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ON THE EXISTENCE OF MASS MINIMIZING
RECTIFIABLE G CHAINS IN FINITE DIMENSIONAL

NORMED SPACES

by Thierry DE PAUW & Ioann VASILYEV (*)

Abstract. — We introduce the notion of density contractor of dimension m
in a finite dimensional normed space X. If m + 1 = dim X, this includes the
area contracting projectors on hyperplanes whose existence was established by H.
Busemann. If m = 2, density contractors are an ersatz for such projectors and
their existence, established here, follows from works by D. Burago and S. Ivanov.
Once density contractors are available, the corresponding Plateau problem admits a
solution among rectifiable G chains, regardless of the group of coefficients G. This
is obtained as a consequence of the lower semicontinuity of the m dimensional
Hausdorff mass, of which we offer two proofs. One of these is based on a new type
of integral geometric measure.

Résumé. — Nous introduisons la notion de contracteur de densité de dimension
m, dans un espace normé X de dimension finie. Lorsque m + 1 = dim X, celle-ci
inclut les projecteurs contractants sur les hyperplans, dont l’existence a été établie
par H. Busemann. Lorsque m = 2, les contracteurs de densité constituent un ersatz
à ces projecteurs, et leur existence, établie ci-dessous, découle de travaux de D. Bu-
rago et S. Ivanov. En présence de contracteurs de densité, le problème de Plateau
correspondant admet une solution parmi les G chaînes rectifiables, indépendam-
ment du groupe de coefficients G. Ceci est une conséquence de la semi-continuité
inférieure de la masse de Hausdorff, dont nous proposons deux démonstrations.
L’une d’elles repose sur un nouveau type de mesure intégrale géométrique.

1. Foreword

The classical tools of Geometric Measure Theory, developed by H. Fed-
erer and W.H. Fleming, provide the following setting for the Plateau prob-
lem. Here, the ambient space X = ℓn

2 is the n dimensional Euclidean space
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and m is an integer comprised between 1 and n−1. Given an m−1 dimen-
sional rectifiable cycle(1) with integer multiplicity and compact support
B ∈ Rm−1(X,Z), we consider the variational problem

(P)
{

minimize M (T ),
among T ∈ Rm(X,Z) with ∂T = B .

As ∂B = 0, there are competitors indeed, one being provided by the cone
construction. The mass of a competitor T is

(1.1) M (T ) =
∫

A

|
−→
T |dH m

where A is the underlying countably (H m,m) rectifiable set on which T

concentrates, |
−→
T | is the absolute value of its algebraic multiplicity and H m

is the Hausdorff measure associated with the ambient Euclidean structure.
Problem (P) admits a minimizing sequence T1, T2, . . ., with each Tk

supported in the convex hull of suppB. This is because we may replace, if
needed, Tk by π#Tk, where π : X → X is the nearest point projection on the
convex hull of suppB. Since Lipπ ⩽ 1, it follows that M (π#Tk) ⩽ M (Tk).
Such sequence is relatively compact with respect to H. Whitney’s flat norm
– a consequence of the deformation theorem and rectifiability theorem [15].
Its accumulation points T are minimizers of problem (P) because the mass
is lower semicontinuous with respect to convergence in the flat norm:

(1.2) M (T ) ⩽ lim inf
k

M (Tk) .

The convergence in flat norm,

(1.3) F (T−Tk) = inf
{

M (R)+M (S) :
R∈ Rm(X,Z), S ∈ Rm+1(X,Z)
and T − Tk = R+ ∂S

}
is in this case equivalent to the weak* convergence as currents.

The same method applies to proving the existence of a mass minimizing
chain when, in (P) the group of coefficients Z is replaced by a cyclic group
Zq [13, 4.2.26], a finite group [16], or more generally a locally compact
normed Abelian group G that does not contain any nontrivial curve of
finite length, according to the work of B. White [24, 25]. For instance,
G = Z2 allows for considering a nonorientable minimal surface bounded
by the Möbius strip, whereas G = Z3 allows for considering a minimal
surface bounded by a triple Möbius strip, singular along a spine where
infinitesimally three half planes meet at equal angles.

(1) When m = 1, an m − 1 dimensional cycle is understood with respect to reduced
homology.

ANNALES DE L’INSTITUT FOURIER



MASS MINIMIZING G CHAINS 637

We now describe two ways of understanding why mass is lower semicon-
tinuous with respect to convergence in the flat norm.

(1) Orthogonal projectors are contractions, in particular they reduce
mass: If W ⊆ X is an m dimensional affine subspace, πW : X → X

is the orthogonal projector onto W and σ is an m dimensional
simplex in X, then H m(πW (σ)) ⩽ H m(σ). To see how this is
related to the lower semicontinuity of mass, assume (as we may,
according to the strong approximation theorem [13, 4.2.22]) that
T, T1, T2, . . . are all polyhedral chains. Thus T − (Tk + Rk) = ∂Sk,
with M (Rk) small. If we are able to infer from this that M (T ) ⩽
M (Tk + Rk), then we will be done. Simplifying even further, we
assume that T = gJσK is associated with a single simplex contained
in some m dimensional affine subspace W ⊆ X, and we write Tk +
Rk =

∑
j gjJσjK, with the σj nonoverlapping. Since πW #(T −(Tk +

Rk)) is an m dimensional cycle with compact support in W , the
constancy theorem implies that T = πW #T = πW #(Tk + Rk).
Therefore,

M (T ) = M

∑
j

πW #(gjJσjK)


⩽
∑

j

|gj |H m (πW #(σj)) ⩽
∑

j

|gj |H m(σj) = M (Tk +Rk).

(2) Hausdorff measure coincides with integral geometric measure. In
other words, the mass of T can be recovered from the mass of its
0 dimensional slices ⟨T, π, y⟩, corresponding to all orthogonal maps
π ∈ O∗(n,m) from Rn to Rm, and y ∈ Rm. Specifically, if θ∗

n,m

denotes an O(n) invariant probability measure on O∗(n,m), then

(1.4) M (T ) = β1(n,m)−1
∫

O∗(n,m)
dθ∗

n,m(π)
∫

Rm

M (⟨T, π, y⟩)dL m(y)

for some suitable constant β1(n,m) > 0, see [13, 2.10.15 and 3.2.26].
The mass M (Z) of a 0 dimensional chain R0(X,Z) ∋ Z =

∑
j gjδxj

(where the xj ’s are distinct) is simply the finite sum M (Z) =∑
j |gj |. Now M : R0(X,G) → R is lower semicontinuous with re-

spect to convergence in the flat norm, and if F (T−Tk) → 0 rapidly,
then for every π one infers that F (⟨T, π, y⟩ − ⟨Tk, π, y⟩) → 0, for
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638 Thierry DE PAUW & Ioann VASILYEV

almost every y. It therefore ensues from Fatou’s Lemma that

M (T )⩽β1(n,m)−1
∫

O∗(n,m)
dθ∗

n,m(π)
∫

Rm

lim inf
k

M (⟨Tk, π, y⟩)dL m(y)

⩽ lim inf
k

β1(n,m)−1
∫

O∗(n,m)
dθ∗

n,m(π)
∫

Rm

M (⟨Tk, π, y⟩)dL m(y)

= lim inf
k

M (Tk) .

Of interest to us in this paper is the case when the Euclidean norm of
the ambient space is replaced with another, arbitrary norm ∥ · ∥. Thus, we
consider G chains in a finite dimensional normed space X. The notions
of m dimensional rectifiable G chains and their convergence in flat norm
are not affected, thus the compactness tool for applying the direct method
of the calculus of variations is available without modification. Hausdorff
measure H m

∥·∥ however has changed in the process, to the extent that the
corresponding new Hausdorff mass

MH(T ) =
∫

A

|
−→
T |dH m

∥·∥ ,

T ∈ Rm(X,Z), is not known in general to be lower semicontinuous. In light
of the two methods evoked above, we note that:

(1) If W ⊆ X is an m dimensional subspace, there may not exist a
projector π : X → W with Lipπ ⩽ 1. Perhaps the simplest case is
when X = ℓ3

∞ and W = X ∩ {(x1, x2, x3) : x1 + x2 + x3 = 0}.
(2) In a specific sense, there is no integral geometric formula avail-

able for the Hausdorff measure in a normed space, according to R.
Schneider [20].

Notwithstanding the first observation, H. Busemann established the exis-
tence, in codimension 1, of projectors that reduce the area. More precisely, if
W ⊆ X is an affine subspace of dimension m = dimX−1, then there exists
a projector π : X → X onto W such that H m

∥·∥(π(σ)) ⩽ H m
∥·∥(σ), when-

ever σ is an m dimensional simplex in X. This is enough for implementing
successfully method (1) and proving the existence of an MH minimizing
rectifiable G chain, when m = dimX−1. In fact, in Theorem 9.2 below we
show that there exists at least one minimizer supported in the convex hull
of its boundary, even though not all minimizers have this extra property.

If 1 < m < dimX − 1, the existence of projectors (onto m dimensional
affine subspaces) that reduce area remains conjectural. D. Burago and S.
Ivanov were able [5] to design a calibration method in case m = 2, proving
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MASS MINIMIZING G CHAINS 639

that flat 2 dimensional disks minimize their Hausdorff measure H 2
∥·∥ among

Lipschitz competing surfaces with coefficients in G = R or G = Z2.
Even though in that case there may not exist area reducing projectors,

we show here how their method leads to the notion of density contractors,
i.e. a probability measure on the space of linear mappings π : X → X with
rank at most 2, playing the analogous role of a single projector as far as
comparing areas is concerned. The fact that we need to consider arbitrary
linear mappings π, possibly with large Lipschitz constant, is a source of
some technical complications.

In fact, we develop in the present paper an axiomatic theory of density
contractors in arbitrary dimension m and establish their existence when
m = 2 or m = dimX − 1, see Theorem 5.10. We prove how density con-
tractors can be used to compare the Hausdorff mass of chains Theorem 5.11,
and the Hausdorff measure of sets Theorem 5.12. We show that once den-
sity contractors exist in dimension m, the Plateau problem admits MH

minimizers with coefficients in arbitrary locally compact groups of coeffi-
cients that satisfy B. White’s condition stated above, see Theorem 8.1. The
minimizers obtained here, following [2] see Theorem 3.1, are merely locally
rectifiable and we do not know in general whether they may be further
required to be compactly supported, except in the important cases when
m = dimX − 1 or when we assume a uniform lower bound on the norm of
nonzero coefficients in G.

