b :=
∑

aibi ∈ V,

ab := (a1b1, . . . , anbn) ∈ V n,
b/a := (b1/a1, . . . , bn/an) ∈ V n

|a| := (|a1|, . . . , |an|) ∈ Rn, ∥b∥ := (∥b1∥, . . . , ∥bn∥) ∈ Rn

and max{r} (resp. min{r}) the number max{ri} (resp. min{ri}) for an
n-tuple r of R.

Lemma 3.10. — Let (k′, |·|′) be a valued field extension of (k, |·|). For
any r ∈ Rn+, and λ among k′n, one has

inf
λ·1=1

max
{
|λ|′ · r

}
= min{r}.

Proof. — On the one hand, let l ∈ {1, . . . , n} be an index at which
min

{
r

}
is attained. By taking λj = 0 for j ̸= l and λl = 1, one sees that

inf
λ·1=1

max
{
|λ|′ · r

}
⩽ rl = min{r}.

On the other hand, since |·|′ is ultrametric, if the sum λ · 1 is 1, then there
exists at least one m ∈ {1, . . . , n} such that |λm|′ ⩾ 1, thus

max{|λ|′ · r} ⩾ |λm|′ · rm ⩾ rm, inf
λ·1=1

max
{
|λ|′ · r

}
⩾ min{r}.

Hence the two sides are equal. □

Proposition 3.11. — Let ∥·∥1 be a diagonalizable norm on R1(L) with
an orthogonal basis {Tj} =: T . Then for any x ∈ Xan and e(x) ∈ L(x) \ 0,

|e(x)−1|FS(∥·∥1)∨ = max
{
|κj |H(x) · ∥Tj∥−1

1
}
, κj := Tj(x)/e(x) ∈ H(x)

with the convention that 0−1 = +∞. In particular, |e(x)|−1
FS(∥·∥1) ⩽ 1 (resp.

<) if and only if |κj |H(x) ⩽ ∥Tj∥1 (resp. <).
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Proof. — By definition, for λ among n-tuples of H(x), one gets

|e(x)|FS(∥·∥1) = inf
(λ·T )(x)=e(x)

∥λ · T ∥1 = inf
λ·κ=1

∥λ · T ∥1

= inf
λκ·1=1

max{|λκ|H(x) · ∥T /κ∥1}

which is equal to min{∥T /κ∥1}. Take the inverse one gets the desired equal-
ity. □

Corollary 3.12. — Let ∥·∥1 be a norm on R1(L), then FS(∥·∥1) is a
continuous metric on L ([15, Proposition 3.1]).

3.2.2. Passages between norms and metrics

Recall that we have operations passing between space of norms and space
of metrics as follows

{∥·∥n on Rn(L)}
FS(∥·∥n) // {ϕn on L⊗n}

∥·∥ϕn

oo

Both these spaces are equipped with distances (hence with induced topolo-
gies)

d(∥·∥n,1, ∥·∥n,2) := sup
s∈Rn\{0}

∣∣∣∣log ∥s∥n,1
∥s∥n,2

∣∣∣∣ ;

d(ϕn,1, ϕn,2) := sup
x∈Xan

∣∣∣∣log
∥·∥ϕn,1

∥·∥ϕn,2

∣∣∣∣ .
Proposition 3.13. — Let |·|ϕ and |·|ϕ′ be two upper-semicontinuous

metrics on L, and ∥·∥ and ∥·∥′ be two norms on R1(L), then

d(∥·∥ϕ, ∥·∥ϕ′) ⩽ d(ϕ, ϕ′), d(FS(∥·∥),FS(∥·∥′)) ⩽ d(∥·∥, ∥·∥′).

Consequently, in the space of Fubini–Study metrics on L equipped with
the topology induced by d, diagonalizable ones are dense.

Proof. — Both inequalities follows directly from the definitions of these
distances. The density follows from Proposition 2.1. □

Proposition 3.14. — If ϕ is Fubini–Study (for example ϕ = FS(∥·∥1)
for some norm ∥·∥1 on R1(L)), then for any n ∈ N, FS(∥·∥nϕ) = nϕ ([15,
Proposition 3.6]). If ϕ is semipositive (for example ϕ = P(|||·|||) for some
algebra norm |||·|||1 on R(L)), then P(|||·|||ϕ) = ϕ.