The main concern is indeed to show that MH : Rm(X,G) → R is lower
semicontinuous with respect to convergence in the flat norm. In the spirit
of this introduction, we obtain two proofs of this fact, granted the existence
of density contractors.

(1) In Section 4, we establish a necessary and sufficient condition for
the lower semicontinuity of MH in terms of a triangle inequality of
polyhedral cycles, see Theorem 4.3 and Theorem 4.5. In Section 5,
where the notion of density contractor is introduced, we give a sim-
ple proof that their existence implies this triangle inequality for
cycles, see Theorem 5.3.

(2) In Section 6, we define a new type of integral geometric measure
associated with density contractors, Section 6.3. Rather than inte-
grating the mass of slices as in (1.4), which would correspond to
a measure I m

1 in the notation of [13], we consider a measure ob-
tained from Caratheodory’s method II applied locally to the supre-
mum of the averaged measure of projected sets (averaged and pro-
jected by means of a density contractor), corresponding to I m

∞ in

TOME 73 (2023), FASCICULE 2



640 Thierry DE PAUW & Ioann VASILYEV

the notation of [13]. Rather than essential suprema, we consider
locally actual suprema, thus more in the spirit of the Gross mea-
sure, [13, 2.10.4(1)]. We show that the corresponding newly defined
Gross measure coincides with the Hausdorff measure of rectifiable
sets, see Theorem 6.4. Furthermore, in the spirit of [3] we show
that the corresponding Gross mass defined in Section 7.1 is lower
semicontinuous with respect to flat convergence, Theorem 7.3.

To close this introduction we mention that D. Burago and S. Ivanov
introduced a notion of semi-ellipticity for a density, i.e. a function defined
on a Grassmann cone GC(n,m). This notion depends on the group of
coefficients considered – they consider only subgroups of R, whether R
itself, Z, or Q. For those groups G, semi-ellipticity with respect to G is
equivalent to the triangle inequality for cycles with coefficients in G, see
Definition 4.2. In [4] they establish that if a density is semi-elliptic with
respect to R then it is extendibly convex, i.e. it extends over the whole∧

m Rn to a convex functional. That of course applies to showing our own
lower semicontinuity result in case G = Z or G = Q. Their techniques
do not seem to establish the semi-ellipticity (say in case m = 2 for the
Busemann–Hausdorff density) with respect to all normed Abelian groups
of coefficients – in particular these authors develop an ad hoc proof in
their paper [5] for the special case when G = Z2. The semi-ellipticity for
arbitrary G is one of the results following from the present paper, and the
new notion of density contractor we introduce here.

Groups of coefficients that are not subgroups of R have arisen in many
applications of which we now mention a few. The group G = Z2 corre-
sponds to unorientable surfaces. The group G = Z3 of integers modulo 3
is also useful as mentioned in an example above. All other cyclic groups
Zq might be considered as well. In the context of least energy configura-
tions of immiscible fluids, it is relevant to consider the group G which is a
free Z2 module generated by a finite set, see [23]. The notion of size mini-
mizing current was introduced by F.J. Almgren to model some soap films,
see also H. Federer’s paper [14]. The size norm of a group G is defined by
|g| = 1, if g ̸= 0, and |g| = 0, when g = 0. The group G is there to realize
some boundary condition in the homological sense, whereas the size norm
is considered in order to minimize the volume of the underlying rectifiable
set without taking into account the weight of the coefficients. Existence of
size minimizers is not known in general, but see for instance [18] or [8]. In
case of the Euclidean norm, semi-ellipticity is classically obtained via the
Cauchy–Crofton formula. In optimal transportation theory (and in many
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natural structures such as the human blood vessels system), it has been
argued that paths minimize a cost that takes into account a certain weight
to a power different than 1. This boils down to considering, for instance,
the group of coefficients G = R endowed with the norm G → R : g 7→ |g|α,
for some 0 < α < 1 (the case α = 1 corresponds to usual mass, whereas the
case α = 0 corresponds to size). See for instance [26], or [10] for the case of
higher dimensional surfaces. One may also consider a totally disconnected
group, such as p-adic numbers. All these fall into the context developed in
Geometric Measure Theory in recent years, see for instance [25] or [11].

It is our pleasure to record helpful discussions with Ph. Bouafia and G.
Godefroy.

2. Preliminaries

2.1. Hausdorff distance

If X is a metric space and A,B ⊆ X are compact, we define their Haus-
dorff distance as

distH (A,B) = inf
{
δ > 0 : A ⊆ B(B, δ) and B ⊆ B(A, δ)

}
where B(A, δ) = X∩{x : dist(x,A) ⩽ δ}. The following are rather obvious.

(1) Suppose f, f1, f2, . . . are continuous mappings from X to Y such
that fk → f locally uniformly as k → ∞, and A ⊆ X is compact.
It follows that distH (fk(A), f(A)) → 0 as k → ∞.

(2) Suppose A,A1, A2, . . . are compact subsets of X such that
distH (Ak, A) → 0 as k → ∞, and f : X → Y is continuous.
Then distH (f(Ak), f(A)) → 0 as k → ∞.

Let X be a finite dimensional real linear space. Given a norm ν on X we
let Bν = X∩{x : ν(x) ⩽ 1} denote its unit (closed) ball. If ν1 and ν2 are two
norms on X, we define δ(ν1, ν2) = inf {λ> 0 : Bν1 ⊆λBν2 and Bν2 ⊆λBν1}.
One readily checks that log δ is well defined and a distance on the set of
norms on X. When we will consider a convergent sequence of norms on X
it will be relative to this distance.

(1) Given ν, ν1, ν2, . . . a sequence of norms on X, δ(ν, νj) → 1 as j → ∞
if and only if νj(x) → ν(x) as j → ∞ for every x ∈ X.

This follows from the relation ν(x) = inf{t > 0 : x ∈ tBν} and the fact
that the pointwise convergence of the νj , j = 1, 2, . . ., to ν implies their
uniform convergence on bounded subsets of X, due to their convexity.

(2) Given two norms ν1 and ν2 on X and W ⊆ X a linear subspace,
one has δ(ν1|W , ν2|W ) ⩽ δ(ν1, ν2).

TOME 73 (2023), FASCICULE 2



642 Thierry DE PAUW & Ioann VASILYEV

2.2. Hausdorff outer measures

Given a norm ν on X we associate with it the Hausdorff outer measures
H m

ν , m ∈ {1, . . . ,dimX}, see for instance [13, 2.10.2]. It is the case that
(the restriction to B(X) of) H dim X

ν is a Haar measure on X. It therefore
follows from the uniqueness of Haar measure and the Borel regularity of
Hausdorff measures that if ν1 and ν2 are norms on X then there exists
0 < β(ν1, ν2) < ∞ such that H dim X

ν1
= β(ν1, ν2)H dim X

ν2
. In order to

estimate β(ν1, ν2) in terms of the distance between ν1 and ν2 we recall
the following central result of H. Busemann [6] (see also [17, Lemma 6]
or [22, 7.3.6]):

(2.1) H dim X
ν (Bν) = α(dimX)

is independent of ν. Here α(m) = L m(B(0, 1)) is the Lebesgue measure
of the unit Euclidean ball in Rm, and a constant used in the definition
of H m

ν . The identity α(dimX) = H dim X
ν1

(Bν1) = β(ν1, ν2)H dim X
ν2

(Bν1),
the definition of δ(ν1, ν2) and the homogeneity of Hausdorff measures imply
that

(2.2) δ(ν1, ν2)− dim X ⩽ β(ν1, ν2) ⩽ δ(ν1, ν2)dim X .

We will also use the following observation: H dim X
ν,δ = H dim X

ν for all 0 <
δ ⩽ ∞, where the former are the δ size approximating outer measures.

2.3. Grassmannian

Given X and m ∈ {1, . . . ,dimX − 1} we let Gm(X) denote the set of
m dimensional linear subspaces of X. In order to give Gm(X) a topology
we equip first X with an inner product ⟨·, ·⟩ and corresponding norm | · |.
Given W ∈ Gm(X) we let πW : X → X denote the orthogonal projection
onto W . We then define d(W1,W2) = |||πW1 − πW2 |||, W1,W2 ∈ Gm(X),
where |||·||| is the operator norm. In the remaining part of this paper, an
inner product structure will always be fixed on X.

Let W1,W2, . . . be a sequence in Gm(X). Choose ek
1 , . . . , e

k
n to be an or-

thonormal basis of X such that span{ek
1 , . . . , e

k
m} = Wk. Possibly passing to

a subsequence we may assume ek
j → ej as k → ∞, j = 1, . . . , n, and clearly

e1, . . . , en is an orthonormal basis of X. Define W = span{e1, . . . , em} ∈
Gm(X). Given x ∈ X a simple calculation shows that |(πW − πWk

)(x)| ⩽
|x|
∑n

j=1 |(πW − πWk
)(ej)| ⩽ |x|

∑n
j=1

∣∣ek
j − ej

∣∣. Thus d(W,Wk) → 0.
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2.4. Busemann–Hausdorff density

Now given two norms ν1 and ν2 on X and W ∈ Gm(X) we claim that
there exists 0 < β(ν1, ν2,W ) < ∞ such that

H m
ν1

W = β(ν1, ν2,W )H m
ν2

W.

This is because (the restriction to B(W ) of) H m
νi

W , i = 1, 2, are both
Haar measures on W .