Proof. — The second statement follows from the first: if the sequence
d(ϕ, 1

n FS(∥·∥n)) tends to 0, so does d( 1
n FS(∥·∥nϕ), 1

n FS(∥·∥FS(∥·∥n))),
whose limit is d(P(|||·|||ϕ), ϕ)) by the first statement and the construc-
tion. □
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3.3. Spectrum and envelope

We describe the Berkovich spectrum of the normed algebra of sections
R(L,ϕ), a compact set in the analytification of the Zariski spectrum C(L)an,
through the lens of the continous map induced by the zero-section contrac-
tion morphism

pan : V(L)an → C(L)an.

Recall that for w ∈ V(L)an one denotes by x ∈ Xan and wx ∈ L(x) the
corresponding points on the base and the fiber and by z ∈ C(L)an its image
under pan.

3.3.1. Spectrum of normed section algebra in terms of envelope metric

Proposition 3.15. — Let |||·||| be a graded algebra norm on R(L). Then
z ∈M(R(L, |||·|||)) if and only if one of the following criteria holds

(1) there exists C(z) > 0 such that

∀s ∈ R(L), |s|z ⩽ C(z) · |||s|||.

(2) there exists C(z) > 0 such that

∀s(x) ∈ R(L)(x), |s(x)|wx ⩽ C(z) · |||s(x)|||X|x.

(3) it holds that

∀s(x) ∈ R(L)(x), |s(x)|wx ⩽ |||s(x)|||X|x;sp,

where |||·|||X|x;sp is the spectral algebra seminorm of |||·|||X|x.
(4) it holds that

∀s(x) ∈ Symκ(x) L(x), |s(x)|wx
⩽ |||s(x)|||′X|x;sp,

where |||·|||′X|x;sp is the unique graded power multiplicative alge-
bra seminorm on SymH(x) L(x) whose restriction on R(L)X|x is
|||·|||X|x;sp.

(5) it holds that

∀e(x) ∈ L(x), |e(x)|wx
⩽ |||e(x)|||′X|x;sp,

(6) it holds that

∀e(x) ∈ L(x), |e(x)|wx
⩽ |e(x)|P(|||·|||).

Consequently, z ∈M(R(L, |||·|||)) if and only if w ∈ D∨(L,P(|||·|||)).
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Proof. — Start with the evaluation map (R(L), |||·|||) evz−−→ (H(z), |·|z).
(1) unfolds the definition of the Berkovich spectrum.
(1 ⇔ 2) as evz factorizes through (R(L), |||·|||) evx−−→ (R(L)(x), |||·|||X|x),

and |||·|||X|x is just the quotient of the scalar extension from |||·|||.
(2 ⇒ 3) by passing to the spectral seminorm using the power-multipli-

cativity of |·|wx
; ⇐ is obvious.

(3⇔ 4) thanks to Corollary 3.6 applied to the (TN)-isomorphism
R(L)(x)→ SymH(x) L(x) and |||·|||X|x,sp on the former.

(4 ⇔ 5) by applying Proposition 3.6 to the one-variable polynomial al-
gebra SymH(x) L(x) and |||·|||′X|x,sp.

(5⇔ 6) is due to the relation (3.3) expressing the envelope metric as the
spectral seminorm. □

For abbreviations, denote the contracted closed dual unit disc bundles by

M(ϕ) := pan(D∨(L,P(ϕ))), M−(ϕ) := pan(D∨(L, ϕ)).

Note that the first is the spectrum of the Banach algebra R(L, ϕ), while the
second is a priori not a spectrum. They are both compact sets in C(L)an.
The contractions of open disc bundles are denoted by Mo(ϕ) and M−

o (ϕ).

Corollary 3.16. — Let |||·||| be a graded algebra norm on R(L). The
restriction of the map pan

L on the dual unit disc bundle is surjective

D∨(L,P(|||·|||))→M(R(L, |||·|||)).

Consequently, for any s ∈ R(L), one has

sup
z∈M(ϕ)

|s|z = |||s|||ϕ.

Proposition 3.17. — Let ϕ be a continuous metric on L. Then M−
o (ϕ)

is an open subset of C(L)an. In particular, for ϵ > 0, M−(ϕ) is contained
in the topological interior of M−(ϕ(ϵ)).

Proof. — As ϕ is continuous, D∨(L, ϕ) \ Oan
L (Xan) is an open set in

V(L)an, hence its image under pan is an open set of C(L)an \ 0, as the re-
striction of pan is open by Proposition 3.1 combined with Proposition 2.14.
Thus this partial image is an open set in C(L)an, it is M−

o (ϕ) punctured
at the vertex 0. The vertex 0 is not on the topological boundary of Mo(ϕ),
otherwise there would be a net of points {zα}α∈A in C(L)an outside of
M−
o (ϕ) converging to 0, then for a finite set of global sections {si}i∈I that

is base point free, all nets {|si(zα)|ϕ}α∈A in R would converge to 0, which
is impossible as maxi∈I{|si(z)|ϕ} ⩾ c for some c > 0 and any z outside. So
M−
o (ϕ) is open.
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The second assertion follows immediately as M−
o (ϕ(ϵ)) is an open subset

of M−(ϕ(ϵ)) containing M−(ϕ). □

3.3.2. Spectrum of normed section algebra as geometric envelope

Proposition 3.18. — For any n ∈ N and sn ∈ Rn(L), one has

sup
z∈M−(ϕ)

|sn|z = sup
w∈D∨(L,ϕ)

|sn|w = sup
x∈Xan

|sn(x)|nϕ = ∥sn∥nϕ,

and for any s ∈ R(L), one has

sup
z∈M−(ϕ)

|s|z = max
n∈N

∥sn∥nϕ = |||s|||ϕ.

Proof. — The equalities in the first assertion follows immediately from
the construction. For the second assertion, consider the sup norm over the
dual unit disc bundle on R(L), thanks to the decomposition of w along pan,
it can be written as

(3.4) sup
w∈D∨(L,ϕ)

|·|w = sup
x∈Xan

sup
wx∈D∨(L,ϕ)(x)

|·|wx

As D∨(L, ϕ)(x) is a H(x)-affinoid disc in V(L)an(x), the sup norm over
D∨(L, ϕ)(x) is a Gauss–Tate norm hence is graded on the graded H(x)-
algebra SymH(x) L(x), thus it is a graded norm when restricted to the
graded H(x)-algebra R(L)(x), and is also graded on the graded k-algebra
R(L) as the base change preserves their gradings. Thus the above sup norm
over D∨(L, ϕ) on R(L) is graded because supx∈Xan does not concern the
grading. The gradedness of this sup norm on the unit disc bundle, together
with the first assertion, imply that

sup
w∈D∨(L,ϕ)

|s|w = max
n∈N

{
sup

w∈D∨(L,ϕ)
|sn|w

}
= max

n∈N

{
∥sn∥nϕ

}
= |||s|||ϕ. □

Recall that for any compact set K in an affinoid domain M(A), one can
construct its holomorphic envelope in M(A) as the following compact set

K̂ :=
{
z ∈M(A), ∀f ∈ A, |f |z ⩽ sup

z′∈K
|f |z′

}
.

If A has a dense k-subalgebra A, then one can also use elements in A to
define a polynomial envelope in (SpecA)an. The two envelopes are identified
upon the canonical inclusion map M(A)→ (SpecA)an.
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Proposition 3.19. — Let ϕ be an upper semicontinuous metric on L.
Then

M(ϕ) = M̂−(ϕ),
where the envelope is taken in C(L)an.

Proof. — One first shows the inclusion ⊇. Since M(ϕ) is the spectrum of
R(L, ϕ), it is holomorphic convex in Z by Proposition 2.9. Since it contains
M−(ϕ), it also contains the holomorphic envelope of M−(ϕ).