In the remaining part of this paper we will consider a given fixed norm
∥ · ∥ on X. Comparing it with the underlying reference inner product norm
| · |, we define the Busemann–Hausdorff density function ψ : Gm(X) → R
as ψ(W ) = β(∥ · ∥, | · |,W ), corresponding to each m ∈ {1, . . . ,dimX − 1}
(we omit both ∥ · ∥ and m in the notation for ψ). It follows that ψ(W ) is
characterized by the identity H m

∥·∥(W ∩ E) = ψ(W )H m
|·| (W ∩ E) for any

Borel E ⊆ X such that one of the (and therefore both) both measures
appearing there are nonzero and finite. Letting respectively E = B|·| and
E = B∥·∥ and referring to (2.1) we find that

(2.3) ψ(W ) =
H m

∥·∥
(
W ∩B|·|

)
α(m) = α(m)

H m
|·|
(
W ∩B∥·∥

) .
Proposition 2.1. — The Busemann–Hausdorff density ψ : Gm(X) →

R is continuous.

Proof. — Let W,W1,W2, . . . be members of Gm(X) such that Wj → W

as j → ∞. We consider linear isometries fj : ℓm
2 → (X, | · |), j = 1, 2, . . .,

whose range isWj . By compactness a subsequence of f1, f2, . . ., still denoted
f1, f2, . . ., converges pointwise to some linear isometry f : ℓm

2 → (X, | · |).
Since Wj → W as j → ∞ we infer that the range of f is W . Now we
define norms ν, ν1, ν2, . . . on Rm by ν(ξ) = ∥f(ξ)∥ and νj(ξ) = ∥fj(ξ)∥,
ξ ∈ Rm, so that f : (Rm, ν) → (W, ∥ · ∥) and fj : (Rm, νj) → (Wj , ∥ · ∥)
are also isometries. Therefore f∗H m

|·| = H m
|·| W , fj ∗H m

|·| = H m
|·| Wj ,

f∗H m
ν = H m

∥·∥ W and fj ∗H m
νj

= H m
∥·∥ Wj , j = 1, 2, . . .. Since νj → ν

pointwise it follows from (1), p. 641 and (2.2) that βℓm
2

(νj , |·|) → βℓm
2

(ν, |·|)
and hence also βX(∥ · ∥, | · |,Wj) → βX(∥ · ∥, | · |,W ) as j → ∞. As the
argument can be repeated for any subsequence of the original sequence
W1,W2, . . . the proof is complete. □

TOME 73 (2023), FASCICULE 2
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3. Plateau problem

In this section we describe the setting in which we will state the Plateau
problem. Groups of polyhedral, rectifiable and flat chains have been studied
in [11, 13, 16, 24, 25]. We now provide a very quick overview.

3.1. Polyhedral, rectifiable, and flat G chains

We let (G,·) be an Abelian group equipped with a norm · which
turns it into a complete metric space. As before (X, ∥ · ∥) is a finite di-
mensional normed linear space and m ∈ {1, . . . ,dimX − 1}. With an m

dimensional oriented simplex σ in X and a group element g ∈ G we as-
sociate an object gJσK. We consider equivalence classes of formal sums of
these

∑κ
k=1 gkJσkK. The equivalence identifies (−g)J−σK = gJσK (where −σ

has orientation opposite to that of σ) and gJσK =
∑κ

k=1 gJσkK if σ1, . . . , σκ

is a simplicial partition of σ with the same orientation. We let Pm(X,G)
denote the group whose elements are these polyhedral G chains of dimen-
sion m. A boundary operator ∂ : Pm(X,G) → Pm−1(X,G) is defined as
usual. Given P ∈ Pm(X,G) we define its Hausdorff mass by the formula

MH(P ) =
κ∑

k=1

gk
H m

∥·∥(σk) ,

where P =
∑κ

k=1 gkJσkK and the σ1, . . . , σκ are chosen to be nonoverlap-
ping. This definition does not depend upon the choice of such a decompo-
sition of P . If we want to insist that the mass is defined with respect to the
norm ∥ · ∥ we will write MH,∥·∥(P ) instead of MH(P ) to avoid confusion,
as another mass MH,|·|(P ) is readily available as well. Both are equivalent.
The flat norm of P ∈ Pm(X,G) is then defined as

F (P ) = inf
{

MH,|·|(Q)+MH,|·|(R) :
Q∈ Pm(X,G), R∈ Pm+1(X,G)
and P = Q+ ∂R

}
.

The completion of Pm(X,G) with respect to F is the group Fm(X,G)
whose members are called flat G chains of dimension m. One important
feature of this group is that with a Lipschitz map f : X → Y one can
associate a push-forward morphism f# : Fm(X,G) → Fm(Y,G) that
commutes with ∂. The m dimensional Lipschitz G chains of X are then
defined to be the members of Fm(X,G) of the form

∑κ
k=1 fk #Pk where

Pk ∈ Pm(ℓm
∞, G) and fk : ℓm

∞ → X is Lipschitz, k = 1, . . . , κ. One further
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defines the subgroup Rm(X,G) ⊆ Fm(X,G) whose members, called recti-
fiable G chains of dimension m, have compact support and are limits in the
MH norm of sequences of Lipschitz G chains of dimension m. With such
T ∈ Rm(X,G) is associated a countably (H m

∥·∥,m) rectifiable Borel subset
setm ∥T∥ ⊆ X and for almost every x ∈ setm ∥T∥ a so-called G orientation
g(x) which consists of a nonzero group element and an orientation of the
approximate tangent space of setm ∥T∥ at x. The Hausdorff mass of T is
defined as

MH(T ) =
∫

setm ∥T ∥

g(x)
dH m

∥·∥(x) .

The definition is consistent with the previous one in case T is polyhedral.

3.2. Hausdorff mass and lower semicontinuity

The Hausdorff Euclidean mass MH,|·| : Rm(X,G) → R is lower semicon-
tinuous with respect to F convergence whereas the lower semicontinuity
of MH,∥·∥ : Rm(X,G) → R is unknown in general. This is the main topic
of the present paper.

3.3. Locally rectifiable G chains

If T ∈ Fm(X,G) and u : X → R is Lipschitz then the restriction
T {u < r} is defined for L 1 almost every r ∈ R. We here define
Rloc

m (X,G) to be the subgroup of Fm(X,G) of those T such that for
every bounded open set U ⊆ X, letting u(x) = dist(x, U), there exists
R ∈ Rm(X,G) such that T {u < r} = R {u < r} for L 1 almost every
0 < r ⩽ 1. These do not necessarily have compact support. We call these
locally rectifiable G chains of dimension m and we define

MH(T ) = sup
{
MH(R U) : U and R are as above

}
.

One checks this is consistent with the preceding number.

3.4. Compactness

The following is a consequence of the deformation theorem proved in this
context by B. White [24]. If K ⊆ X is compact, λ > 0 and (G,·) is
locally compact then

Fm(X,G) ∩
{
T : suppT ⊆ K and MH,|·|(T ) + MH,|·|(∂T ) ⩽ λ

}
is F compact.
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3.5. White groups

We say that (G,·) is a White group if G does not contain any non-
trivial curve of finite length. Of course if (G,·) is totally disconnected
then it is White, for instance G = Z, G = Zq for any q = 2, 3, . . ., or
G = ZN

2 the Cantor group. The group (R, | · |) is not White, but (R, | · |p)
is whenever 0 < p < 1. The reason for considering those groups is the
following result, see [25] : If (G,·) is a White group, T ∈ Fm(X,G)
and MH,|·|(T ) < ∞ then T ∈ Rm(X,G). The cases G = Z and G = Zq go
back to [13, 4.2.16(3) and 4.2.26]. Together with the preceding number we
obtain the following compactness result: If K ⊆ X is compact, λ > 0 and
(G,·) is locally compact and White then

Rm(X,G) ∩
{
T : suppT ⊆ K and MH,|·|(T ) + M|·|(∂T ) ⩽ λ

}
is F compact.

3.6. Isoperimetric inequality

Here we assume that the group of coefficients G verifies the following
assumption:

(3.1) 0 < inf {
g : g ∈ G and g ̸= 0G} .

If m ⩾ 2 and R ∈ Rm−1(X,G) is so that ∂R = 0, then there exists S ∈
Rm(X,G) with ∂S = R and MH,|·|(S) ⩽ C(m,dimX,

·)MH,|·|(R)
m

m−1 .

The constant C(m,dimX,
·) depends on m, dimX and the infimum

in (3.1). The proof of this isoperimetric inequality is the same as in [13,
4.2.10] with the deformation theorem [13, 4.2.9] replaced with [24].

3.7. Quasiminimizing chains

We say that T ∈ Rloc
m (X,G) is quasiminimizing if there exists C > 0

with the following property. For every closed Euclidean ball K and every
S ∈ Rm(X,G) such that suppS ⊆ K and ∂S = 0 one has MH,|·|(T K) ⩽
CMH,|·|(T K + S).

There exists a constant 0 < η = η(m,dimX,
·) with the following

property. If T ∈ Rloc
m (X,G) is quasiminimizing, x ∈ suppT , r > 0 and

B(x, r) ∩ supp ∂T = ∅ then MH,|·|(T B(x, r)) ⩾ ηrm.
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The proof in case m ⩾ 2 is as in [13, 5.1.6 page 523]. Fix x ∈ suppT .
For each B(x, r) as in the statement we define Tr = T B(x, r). One has
∂Tr = ⟨T, | · |, r⟩ ∈ Rm−1(X,G) for L 1 almost such r, and M(⟨T, u, r⟩) ⩽
f ′(r), where f(r) = M(Tr), according to [13, 4.2.1]. For such r it follows
from the isoperimetric inequality Section 3.6, in case m ⩾ 2, that there ex-
ists T ′

r ∈ Rm(X,G) such that ∂T ′
r = ⟨T, u, r⟩ = ∂Tr and MH,|·|(T ′

r) m−1
m ⩽

σMH,|·|(⟨T, u, r⟩) ⩽ σf ′(r) where σ = C(m,dimX,
·) m−1

m . Pushing for-
ward the chain T ′

r by the nearest point projection on the closed Euclidean
ball B(x, r) one can readily achieve sptT ′

r ⊆ B(x, r). Therefore on letting
Sr = T ′

r −Tr one has ∂Sr = 0, sptSr ⊆ B(x, r). Since T is quasiminimizing,
f(r) = MH,|·|(Tr) ⩽ CMH,|·|(Tr + Sr) = CMH,|·|(T ′

r) ⩽ Cσ
m

m−1 f ′(r)
m

m−1 .
Since x ∈ sptT we notice that f(r) > 0 and the above inequality yields(
f(r) 1

m

)′
⩾ m−1σ−1C

1−m
m . The conclusion then follows on integrating this

inequality and applying [13, 2.9.19] to the nondecreasing function f
1
m .

In the easier case when m = 1 we start by noticing that x ∈ suppT and
B(x, r)∩ supp ∂T = ∅ imply Bdry B(x, ρ)∩ suppT ̸= ∅ for every 0 < ρ < r.
Therefore

MH,|·|(T B(x, r)) =
∫

B(x,r)

g(z)
d(H 1

|·| set1 ∥T∥)(z)

⩾
∫ r

0
dL 1(ρ)

∑
z∈set1 ∥T ∥∩Bdry B(x,ρ)

g(z)
dH 0(z)⩾ εr

where ε is the infimum in (3.1).
We now state a particular Plateau problem: that of minimizing the Haus-

dorff mass in the context of rectifiable G chains in a finite dimensional
normed space.

Theorem 3.1. — Assume that

(A) (X, ∥ · ∥) is a finite dimensional normed space and (G,·) is an
Abelian normed locally compact White group;

(B) 1 ⩽ m ⩽ dimX − 1;
(C) MH : Rm(X,G) → R is lower semicontinuous with respect to F

convergence;
(D) B ∈ Rm−1(X,G) and ∂B = 0.

It follows that the Plateau problem

(P)
{

minimize MH(T ),
among T ∈ Rloc

m (X,G) such that ∂T = B,
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admits a solution. If one further assumes that

0 < inf {
g : g ∈ G and g ̸= 0G}

then each solution of (P) has compact support.
Two comments are in order.
(1) The nontrivial assumption is Item (C), that the Hausdorff mass

be lower semicontinuous. The remaining sections of this paper are
devoted to establishing hypothesis Item (C) in case m = 2 or m =
dimX − 1 and G is arbitrary.

(2) There is another technical problem with applying the direct method
of calculus of variations. In order to apply the compactness theo-
rem 3.5 one would need to exhibit a minimizing sequence supported
in some given compact set. In case X is Euclidean this is done as fol-
lows. If T is such that ∂T = B and suppB ⊆ B(0, R), one considers
the nearest point projection f : X → B(0, R). Since Lip f ⩽ 1 one
has MH(f#T ) ⩽ MH(T ), and also ∂f#T = f#∂T = B. Pushing
forward along f each member of a given minimizing sequence pro-
duces a new minimizing sequence of chains all supported in B(0, R).
In case the norm is not Euclidean this process cannot be repeated
as the map

f : X → B(0, 1) : x 7→

{
x if ∥x∥ ⩽ 1,

x
∥x∥ if ∥x∥ > 1,

has merely Lip f ⩽ 2 and nothing better in general. This leads one
to show that a minimizing sequence is necessarily tight and perform
a diagonal argument as in [2]. Here we are not able to do better in
general except under the extra assumption on the group G stated
at the end of Theorem 3.1, or when m = dimX − 1. In fact in the
last section, see Theorem 9.2, we show that if m = dimX − 1 then
there exists a minimizing chain whose support is contained in the
convex hull of suppB.

Proof. — Let T1, T2, . . . be a minimizing sequence. As in [2, Proof of
Theorem 1.1] we start by showing that this sequence is tight:

(3.2) lim
r→∞

sup
k=1,2,...

MH

(
Tk B∥·∥(0, r)c

)
= 0 .

Let γ = inf(P), ε > 0, α = ε−1 supk=1,2,... MH(Tk − T1) < ∞, choose
r > 0 such that MH

(
T1 B∥·∥(0, r)c

)
⩽ ε and choose h > 0 such that

(3.3) α <

∫ r+h

r

r−1dL 1(r) .
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Fix k = 1, 2, . . .. Since

(3.4)
∫ r+h

r

MH(⟨Tk − T1, ∥ · ∥, ρ⟩)dL 1(ρ) ⩽ 2Cm,1MH(Tk − T1)

according to [11, 3.7.1(9)], there exists r ⩽ rk ⩽ r+h such that ⟨Tk −T1, ∥·
∥, rk⟩ ∈ Rm−1(X,G) and

(3.5) MH(⟨Tk − T1, ∥ · ∥, rk⟩) ⩽ r−1
k 2Cm,1MH(Tk − T1)α−1 ,

for if not the combination of (3.3) and (3.4) would lead to a contradiction.
Letting Sk = δ0 ×× ⟨Tk −T1, ∥ · ∥, rk⟩ ∈ Rm(X,G) we recall that MH(Sk) ⩽
2C ′

mrkMH(⟨Tk − T1, ∥ · ∥, rk⟩) ⩽ 4C ′
mCm,1ε (see for instance [9, §2.5]) and

∂Sk = ⟨Tk−T1, ∥·∥, rk⟩ since ∂⟨Tk−T1, ∥·∥, rk⟩ = −⟨∂(Tk−T1), ∥·∥, rk⟩ = 0.
Since also ⟨Tk −T1, ∥·∥, rk⟩ = ∂(Tk −T1) B∥·∥(0, rk) we see that ∂Rk = B,
where Rk = (Tk −T1) B∥·∥(0, rk)+T1 −Sk. Therefore γ ⩽ MH(Rk). Now
Rk = Tk B∥·∥(0, rk) + T1 B∥·∥(0, rk)c − Sk and accordingly

γ ⩽ MH(Rk)
⩽ MH

(
Tk B∥·∥(0, r + h)

)
+ MH

(
T1 B∥·∥(0, r)c

)
+ MH(Sk)

⩽ MH(Tk) − MH

(
Tk B∥·∥(0, r + h)c

)
+ (1 + 4C ′

mCm,1)ε .
(3.6)

Choosing k0 such that MH(Tk) − γ ⩽ ε whenever k ⩾ k0 it follows that

(3.7) sup
k=k0,k0+1,...

MH

(
Tk B∥·∥(0, r + h)c

)
⩽ (2 + 4C ′

mCm,1)ε .

As limρ→∞ MH

(
Tk B∥·∥(0, ρ)c

)
= 0 for each k = 1, . . . , k0 − 1 it readily

follows that

(3.8) lim sup
ρ→∞

sup
k=1,2,...

MH

(
Tk B∥·∥(0, ρ)c

)
⩽ (2 + 4C ′

mCm,1)ε .

Since ε > 0 is arbitrary (3.2) is established.
We consider all j = 1, 2, . . . large enough for suppB ⊆ U∥·∥(0, j). Ap-

plying inductively the compactness theorem to suitable subsequences of(
Tk B∥·∥(0, j)

)
k

the diagonal argument yields one subsequence of (Tk)k,
still denoted as such, and one sequence (T̂j)j of members of Rm(X,G) such
that F

(
T̂j − Tk B∥·∥(0, j)

)
→ 0 as k → ∞, for every j. We show that

(T̂j)j is F Cauchy. Given ε > 0 we choose r > 0 such that the supremum
in (3.2) is bounded above by ε. Given j1, j2 larger than r, there exists ki,
i = 1, 2, such that F

(
T̂ji

− Tk B∥·∥(0, ji)
)

⩽ ε whenever k ⩾ ki. For
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k = max{k1, k2} we thus have

F
(
T̂j1 − T̂j2

)
⩽ F

(
T̂j1 − Tk B∥·∥(0, j1)

)
+ F

(
Tk B∥·∥(0, j1) − Tk B∥·∥(0, j2)

)
+ F

(
Tk B∥·∥(0, j2) − T̂j2

)
⩽ 3ε .

Let T ∈ Fm(X,G) be the F limit of this sequence. Given a bounded open
subset U ⊆ X, u(x) = dist∥·∥(U, x), and r0 > 0 we select j0 sufficiently
large for B∥·∥(U, r0) ⊆ U∥·∥(0, j0). We first recall that for L 1 almost every
0 < r ⩽ r0 one has F

(
T {u < r} − T̂j {u < r}

)
→ 0 as j → ∞,

[11, 5.2.3(2)]. Furthermore if j ⩾ j0 then T̂j {u < r} = T̂j0 {u < r}
by the definition of T̂j . Therefore T {u < r} = T̂j0 {u < r}, and thus
T ∈ Rloc

m (X,G). Now clearly ∂T̂j = B for each j and thus ∂T = B. Finally
it remains to show that MH(T ) ⩽ γ. Let U ⊆ X be open and bounded
and choose j0 such that B∥·∥(U, 1) ⊆ U∥·∥(0, j0). Now if R ∈ Rm(X,G) is
so that R {u < r} = T {u < r} for almost every 0 < r ⩽ 1 then also
R {u < r} = T̂j0 {u < r} for such r. Therefore

MH(R U) ⩽ MH

(
T̂j0

)
⩽ lim inf

k
MH

(
Tk B∥·∥(0, j0)

)
⩽ γ ,

according to hypothesis (C). Since U is arbitrary we conclude that

MH(T ) = γ.

We now turn to proving that each solution T of the optimization problem
(P) has compact support in case G verifies (3.1). Since the norms | · | and
∥·∥ are equivalent, we note that T is a quasiminimizing chain (with respect
to the Euclidean Hausdorff mass, Section 3.7). Assume if possible that
suppT ∼ B(supp(∂T ), 1) is not totally bounded. There would exist 0 <

r < 1 and a sequence x1, x2, . . . in suppT such that B(xk, r)∩ supp ∂T = ∅
for each k = 1, 2, . . ., and |xk − xk′ | > 2r whenever k ̸= k′. For every
κ = 1, 2, . . . one has γ = MH,|·|(T ) ⩾

∑κ
k=1 MH,|·|(T B(xk, r)) ⩾ κηrm

according to Section 3.7, thus r = 0, a contradiction. □

4. A general criterion for lower semicontinuity

We will need the following technical fact. Given T, T1, T2, . . . in Fm(X,G)
we say that T1, T2, . . . converges rapidly to T if

∑
j F (Tj − T ) < ∞. Of
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course any convergent sequence admits a rapidly convergent subsequence.
The following is a consequence for instance of [11, 5.2.1(3)].