Conversely, for the inclusion ⊆, observe that for any s ∈ R(L), one has

sup
z∈M(ϕ)

|s|z = |||s|||ϕ = sup
z′∈M−(ϕ)

|s|z′ ,

where the first equality follows from Corollary 3.16 and the definition of
M(ϕ), and the second one from Proposition 3.18. By the construction of
envelope, M(ϕ) is contained in the envelope of M−(ϕ). □

All results in Section 3.3 are valid if one replaces R(L) by a (TN)-
isomorphic subalgebra S(L), thanks to Proposition 3.6.

3.4. Restriction to subvarieties

We examine the behavior of norms under the restriction to a subvariety
Y . Note that R(LX|Y ) is a (TN)-isomorphic subalgebra of R(L|Y ) as L is
ample.

Proposition 3.20. — Let |·|ϕ be an upper-semicontinuous metric on
L. Then

P(|||·|||ϕ)|Y = P(|||·|||ϕ,X|Y ).

Proof. — By definition, for any y ∈ Y an, one has

P(|||·|||ϕ)(y) = lim
n→∞

1
n

FS(∥·∥nϕ)(y),

P(|||·|||ϕ,X|Y )(y) = lim
n→∞

1
n

FS(∥·∥nϕ,X|Y )(y).

For all large n ∈ N, since the k-linear map Rn(L)→ Rn(L|Y ) is surjective,
and ∥·∥nϕ,X|Y is the quotient norm of ∥·∥nϕ, one has

FS(∥·∥nϕ)(y) = FS(∥·∥nϕ,X|Y )(y).

Hence the two envelope metrics are equal. □

Lemma 3.21. — If ϕ is a Fubini–Study envelope (resp. semipositive)
metric on L, so is ϕ|Y on L|Y .
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Proof. — If ϕ is the pointwise limit on Xan of { 1
n FS(∥·∥n)}n∈N, where

∥·∥n is a norm on Rn(L), then ϕ|Y is the pointwise limit of { 1
n FS(∥·∥n,X|Y )}

on Y an. Additionally, the uniformity of convergence in x ∈ Xan passes to
that for y ∈ Y an by restriction. □

Proposition 3.22. — Let ϕ be a semipositive metric on L. Consider
two algebra norms |||·|||ϕ|Y

and |||·|||ϕ,X|Y on R(LX|Y ). Then the following
three metrics are equal

P(|||·|||ϕ,X|Y ) = P(|||·|||ϕ|Y
) = ϕ|Y .

Proof. — By the assumption and Lemma 3.21, both ϕ and ϕ|Y are semi-
positive, so Proposition 3.14 implies that both P(|||·|||ϕ)|Y and P(|||·|||ϕ|Y

)
are equal to ϕ|Y . The former is further equal to P(|||·|||ϕ,X|Y ) by Proposi-
tion 3.20. □

Corollary 3.23. — Let ϕ be a semipositive metric on L. Then on
R(LX|Y ), the spectral algebra seminorm of |||·|||ϕ,X|Y is equal to |||·|||ϕ|Y

.
The map induced by the canonical homomorphism is an isomorphism of
spectra

M(R(LX|Y , ϕX|Y )) ≃M(R(LX|Y , ϕ|Y )).

Proof. — By Proposition 2.2, one has a homeomorphism

M(R(LX|Y , |||·|||ϕ,X|Y ;sp))≃M(R(LX|Y , |||·|||ϕ,X|Y )) =M(R(LX|Y , ϕX|Y )),

by Proposition 3.22, one has

M(R(LX|Y , |||·|||ϕ,X|Y ;sp)) ≃M(R(LX|Y , |||·|||ϕ|Y
)) = M(R(LX|Y , ϕ|Y )).