Proposition 4.1. — Assume that T, T1, T2, . . . belong to Fm(X;G)
and that (Tj)j converges rapidly to T . If u : X → R is Lipschitzian then
F (T {u > r} − Tj {u > r}) → 0 as j → ∞, for almost every r ∈ R.

Definition 4.2. — We say that the triple
(
(X, ∥ · ∥), (G,·),m

)
sat-

isfies the triangle inequality for cycles whenever the following holds. For
every integer κ ⩾ 2, every oriented simplexes σ1, . . . , σκ of dimension m in
X and every g1, . . . , gκ ∈ G, if ∂

∑κ
k=1 gkJσkK = 0 then

MH(g1Jσ1K) ⩽
κ∑

k=2
MH(gkJσkK) .

Theorem 4.3. — The following are equivalent.
(1) The triple

(
(X, ∥ · ∥), (G,·),m

)
satisfies the triangle inequality

for cycles.
(2) The Hausdorff mass MH : Pm(X;G) → R+ is lower semicontinu-

ous with respect to F convergence.

Proof. — In order to establish that (1) ⇒ (2) we let P, P1, P2, . . . be-
long to Pm(X;G) and be such that F (P − Pj) → 0 as j → ∞. Thus
P − Pj = Qj + ∂Rj , Qj ∈ Pm(X;G), Rj ∈ Pm+1(X;G) and MH(Qj) +
MH(Rj) → 0 as j → ∞. Considering first the case when P = gJσK, we
notice that ∂(P −Pj −Qj) = ∂(∂Rj) = 0 whence MH(P ) ⩽ MH(Pj +Qj)
follows from hypothesis (1) for all j = 1, 2, . . .. Accordingly, MH(P ) ⩽
lim infj MH(Pj + Qj) = lim infj MH(Pj). Turning to the general case we
write P =

∑κ
k=1 gkJσkK where the σk are nonoverlapping. Letting Wk ∈

Gm(X) have a translate containing σk, we define Uk = Conv (̊σk ∪(xk +Vk))
where σ̊k is the relative interior of σk, xk is the barycenter of σk and
Vk is a convex polyhedral neighborhood of zero in some complementary
subspace of Wk. Choosing those Vk small enough we can assume that
U1, . . . , Uκ are pairwise disjoint. We next define uk = dist(·, U c

k). We ob-
serve that (A) the sets σk ∩ {uk > r} are simplicial (i.e. of the type
σk,r) and (B) the sets {uk > r} are (convex open) polyhedra. Given
ε > 0 we choose ρ > 0 such that H m(σk ∩ {uk ⩽ r}) ⩽ εκ−1gk

−1

whenever 0 < r ⩽ ρ and k = 1, . . . , κ, whence also MH(P ) ⩽ ε +∑κ
k=1 MH(P {uk > r}). Replacing the original sequence (Pj)j by a sub-

sequence if necessary we may assume that lim infj MH(Pj) = limj MH(Pj)
and that (Pj)j converges rapidly to P . Thus there exists 0 < r ⩽ ρ

such that F (P {uk > r} − Pj {uk > r}) → 0 as j → ∞ for each
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k = 1, . . . , κ according to Proposition 4.1. It then follows from observa-
tions Item (A) and Item (B) above, and from the first case of this proof,
that

MH(P {uk > r}) ⩽ lim inf
j

MH(Pj {uk > r}) .

In turn,

MH(P ) − ε ⩽
κ∑

k=1
MH(P {uk > r}) ⩽

κ∑
k=1

lim inf
j

MH(Pj {uk > r})

⩽ lim inf
j

κ∑
k=1

MH(Pj {uk > r}) ⩽ lim
j

MH(Pj) .

Since ε > 0 is arbitrary the proof is complete.
We prove (2) ⇒ (1) by contraposition. Let σ1, . . . , σκ be simplexes in X

and g1, . . . , gκ be elements of G such that

(4.1) η := MH(g1Jσ1K) −
κ∑

k=2
MH(gkJσkK) > 0

and ∂(P − Q) = 0 where we have abbreviated P = g1Jσ1K and Q =∑κ
k=2 gkJσkK. There is no restriction to assume that σ1 does not overlap

any of the σk, k = 2, . . . , κ. If indeed σ1 and some σk overlap then we re-
place the summand gkJσkK in Q by a sum Sk,δ =

∑m
i=0 gkδpk,δ

×× JτiK where
τi runs over the facets of σk (properly oriented so that the cycle condi-
tion is preserved) and where pk,δ belongs to X, but not to the affine plane
containing σk, and is a distance δ apart from (say) the barycenter of σ̊k.
It follows from Proposition 2.1 that MH(Sk,δ) → MH(gkJσkK) as δ → 0.
Thus (4.1) is preserved upon choosing δ > 0 small enough, and clearly the
new simplexes replacing σk do not overlap σ1.

Let x0, x1, . . . , xm ∈ X be such that Jσ1K = Jx0, x1, . . . , xmK. For an in-
teger j we define Ij = Nm ∩ {(α1, . . . , αm) : α1 + . . . + αm ⩽ j − 1} and
corresponding to each α ∈ Ij we define an affine bijection fj,α : X → X by
the formula

fj,α(x) =
(
x0 +

m∑
i=1

αi

(
xi − x0

j

))
+ x− x0

j
,

and we notice that Lip fj,α = j−1 and that

MH(fj,α #g1Jσ1K) = j−mMH(g1Jσ1K).
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We introduce

Pj = P +
∑
α∈Ij

fj,α #(Q− P ) ∈ Pm(X;G) .

Since ∂(Q− P ) = 0 there exists R ∈ Pm+1(X;G) such that Q− P = ∂R.
Therefore

F (Pj − P ) = F

∂ ∑
α∈Ij

fj,α #R

 ⩽ MH

∑
α∈Ij

fj,α #R


⩽ (card Ij) max

α∈Ij

(Lip fj,α)m+1MH(R) ⩽ jm

(
1
j

)m+1
MH(R) ,

whence F (Pj − P ) → 0 as j → ∞. In order to estimate the mass of Pj we
note that

Pj = P −
∑
α∈Ij

fj,α #P +
∑
α∈Ij

fj,α #Q

and that the fj,α #P are nonoverlapping subchains of P . Therefore

MH(Pj) ⩽ MH(P ) −
∑
α∈Ij

MH (fj,α #P ) +
∑
α∈Ij

MH (fj,α #Q)

⩽ MH(P )
(

1 −
(

1
j

)m

(card Ij)
)

+ MH(Q)
(

1
j

)m

(card Ij)

= MH(P ) − η

(
1
j

)m

(card Ij) .

Since limj(card Ij)j−m = 1/2 we infer that

lim inf
j

MH(Pj) ⩽ MH(P ) − η

2 < MH(P ) . □

We will need two versions of approximation of rectifiable G chains. One
is established in [9, Theorem 4.2] and the other one is below.

Theorem 4.4 (Approximation Theorem). — Let T ∈ Rm(X,G) and
ε > 0. There exist P ∈ Pm(X,G) and f : X → X a diffeomorphism of
class C1 with the following properties:

(1) max{Lip∥·∥(f),Lip∥·∥(f−1)} ⩽ 1 + ε;
(2) ∥f(x) − x∥ ⩽ ε for every x ∈ X;
(3) f(x) = x whenever dist∥·∥(x, suppT ) ⩾ ε;
(4) MH(P − f#T ) ⩽ ε.
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There are three minor differences with [13, 4.2.20] which require some
comments: the coefficients group G is not necessarily Z; we merely hypoth-
esize that T be rectifiable (thus ∂T could have infinite mass and conclu-
sion (4) does not involve the normal mass); and our conclusions involve
the ∥ · ∥ metric in the ambient space X (of course that would not seriously
affect conclusions (2), (3) and (4) but there is something to say about
conclusion (1)).

Sketch of proof. — The proof uses [13, 3.1.23] whose only metric aspects
regard the Lipschitz constants of f and f−1, and the balls U(b, r) and
U(b, tr). We fix a Euclidean structure | · | on X. A careful inspection of
the proof of [13, 3.1.23] reveals that it holds with Euclidean balls U(b, r)
and U(b, tr) unchanged and Lipschitz constants Lip∥·∥(f) and Lip∥·∥(f−1)
with respect to the ambient norm ∥ · ∥. Indeed bounding from above these
Lipschitz constants involves only estimating the operator norm of Df(x)−
idX ; this requires an extra factor accounting for the fact ∥ · ∥ and the
Euclidean norm are equivalent, which can be absorbed in the definition
of ε.

The remaining part of the proof mimics that of [13, 4.2.19]. We let ∥T∥ =g
H m

∥·∥ A, A = setm ∥T∥. As A is countably (H m
|·| ,m) rectifiable there

exist (at most) countably many m dimensional C1 submanifolds Mj of X,
j ∈ J , such that ∥T∥(Rn ∼ ∪j∈JMj) = 0. We classically check that for
∥T∥ almost every x ∈ Rn there exists j(x) ∈ J such that x ∈ Mj(x) and
Θm(∥T∥ (Rn ∼ Mj(x)), x) = 0. Given ε̂ > 0, for all such x there exists
r(x) > 0 such that for each 0 < r < r(x)

(A) the above version of [13, 3.1.23] applies with t = (1 + ε̂)−1 at scale
r and point x to Mj(x);

(B) MH

(
T B(x, tr) − T Mj(x) ∩ B(x, tr)

)
⩽ ε̂MH (T B(x, tr));

(C) MH (T B(x, tr) − T B(x, r)) ⩽ 2C(1 − tm)MH (T B(x, r))
(where C > 0 is such that H m

∥·∥ ⩽ CH m
|·| ).