By Proposition 2.2, the two power-multiplicative algebra seminorms |||·|||ϕ|Y

and |||·|||ϕ,X|Y ;sp on R(LX|Y ) are equal, since they are both sup norms on
the same spectrum. □

4. Normed extension for restricted sections

In this section, given a closed subvariety Y of X and a positively metrised
ample line bundle (L, ϕ), we consider the problem of extension of sections
of L|Y to sections of L, with a control of their sup norms induced by ϕ. We
interpret the norm control as an upper bound of the quotient algebra norm
|||·|||ϕ,X|Y by its spectral algebra norm |||·|||ϕY

. We propose two methods to
establish this upper bound.
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4.1. Review and Outline of strategy

Recall that the restriction maps on spaces of global sections induces
homomorphisms Rn(L)↠ Rn(LX|Y ) ↪→ Rn(L|Y ) where the second one is
a (TN)-isomorphism (i.e. induces isomorphisms on graded pieces of level
above some fixed n0 ∈ N). A continuous metric ϕ induces sup norms ∥·∥nϕ
and ∥·∥nϕ|Y

. The goal is to find an appropriate asymptotic upper bound
for the ratio

(4.1) inf
sn∈Rn(L)
sn|Y =tn

∥sn∥nϕ
∥tn∥nϕ|Y

⩽ C(n).

Previously, a normed extension property with a sub-exponential bound
of the following form is established in [15, 30]. It is not uniform as the
asymptotic range nY depends also on the choice of restricted sections.

Theorem 4.1. — Let ϕ be a semipositive metric on L, then for any
ϵ > 0, any t1 ∈ H0(Y, L|Y ), there is nY ∈ N such that for any n ⩾ nY ,
there exists sn ∈ H0(X,L⊗n) with sn|Y = t⊗n1 and

∥sn∥nϕ ⩽ enϵ · (∥t1∥ϕ|Y
)n.

The proof is based on lattice norms induced by integral models and the
study of the limit metric.

Our new perspective for this normed extension problem is to investigate
normed algebras of sections instead of normed vector spaces of sections.
From this point of view, the goal is to compare two algebra norms |||·|||ϕ,X|Y
and |||·|||ϕY

on the graded algebra of restricted sections R(LX|Y ). More pre-
cisely, the difficult point is to bound the quotient norm from above by the
sup norm. To get a uniform version as in [5], a key is to use various finite-
ness properties of affinoid algebras, implicitly via holomorphic functional
calculus (Section 2.4.2) or explicitly via the spectral norm comparison (Sec-
tion 2.3.2). The advantage of passing from vector spaces to an algebra is
to work in a global affine geometric setting accompanied by techniques of
Banach algebras.

Below in Section 4.2 we reformulate and simplify the proof of Theo-
rem 4.1. In Section 4.3 and Section 4.4, we prove the uniform version of
the normed extension property, where nY does not depend on tn.

Theorem 4.2. — Let ϕ be a semipositive metric on L. Then for any
ϵ > 0, one may find Cϵ ∈ R+ such that on R(LX|Y ), one has

|||·|||ϕ,X|Y ⩽ Cϵ · |||·|||ϕ(ϵ)|Y
.

TOME 73 (2023), FASCICULE 4



1618 Yanbo FANG

Consequently, there exists nY ∈ N such that for any n ⩾ nY
∥·∥ϕ,X|Y ⩽ enϵ · ∥·∥nϕ|Y

,

namely for any tn ∈ H0(Y, L|⊗nY ), one can find sn ∈ H0(X,L⊗n) with
sn|Y = tn and

∥sn∥nϕ ⩽ enϵ · ∥tn∥nϕ|Y
.

4.2. Non-uniform version

To compare the two algebra norms, start with the spectral relation be-
tween them and the isomorphism of spectra (Corollary 3.23)

(4.2) |||·|||ϕ,X|Y ;sp = |||·|||ϕ|Y
, M(R(LX|Y , ϕX|Y )) ≃M(R(LX|Y , ϕ|Y )).

Proof of the theorem 4.1. — For some large m ∈ N, one has t⊗m1 ∈
R(LX|Y ), thus by Corollary 3.23 one has

lim
n→+∞

∥t⊗mn1 ∥
1
n

mnϕ,X|Y = ∥t⊗m1 ∥mϕ|Y
.

Note that |||·|||ϕ,X|Y is submultiplicative and |||·|||ϕ|Y
is power-multiplicative,

so the sequence {∥t⊗n1 ∥
1
n

nϕ,X|Y }n⩾n0 has a limit and one deduces that

lim
n→+∞

∥t⊗n1 ∥
1
n

nϕ,X|Y = lim
n→+∞

∥t⊗nm1 ∥
1

nm

nmϕ,X|Y = ∥t⊗m1 ∥
1
m

mϕ|Y
= ∥t1∥ϕ|Y

.