According to the Besicovitch–Vitali covering Theorem there exists a dis-
jointed family of balls B(xk, rk), k = 1, 2, . . ., whose centers are as before
and 0 < rk < r(xk), and ∥T∥(Rn ∼ ∪∞

k=1B(xk, rk)) = 0. Thus ∥T∥(Rn ∼
∪κ

k=1B(xk, rk)) ⩽ ε̂ for some κ. For each k = 1, . . . , κ we associate with
t = 1 − ε̂, Mj(xk), xk and rk the C1 diffeomorphism fk of X according to
(the above version of) Proposition [13, 3.1.23], and we infer from its last
conclusion that fk #(T Mj(xk) ∩ B(xk, trk)) is an m dimensional G chain
supported in an affinem dimensional subspace ofX and thus corresponds to
aG valued L1 function, therefore MH(fk #(T Mj(xk)∩B(xk, trk))−Pk) ⩽
ε̂κ−1 for some Pk ∈ Pm(X,G) as in [12, Lemma 3.2]. Letting f : X → X
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coincide with fk in the ball B(xk, rk), k = 1, . . . , κ, and with idX otherwise,
one readily checks that conclusions (1), (2) and (3) hold. Finally,

MH(P − f#T ) ⩽
κ∑

k=1
MH

(
Pk − fk #(T Mj(xk) ∩ B(xk, rk))

)
+

κ∑
k=1

MH

(
T B(xk, trk) − T Mj(xk) ∩ B(xk, trk)

)
+ MH (f#T (Rn ∼ ∪κ

k=1B(xk, rk)))
⩽ ε̂+ ε̂(1 + ε̂)mMH(T ) + (1 + ε̂)mε̂ . □

The following is inspired by the proof of [13, 5.1.5].

Theorem 4.5. — The following are equivalent.
(1) The triple

(
(X, ∥ · ∥), (G,·),m

)
satisfies the triangle inequality

for cycles.
(2) The Hausdorff mass MH : Rm(X;G) → R+ is lower semicontinu-

ous with respect to F convergence.

Proof. — That (2) ⇒ (1) follows from Theorem 4.3. We now prove the
reciprocal proposition holds. Let T, T1, T2, . . . be members of Rm(X,G)
such that F (T − Tj) → 0 as j → ∞. We first establish the conclusion in
the particular case when T ∈ Pm(X,G) is polyhedral. According to [9,
Theorem 4.2] there are Pj ∈ Pm(X,G) such that F (Tj − Pj) ⩽ j−1 and
MH(Pj) ⩽ j−1+MH(Tj), j = 1, 2, . . .. Therefore F (T−Pj) → 0 as j → ∞
and it follows from Theorem 4.3 that

MH(T ) ⩽ lim inf
j

MH(Pj) ⩽ lim inf
j

MH(Tj) .

Turning to the general case we associate with T and ε > 0 a polyhe-
dral chain P and a C1 diffeomorphism f as in Theorem 4.4. Letting E ∈
Rm(X,G) be such that P = f#T +E we see that MH(E) ⩽ ε. Observing
that F (f#T − f#Tj) → 0 as j → ∞) we infer that also F (P − (E +
f#Tj)) → 0 as j → ∞ and thus

MH(P ) ⩽ lim inf
j

MH(E + f#Tj) ⩽ ε+ (1 + ε)m lim inf
j

MH(Tj)

according to the particular case treated first. Now since T = (f−1)#(P−E)
we conclude that

MH(T ) ⩽ (1 + ε)mMH(P − E)

⩽ (1 + ε)m

(
2ε+ (1 + ε)m lim inf

j
MH(Tj)

)
.

As ε > 0 is arbitrary the proof is complete. □
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5. Density contractors

5.1. Spaces of linear homomorphisms

We let Hom(X,X) denote the linear space of linear homomorphisms
X → X. It is equipped with its usual norm |||π||| = max{|π(x)| : x ∈
X and |x| ⩽ 1} corresponding to the Euclidean norm | · | of X.

Given m ∈ {1, . . . ,dimX − 1} we define the metric subspace

Homm(X,X) = Hom(X,X) ∩ {π : rank π ⩽ m}

which is closed, as well as its own subspace

Homm,inv(X,X) = Homm(X,X) ∩ {π : rank π = m}

which is relatively open. We further define the map

Homm,inv(X,X) → Gm(X) : π 7→ Wπ

so that im π = Wπ and we claim it is continuous. Indeed if π, π1, π2, . . .

belong to Homm,inv(X,X), πk → π and im πk = Wk then we choose or-
thonormal bases ek

1 , . . . , e
k
n of X such that span{ek

1 , . . . , e
k
m} = Wk. Each

subsequence of these bases admits a subsequence (still denoted the same
way) such that ek

j → ej as k → ∞, j = 1, . . . , n, where e1, . . . , en is
some orthonormal basis of X. Given x ∈ X write πk(x) =

∑m
j=1 t

k
j e

k
j

with
∑m

j=1(tkj )2 ⩽ |x|2Γ2 where Γ = supk|||πk||| < ∞. If i = m + 1, . . . , n
then ⟨ei, π(x)⟩ = limk⟨ei, πk(x)⟩ = limk

∑m
j=1 t

k
j ⟨ei, e

k
j ⟩ = 0. Therefore

im π ⊆ span{em+1, . . . , en}⊥ = W where W = span{e1, . . . , em}. Since
rank π = m we infer im π = W . As d(W,Wk) → 0 according to Section 2.3,
the asserted continuity follows.

Finally, corresponding to W ∈ Gm(X) we define

Hom(X,W ) = Hom(X,X) ∩ {π : im π ⊆ W}.

Proposition 5.1. — Let A ⊆ X be such that H m
∥·∥(A) < ∞ and define

fA : Homm(X,X) → R by the formula fA(π) = H m
∥·∥(π(A)). It follows

that
(1) If A is compact then fA is upper semicontinuous;
(2) If A is compact and convex then fA is continuous;
(3) If A is Borel then fA is Borel.
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Proof.
(1). — We start with the following remark. Given π ∈ Homm(X,X)

let W ∈ Gm(X) be such that im π ⊆ W . Observe that in the definition
of H m

∥·∥,δ(π(A)), 0 < δ ⩽ ∞, one can restrict to covers of π(A) by sub-
sets of W . By means of a linear homomorphism W → Rm one transforms
this number to the H m

ν,δ measure of a subset of Rm with respect to some
norm ν in Rm, therefore H m

∥·∥,δ(π(A)) = H m
∥·∥(π(A)) according to Sec-

tion 2.2. We let δ = ∞. Consider a sequence π1, π2, . . . in Homm(X,X)
converging to π. Letting ε > 0 we choose a cover (Ei)i∈I of π(A) such
that

∑
i∈I α(m)2−m(diam∥·∥ Ei)m < ε + H m

∥·∥,∞(π(A)). Notice there is
no restriction to assume the Ei are open in X. Define E = ∪i∈IEi and
observe the compactness of π(A) implies there exists r > 0 such that
U(π(A), r) ⊆ E. Now if k is sufficiently large then πk(A) ⊆ U(π(A), r) ⊆
∪i∈IEi – because πk(A) → π(A) in Hausdorff distance according to Sec-
tion 2.1(1) – therefore H m

∥·∥,∞(πk(A)) ⩽
∑

i∈I α(m)2−m(diam∥·∥ Ei)m <

ε+ H m
∥·∥,∞(π(A)). By our initial remark it follows that

lim sup
k

H m
∥·∥(πk(A)) ⩽ ε+ H m

∥·∥(π(A)).

Since ε > 0 is arbitrary the proof of (1) is complete.

(3). — Choose a nondecreasing sequence of compact subsets of A, say
A1, A2, . . . such that H m

∥·∥(A ∼ Aj) → 0. Given π ∈ Homm(X,X) we notice
that

0 ⩽ H m
∥·∥(π(A)) − H m

∥·∥(π(Aj)) = H m
∥·∥(π(A) ∼ π(Aj))

⩽ H m
∥·∥(π(A ∼ Aj))

⩽ (Lip∥·∥ π)mH m
∥·∥(A ∼ Aj) → 0 .

In other words fAj → fA pointwise. Since each fAj is upper semicontinuous
according to (1) the conclusion follows.

(2). — Since fA is upper semicontinuous according to (1) it remains to
establish it is lower semicontinuous as well. We start with the particular
case when the norm ∥ · ∥ = | · | is Euclidean. Let π, π1, π2, . . . be members
of Homm(X,X) such that πk → π. Choose W ∈ Gm(X) with im π ⊆ W

and let πW denote the orthogonal projection onto W . Since πk(A) → π(A)
in Hausdorff distance, Section 2.1(1), πW (πk(A)) → πW (π(A)) as well,
Section 2.1(2). Furthermore πW (π(A)) = π(A). Recall that any Haar mea-
sure on W , restricted to the collection of compact convex subsets of W ,
is continuous with respect to Hausdorff distance, [13, 3.2.36]. Therefore
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limk H m
|·| (πW (πk(A)) = H m

|·| (π(A)). Since we are in the Euclidean set-
ting, H m

|·| (πW (πk(A)) ⩽ |||πW |||mH m
|·| (πk(A)) = H m

|·| (πk(A)), and finally
H m

|·| (π(A)) ⩽ lim infk H m
|·| (πk(A)) which completes the proof in case ∥·∥ =

| · |.
We now turn to the general case. If rank π < m then clearly H m

∥·∥(π(A)) =
0 ⩽ lim infk H m

∥·∥(πk(A)). We henceforth assume that rank π = m and thus
also rank πk = m if k is sufficiently large. Recalling that H m

∥·∥(π(A)) =
β(∥ · ∥, | · |,Wπ)H m

|·| (π(A)) = ψ(Wπ)H m
|·| (π(A)) the lower semicontinuity

in the variable π follows from the particular case, from the continuity of
π 7→ Wπ, Section 5.1 and from the continuity of ψ, Proposition 2.1. □

Definition 5.2. — A density contractor on W ∈ Gm(X) is a Borel
probability measure µ on Homm(X,X) such that

(1) µ is supported in Hom(X,W ), i.e.

µ(Homm(X,X)∼Hom(X,W )) = 0;

(2) If V ∈ Gm(X) and A ⊆ V is Borel then∫
Homm(X,X)

H m
∥·∥(π(A))dµ(π) ⩽ H m

∥·∥(A) ,

with equality when V = W .
When there will be several norms under consideration on X, in order to
avoid confusion we will insist that µ is a density contractor on W with
respect to H m

∥·∥.

In view of the preceding section, density contractors are useful for the
following reason.

Theorem 5.3. — Assume that (X, ∥ · ∥) and m ∈ {1, . . . ,dimX − 1}
have the following property: Every W ∈ Gm(X) admits a density contrac-
tor with respect to H m

∥·∥. It follows that for every complete normed Abelian
group (G,·) the triple

(
(X, ∥ · ∥), (G,·),m) satisfies the triangle in-

equality for cycles.

Proof. — Let P =
∑κ

k=1 gkJσkK ∈ Pm(X,G), with the σ1, . . . , σκ non-
overlapping. Since the statement to check is invariant under translation of
P we may assume 0 belongs to the support of g1Jσ1K. Let π ∈ Hom(X,W )
where W ∈ Gm(X) is the m dimensional subspace of X containing σ1. Now
π#P ∈ Pm(W,G), ∂π#P = 0 and π#P has compact support. Applying
the Constancy Theorem [12, Theorem 6.2] with a large m cube Q ⊆ W
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such that spt(π#P ) ⊆ intQ we find that π#P = 0. Therefore

g1Jπ(σ1)K = π#(g1Jσ1K) = −π#

κ∑
k=2

gkJσkK = −
κ∑

k=2
gkJπ(σk)K .

The triangular inequality for MH thus impliesg1
H m

∥·∥(π(σ1)) = MH(g1Jπ(σ1)K)

⩽
κ∑

k=2
MH(gkJπ(σk)K) =

κ∑
k=2

gk
H m

∥·∥(π(σk)) .

Now let µ be a density contractor for W . Integrating the above inequality
with respect to µ yields the sought for inequality:

MH(g1Jσ1K) =
g1

H m
∥·∥(σ1) =

g1
∫

Homm(X,X)
H m

∥·∥(π(σ1))dµ(π)

⩽
κ∑

k=2

gk
∫

Homm(X,X)
H m

∥·∥(π(σk))dµ(π)

⩽
κ∑

k=2

gk
H m

∥·∥(σk) =
κ∑

k=2
Mh(gkJσkK) . □

Remark 5.4. — The following are two trivial cases of existence of density
contractors. We recall that if π : X → W is Lipschitzian then H m

∥·∥(π(A)) ⩽
(Lipπ)mH m

∥·∥(A), for every A ⊆ X, where the Lipschitz constant Lipπ is
with respect to the norm ∥·∥ of X and W . Thus in case π is a projector onto
W (i.e. π|W = idW ) and Lipπ = 1 then δπ is readily a density contractor
on W .

(1) If the norm ∥ · ∥ = | · | is Euclidean and m is arbitrary then the
orthogonal projector π : X → W verifies the above condition.

(2) If the norm ∥·∥ is arbitrary and m = 1 then there exists a projector
π : X → W with Lipπ = 1. Indeed letting w be a unit vector
spanning W , we choose α ∈ X∗ such that Lipα = 1 and α(w) = 1,
according to Hahn’s theorem, and we define π(x) = α(x)w.

There does not always exist a projector π : X → W with Lip = 1, even
when m + 1 = dimX = 3. For instance when X = ℓ3

∞ and W = X ∩
{(x1, x2, x3) : x1 + x2 + x3 = 0} any projector π : X → W has Lipπ ⩾
1+1/7. This does not rule out the possibility that there be a projector onto
W that decreases the area H 2

∥·∥∞
; such projector actually exists according

to the following classical result of H. Busemann.

Theorem 5.5 (Busemann, 1949). — Let m = dimX − 1. For every
W ∈ Gm(X) there exists a projector π onto W with the following property.
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For every V ∈ Gm(X) and every Borel set A ⊆ V one has H m
∥·∥(π(A)) ⩽

H m
∥·∥(A).

In fact H. Busemann shows that the function

X → R : u 7→ |u|α(m)
H m

|·|
(
B∥·∥ ∩ span{u}⊥

)
is convex (hence a norm on X), see [7] or [22, §7.1]. The existence of the
projector then follows for instance as in [1, Theorem 4.13].

Theorem 5.6 (Burago–Ivanov [5]). — Let m = 2 and assume the norm
∥ · ∥ is crystalline(2) . Given W ∈ G2(X) we let u1, . . . , u2p denote a collec-
tion of distinct unit vectors in W , numbered in consecutive order, such that
−ui = up+i for each i = 1, . . . , p, and containing all the vertices of the poly-
gon W ∩ B∥·∥. Let αi ∈ X∗ be a supporting functional of B∥·∥ such that
αi|Conv{ui,ui+1} = 1 and λi = 2H 2

|·|(W ∩ B∥·∥)−1H 2
|·|(Conv{0, ui, ui+1}),

i = 1, . . . , p. Define ω ∈
∧2

X by the formula

ω = α(2)
∑

1⩽i<j⩽p

λiλj .αi ∧ αj .

It follows that for every V ∈ G2(X) one has

|ω(v1 ∧ v2)| ⩽ α(2)
∑

1⩽i<j⩽p

λiλj |⟨αi ∧ αj , v1 ∧ v2⟩| ⩽ ψ(V )

where v1, v2 is an orthonormal basis of V , with both inequalities becoming
equalities when V = W .

This is the main result of [5] (see the discussion at the beginning of
Section 2 and Proposition 2.2 therein). We should point out that our for-
mulation differs from that in [5] in two respects: First, we stress the mid-
dle inequality in the conclusion; Second, there may be more unit vectors
u1, . . . , u2p in our statement than there are vertices of W ∩B∥·∥ but same
argument as in [5] applies in this slightly more general situation (which is
needed in the proof of Theorem 5.9). We now proceed to showing how it
leads to the existence of density contractors in case m = 2. We start with
two easy and useful observations.

Proposition 5.7. — Let µ be a Borel probability measure on
Homm(X,X), W ∈ Gm(X), and assume µ is supported in Hom(X,W ).
The following are equivalent.

(1) µ is a density contractor on W ;

(2) i.e. its unit ball B∥·∥ is a polytope
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(2) For every V ∈ Gm(X) there exists some Borel subset A ⊆ V with
0 < H m

∥·∥(A) < ∞ and∫
Homm(X,X)

H m
∥·∥(π(A))dµ(π) ⩽ H m

∥·∥(A) ,

with equality when V = W ;
(3) For every V ∈ Gm(X) there exists some Borel subset A ⊆ V with

0 < H m
|·| (A) < ∞ and∫
Homm(X,X)

H m
|·| (π(A))dµ(π) ⩽ ψ(V )

ψ(W )H m
|·| (A) ,

with equality when V = W .

Proof. — Recalling that H m
∥·∥(E) = ψ(V )H m

|·| (E) whenever E ⊆ V ∈
Gm(X) and E is Borel, we infer at once that µ is a density contractor on
W if and only if the condition in (3) holds for every Borel A ⊆ V . Thus
clearly (3) is a consequence of (1), and is equivalent to (2). In order to
establish that (2) implies (1) we fix V ∈ Gm(X) and we define

ϕ(A) =
∫

Hom(X,W )
H m

∥·∥(π(A))dµ(π) ,

A ∈ B(V ), where B(V ) is the σ-algebra consisting of Borel subsets of
V . We must show that if ϕ(A) ⩽ H m

∥·∥(A) (resp. ϕ(A) = H m
∥·∥(A) when

V = W ) for some A ∈ B(V ) such that 0 < H m
|·| (A) < ∞ then it holds for

all A ∈ B(V ). We define

GW,V = Hom(X,W ) ∩ {π : π | V is injective} .

Clearly GW,V is an open subset of Hom(X,W ) and H m
∥·∥(π(A)) = 0 when-

ever π ̸∈ GW,V . When π ∈ GW,V we abbreviate ϕπ(A) = H m
∥·∥(π(A)). Since

π|V is a homeomorphism from V to W it follows that ϕπ is a measure on
B(V ). Since ϕ(A) =

∫
GW,V

ϕπ(A)dµ(π), it ensues from the monotone con-
vergence theorem that ϕ is a measure as well on B(V ). If h ∈ V and
π ∈ Hom(X,W ) then ϕπ(A + h) = ϕπ(A) because π is linear and H m

∥·∥ is
translation invariant. Therefore ϕ is also translation invariant. Now either
ϕ = 0 and there is nothing to prove or ϕ is one of Haar measures on V and
the conclusion follows from their uniqueness up to a multiplicative factor,
because (the restriction to B(V ) of) H m

∥·∥ is also a Haar measure on V . □

In our next observation we consider density contractors with respect to a
sequence of norms on X. Rather than using the ambiguous notation ∥ · ∥j ,
j = 1, 2, . . . for a sequence of norms, we prefer using νj , j = 1, 2, . . ..
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Proposition 5.8. — Let ν, ν1, ν2, . . . be a sequence of norms on X, let
W ∈ Gm(X) and let µ1, µ2, . . ., be a sequence of probability measures on
Homm(X,X) all supported in Hom(X,W ). We assume that

(1) Each µk is a density contractor on W with respect to H m
νk

, k =
1, 2, . . .;

(2) νk → ν as k → ∞;
(3) The sequence µ1, µ2, . . . is uniformly tight, i.e.

lim
n→∞

sup
k=1,2,...

µk (Hom(X,W ) ∩ {π : |||π||| ⩾ n}) = 0 ;

(4) There exists a compact convex set A ⊆ W such that 0 < H m
|·| (A)

and

lim
n→∞

sup
k=1,2,...

∫
Hom(X,W )∩{π:|||π|||⩾n}

H m
νk

(π(A))dµk(π) = 0 .

It follows that there exists a density contractor on W with respect to H m
ν .