The conclusion unfolds this limit of quotient norms for powers of t1. □

Remark 4.3. — The nature of the spectral norm construction makes nY
depending on t1, hence non-uniform for the normed extension.

4.3. Spectral approximation

In this subsection, we prove the uniform version using a spectral method.
Instead of the isomorphism (4.2), we examine the strict inclusion of spectra
by considering the dilated metric ϕ(ϵ) for ϵ ∈ R+

M(R(LX|Y , ϕX|Y )) ↪→Wϵ ↪→M(R(LX|Y , ϕ|Y (ϵ))),

here Wϵ is an auxiliary G-open set contained in between. The strategy is
to translate the above inclusions of spectra to inequalities of their corre-
sponding algebra norms:

|||·|||ϕ,X|Y ≲ |||·|||Wϵ ≲ |||·|||ϕ|Y (ϵ),
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where ≲ means ⩽ but omitting geometric constants that depends only on
X, Y , L and ϕ. The first inequality, bounding from above a quotient norm
|||·|||ϕ,X|Y by a sup norm |||·|||Wϵ

, is non-trivial, we obtain it by constructing
a Banach algebra “localization” homomorphism from the structural algebra
of W using holomorphic functional calculus

Wϵ → R(LX|Y , ϕX|Y ).

The second inequality concerning sup norms follows directly from the in-
clusion.

First we localize the spectrum by affinoid domain covering.

Proposition 4.4. — Let ϕ be a semipositive metric on L. For any
ϵ > 0, there exists a G-open set Wϵ such that

M(R(LX|Y , ϕX|Y )) ≃M(R(LX|Y , ϕ|Y )) ⊆Wϵ ⊆M(R(LX|Y , ϕ|Y (ϵ))).

As a consequence one has |||·|||Wϵ
⩽ |||·|||ϕ|Y (ϵ).

Proof. — The first homeomorphism is from 3.23. To construct Wϵ, note
that every point in C(LX|Y )an has a neighbourhood system consisting of
affinoid domains. Hence for any z ∈ M(R(LX|Y , ϕ|Y )), there is an affi-
noid domain neighbourhood V (z). It can be chosen to be contained in
Intt(M(R(LX|Y , ϕ|Y (ϵ)))) as this open set contains M(R(LX|Y , ϕ|Y )) by
Proposition 3.17.

One obtains a covering of M(R(LX|Y , ϕ|Y )) by open sets {Intt V (z)}
(for all z in this spectrum). Since this spectrum is compact, there exist
finitely many points {z1, . . . , zm} such that {Intt V (zi)}i∈{1,...,m} form a
covering. Let Wϵ be the union of affinoid domains {V (zi)}i∈{1,...,m}, then
it is a G-open set satisfying the desired inclusion relations. (see the picture
below)

The comparison of two sup algebra norms follows directly from this in-
clusion of spectrum and Theorem 2.2. □

Remark 4.5. — One denotes byWϵ the spectral completion of the struc-
tural Banach k-algebra of Wϵ, so it is equipped with sup norm |||·|||Wϵ

(see
Section 2.3.3).
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Spectral approximation

M(R(LX|Y , ϕX|Y )) ⊆Wϵ ⊆M(R(LX|Y , ϕ|Y (ϵ))) ⊆M(R(LX|Y ,♢ϵ)

Then we localize a Banach algebra homomorphism.

Proposition 4.6. — Let ϕ be a semipositive metric on L. For any
ϵ > 0, there exists a homomorphism of Banach k-algebras

θ(ϵ) :Wϵ → R(LX|Y , ϕX|Y )

whose restriction on R(LX|Y ) is the identity homomorphism. Consequently
one has |||·|||ϕX|Y

⩽ C · |||·|||Wϵ for some C ∈ R>0.

Proof. — By Proposition 2.3, one may construct an algebra norm |||·|||♢ϵ

on R(LX|Y ) which dominates |||·|||ϕ(ϵ),X|Y , and gets an affinoid algebra (by
completion) denoted by R(LX|Y ,♢ϵ) together with a homomorphism of
Banach algebras σ(ϵ). Denote its composition with the canonical inclusion
homomorphism by

τ(ϵ) : R(LX|Y ,♢ϵ)
σ(ϵ)−−→ R(LX|Y , ϕ(ϵ)X|Y ) ↪→ R(LX|Y , ϕX|Y ),

this is a continuous homomorphism from an affinoid algebra to a Banach
algebra.

This homomorphism is the identity on R(LX|Y ), it has dense image, so
the induced map τ(ϵ)⋆ on spectra is injective hence with closed image (as
the spectra are Hausdorff compact). The spectrum Στ(ϵ) can be identified
with M(R(LX|Y , ϕX|Y )), which contained in Wϵ.
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One can perform spectral calculus for the homomorphism τ(ϵ) and the
G-open set Wϵ which contains Στ(ϵ). By Theorem 2.11, there exists a ho-
momorphism θ(ϵ) of Banach algebras (which is the identity homomorphism
on R(LX|Y )) that makes the following diagram commutative

R(LX|Y ,♢ϵ)
τ(ϵ) //

iWϵ

��

R(LX|Y , ϕX|Y )

Wϵ

θ(ϵ)

66
.

The comparison of algebra norms unfolds the boundedness of θ(ϵ). □

Theorem 4.2 follows from this construction of Banach algebra homomor-
phism:

Proof of the theorem 4.2. — The comparison of algebra norms is ob-
tained as a combination of inequalities in Propositions 4.4 and 4.6. One
uses its version for some ϵ′ < ϵ, and deduces that

∥tn∥nϕ,X|Y = |||tn|||ϕ,X|Y ⩽ Cϵ′ · |||tn|||ϕ|Y (ϵ′) = Cϵ′ · enϵ
′
· ∥tn∥nϕ|Y

.

It then suffices to take nY as the integer max{⌈log(Cϵ′)/(ϵ− ϵ′)⌉, n0}. □

Remark 4.7. — The continuity of ϕ is necessary in this approach: it is
needed in Propositions 4.4 to guarantee that there is enough space between
M(R(LX|Y , ϕX|Y )) and M(R(LX|Y , ϕ|Y (ϵ))), so that a G-open set Wϵ can
be inserted.

4.4. Functional approximation

In this subsection we give another proof. We first show that with a diag-
onalizable Fubini–Study metric, the normed section algebra is an affinoid
algebra, and its finiteness property provides the desired norm control. The
general case is obtained by a global approximation of algebra norms from
this special case, whence the exponential factor is introduced.

Proposition 4.8. — Let ϕ be a diagonalizable Fubini–Study metric
on O(1) over Pd induced by ∥·∥1 on R1(O(1)). Then M(R(O(1), ϕ)) is a
polydisc in C(O(1))an. In particular, R(O(1), ϕ) is isomorphic to a Tate
algebra.

Proof. — By assumption there is an orthogonal basis {Ti} of
(R1(O(1), ∥·∥1). This basis induces an isomorphism C(O(1))an ≃ (Ad+1)an.
Since ϕ is Fubini–Study, by Proposition 3.14 P(ϕ) = ϕ. A point z ∈
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C(O(1))an \ 0 corresponds to a point w ∈ V(O(1))an \ Oan hence to a
pair (x,wx), and by Proposition 3.15 z is in the spectrum if and only if
|wx|ϕ∨ ⩽ 1. By Proposition 3.11 (taking e(x) = w−1

x ) this is equivalent
to requiring that κi := Ti(wx) ∈ H(x) satisfies |κi|H(x) ⩽ ∥Ti∥1 for all i.
Since |Ti(wx)|H(x) = |Ti|z, if r is the multi-radius given by ∥T ∥1, then the
condition can be reformulated as z belonging to the polydisc of radius r of
center 0 in (Ad+1)an.

As the Banach algebra norm |||·|||ϕ is the sup norm on its spectrum,
it is the Gauss–Tate norm of radius r, so the normed section algebra is
isomorphic to the Tate algebra T (r). □

Proposition 4.9. — Let ϕ be a metric on L and letm ∈ N be an integer
such that L⊗m is very ample and that mϕ is a diagonalizable Fubini–Study
metric, thenR(L, ϕ),R(LX|Y , ϕX|Y ) andR(L|Y , ϕ|Y ) are affinoid algebras.
Moreover, for any l ∈ N, the three Veronese subalgebras R(l) are affinoid
algebras.

Proof. — One first assume that L is very ample, with the induced pro-
jective embedding X

ι−→ PN1 . The Fubini–Study assumption implies that
there is a norm ∥·∥1 on R1(O(1)) such that the Fubini–Study metric ψ :=
FS(∥·∥1) on O(1) restricts to X to the Fubini–Study metric ϕ := FS(∥·∥1)
on L. By Proposition 4.8, the Banach algebra R(O(1), ψ) is an affinoid
algebra. Thus its quotient Banach algebra R(L,ψPN1 |X) is also affinoid. As
|||·|||ϕ is the spectral norm of |||·|||ψ,PN1 |X by Proposition 3.23, and affinoid
norms are preserved by passing to spectral seminorms, the spectral version
R(L, ϕ) is an affinoid algebra.

In general L is just ample, there exists m∈N such that L⊗m is very am-
ple, and that the canonical Veronese inclusion of section algebrasR(L⊗m)→
R(L) is finite. The restriction of |||·|||ϕ to the Veronese subalgebra is |||·|||mϕ.
Since R(L⊗m,mϕ) is affinoid, so is R(L, ϕ) by Corollary 2.7. Thus the
quotient R(LX|Y , ϕX|Y ) and its spectral version R(L|Y , ϕ|Y ) are affinoid
algebras.

The argument is similar for other Veronese subalgebras of level l ∈ N:
from the above one knows that R(m)(L, ϕ) can be presented as the graded
quotient of some Tate algebra TNm

(with equivalent norms) hence is affi-
noid; taking Veronese subalgebras one sees that R(ml)(L, ϕ) is also affinoid
as it can be presented as the quotient of (TNm

)(l) which is affinoid. Then
consider the inclusion R(ml)(L, ϕ) → R(l)(L, ϕ) and use Corollary 2.7 to
conclude that R(l)(L, ϕ) is affinoid. □

Theorem 4.2 follows from this affinoid property of normed section algebra
and an approximation:
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Proof of the theorem 4.2. — By the semipositivity assumption and
Proposition 3.13, for any ϵ > 0, there exists m ∈ N and a metric ϕm on L,
such that mϕm is a diagonalizable Fubini–Study metric on very ample line
bundle L⊗m, and that d(ϕm, ϕ) ⩽ 1

3ϵ, thus for any n ∈ N,

d(∥·∥nϕm , ∥·∥nϕ) ⩽ 1
3nϵ, d(∥·∥nϕm,X|Y , ∥·∥nϕ,X|Y ) ⩽ 1

3nϵ.

By Proposition 4.9, the Banach algebra R(LX|Y , (ϕm)X|Y ) is an affinoid
algebra, so there exists Cm ∈ R+ such that

|||·|||ϕm,X|Y ⩽ Cm · |||·|||ϕm,Y .

Combining this comparison with the above approximations, take nY to
be
max{⌈ln(Cm)/(ϵ/3)⌉, n0}, then for any n ⩾ nY , one has

∥tn∥nϕ,X|Y ⩽ e 1
3nϵ · ∥tn∥nϕm,X|Y ⩽ e 1

3nϵ · Cm · ∥tn∥nϕm|Y

⩽ e 2
3nϵ · Cm · ∥tn∥nϕ|Y

⩽ enϵ · ∥tn∥nϕ|Y
.

Hence there exist sn ∈ Rn(L) with ∥sn∥nϕ ⩽ enϵ · ∥tn∥nϕ|Y
. □

Remark 4.10. — The continuity assumption on ϕ is necessary in this
approach, for deducing a uniform convergence to ϕ in the Fubini–Study
approximation by {ϕm}.
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