Proof. — We first notice that µ1, µ2, . . . admits a subsequence (still de-
noted the same way) converging tightly to some Borel probability measure
µ on Homm(X,X), also supported in Hom(X,W ), according to assump-
tion (3) and Prokhorov’s Theorem [19, Chapter II Theorem 6.7]. In other
words

(5.1)
∫

Homm(X,X)
f(π)dµk(π) →

∫
Homm(X,X)

f(π)dµ(π) as k → ∞

whenever f : Homm(X,X) → R is continuous and bounded. Assump-
tion (1) says that

(5.2)
∫

Homm(X,X)
H m

νk
(π(A))dµk(π) ⩽ H m

νk
(A)

for every k = 1, 2, . . ., every V ∈ Gm(X) and every Borel A ⊆ V , with
equality when V = W . Assumption (2) is that δ(ν, νk) → 1 when k → ∞.
According to Proposition 5.7 it suffices to establish that (5.2) holds with
νk replaced by ν, µk replaced by µ, for some Borel A ⊆ V such that
0 < H m

ν (A) < ∞, with equality when V = W . We will start by proving
the inequality case.

Fix V ∈ Gm(X) and choose a compact convex set A ⊆ V such that
0 < H m

|·| (A), for instance A = V ∩ B|·|. We define on Homm(X,X) the
real valued functions f, f1, f2, . . . by the formula f(π) = H m

ν (π(A)) and
fk(π) = H m

νk
(π(A)), k = 1, 2, . . .. Letting KConv(W ) denote the space of

nonempty compact convex subsets of W endowed with its Hausdorff metric,
we notice that Hom(X,W ) → KConv(W ) : π 7→ π(A) is continuous since
distH (π(A), π̃(A)) ⩽ |||π − π̃||| diam(A ∪ {0}). If H is a Haar measure on
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W then its restriction KConv(W ) → R : C 7→ H (C) is continuous, see
for instance [13, 3.2.36]. It therefore follows that the f, f1, f2, . . . are all
continuous. As

(5.3) fk(π) = H m
νk

(π(A)) ⩽ (Lipνk
π)mH m

νk
(A)

we note that they do not need to be bounded. Letting Γ = supk=1,2,...δ(νk, |·|)
we note that Γ < ∞ and that Lipνk

(π) ⩽ Γ2|||π|||, k = 1, 2, . . ., as well as
Lipν(π) ⩽ Γ2|||π||| whenever π ∈ Homm(X,X). Given n = 1, 2, . . . we
choose a continuous (cut-off function) χn : Homm(X,X) → R such that

(5.4) 1Homm(X,X)∩{π:|||π|||⩽n} ⩽ χn ⩽ 1Homm(X,X)∩{π:|||π|||⩽n+1} .

Since are χnfk compactly supported, they are bounded. In fact

∥χnfk∥∞ ⩽
(
Γ2(n+ 1)

)m ΓmH m
|·| (A)

according to (5.3), (2.2) and (2), p. 641. We now show that χnf1, χnf2, . . .

converge uniformly to χnf . Observe that

|fk(π) − f(π)| = (β(νk, ν,W ) − 1) H m
ν (π(A))

⩽ (β(νk, ν,W ) − 1) Γ2m|||π|||mH m
ν (A) ,

for every π ∈ Homm(X,X), whence

∥χnfk − χnf∥∞ ⩽ (β(νk, ν,W ) − 1) Γ2m(n+ 1)mH m
ν (A) .

Now δ(νk|W , ν|W )−m ⩽ β(νk, ν,W ) ⩽ δ(νk|W , ν|W )m according to (2.2)
and δ(νk|W , ν|W ) → 1 as k → ∞ according to (2), p. 641 and assump-
tion (2), thus ∥χnfk − χnf∥∞ → 0 as k → ∞. This together with (5.1)
yields classically that

(5.5)
∫

Homm(X,X)
χnfkdµk →

∫
Homm(X,X)

χnfdµ as k → ∞ ,

simply because∣∣∣∣∣
∫

Homm(X,X)
χnfkdµk −

∫
Homm(X,X)

χnfdµ

∣∣∣∣∣
⩽ ∥χnfk − χnf∥∞ +

∣∣∣∣∣
∫

Homm(X,X)
χnfdµk −

∫
Homm(X,X)

χnfdµ

∣∣∣∣∣ .
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Now (5.5) and (5.2) imply that∫
Homm(X,X)

χn(π)H m
ν (π(A))dµ(π)

= lim
k

∫
Homm(X,X)

χn(π)H m
νk

(π(A))dµk(π)

⩽ lim inf
k

∫
Homm(X,X)

H m
νk

(π(A))dµk(π)

⩽ lim inf
k

H m
νk

(A)

=
(

lim inf
k

β(νk, ν, V )
)

H m
ν (A)

= H m
ν (A) .

Letting n → ∞ and referring to the monotone convergence theorem we
obtain

(5.6)
∫

Homm(X,X)
H m

ν (π(A))dµ(π) ⩽ H m
ν (A) .

The inequality case in Proposition 5.7(2) is now established and it re-
mains only to show that the above becomes an equality when V = W . This
is where assumption (4) turns up. We keep the same notations as above
but we reason in the particular case when V = W and A is the set given in
assumption (4). Our extra information is that for each n = 1, 2, . . . there
exists εn > 0 with

sup
k=1,2,...

∫
Homm(X,X)

(1 − χn) fkdµk ⩽ εn

and εn → 0 as n → ∞. Thus for every n, k = 1, 2, . . .,

(5.7)

∣∣∣∣∣
∫

Homm(X,X)
fkdµk −

∫
Homm(X,X)

χnfdµ

∣∣∣∣∣
⩽
∫

Homm(X,X)
(1 − χn) fkdµk

+

∣∣∣∣∣
∫

Homm(X,X)
χnfkdµk −

∫
Homm(X,X)

χnfdµ

∣∣∣∣∣
⩽ εn +

∣∣∣∣∣
∫

Homm(X,X)
χnfkdµk −

∫
Homm(X,X)

χnfdµ

∣∣∣∣∣ .
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Recalling our assumption that µk is a density contractor on W we infer
that

lim
k

∫
Homm(X,X)

fkdµk = lim
k

∫
Homm(X,X)

H m
νk

(π(A))dµk(π)

= lim
k

H m
νk

(A) = H m
ν (A) .

Using this together with (5.5) and letting k → ∞ in (5.7) we now find that∣∣∣∣∣H m
ν (A) −

∫
Homm(X,X)

χn(π)H m
ν (π(A))dµ(π)

∣∣∣∣∣ ⩽ εn .

Letting n → ∞ our conclusion becomes a consequence of the monotone
convergence theorem. □

Theorem 5.9. — Let (X, ∥ · ∥) be a finite dimensional normed space.
Every W ∈ G2(X) admits a density contractor with respect to H 2

∥·∥.

We start with the case when ∥ · ∥ is crystalline. For use in the proof we
introduce the notation square(v1, v2) = X ∩ {t1v1 + t2v2 : 0 ⩽ ti ⩽ 1, i =
1, 2} to refer to the square with two edges v1, v2, when these constitute an
orthonormal family in X.

Proof of Theorem 5.9 in case ∥ · ∥ is crystalline. — In this case we shall
prove that the density contractor µ can be chosen to verify the following
two additional requirements. Here Γ = δ(∥ · ∥, | · |) and

τ = maxi=1,...,p |ui ∧ ui+1|2
mini=1,...,p |ui ∧ ui+1|2

.

(1) For every n = 1, 2, . . . one has

µ (Hom(X,W ) ∩ {π : |||π||| ⩾ n}) ⩽ 4(4 + τ)Γ8

n2 ;

(2) For every n = 1, 2, . . . and every orthonormal basis v1, v2 of W one
has∫

Hom(X,W )∩{π:|||π|||⩾n}
H 2

∥·∥(π(square(v1, v2)))dµ(π) ⩽ 4(4 + τ)α(2)Γ10

n2 .

We let u1, . . . , u2p, λ1, . . . , λp and α1, . . . , αp be defined as in Theo-
rem 5.6. For use in the definition of µ we define certain π̃i,j ∈ Hom(X,W ),
i, j = 1, . . . , p with i ̸= j, as follows:

π̃i,j(x) = αi(x)ui + αj(x)uj ,
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x ∈ X. We notice that

(5.8) |||π̃i,j ||| ⩽ 2Γ2 .

Furthermore if v1, v2 is an orthonormal family inX then π̃i,j(square(v1, v2))
is a parallelogram in W with sides π̃i,j(v1) and π̃i,j(v2), thus

(5.9) H 2
|·| (π̃i,j(square(v1, v2))) = |π̃i,j(v1) ∧ π̃i,j(v2)|2

=
∣∣∣∣det

(
αi(v1) αj(v1)
αi(v2) αj(v2)

)∣∣∣∣ . |ui ∧ uj |2 .

We now normalize the π̃i,j . We define

ρ =

√
α(2)

2ψ(W ) ,

and

πi,j =
(

ρ√
|ui ∧ uj |2

)
π̃i,j

in case i ̸= j, and πi,i = 0, i = 1, . . . , p. It clearly follows from (5.8)
and (5.9) that

(5.10) |||πi,j ||| ⩽ 2Γ2ρ√
|ui ∧ uj |2

,

and

(5.11) H 2
|·| (πi,j(square(v1, v2))) = ρ2

∣∣∣∣det
(
αi(v1) αj(v1)
αi(v2) αj(v2)

)∣∣∣∣ .
We are now ready to define the Borel measure µ on Hom(X,W ):

(5.12) µ =
p∑

i,j=1
λiλjδπi,j

.

From the definition of the λi we infer that
∑p

i=1 λi = 1 and therefore µ is
readily a probability measure.

In order to show that µ is a density contractor on W with respect to
H 2

∥·∥ we will apply Proposition 5.7(3). Given V ∈ G2(X) we choose v1, v2
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an orthonormal basis of V and we let A = square(v1, v2). We observe that∫
Hom(X,W )

H 2
|·|(π(A))dµ(π) =

p∑
i,j=1

λiλjH
2

|·|(πi,j(A))

= 2
∑

1⩽i<j⩽p

λiλjρ
2
∣∣∣∣det

(
αi(v1) αj(v1)
αi(v2) αj(v2)

)∣∣∣∣
= 2ρ2

∑
1⩽i<j⩽p

λiλj |⟨αi ∧ αj , v1 ∧ v2⟩|

⩽ 2ρ2α(2)−1ψ(V )

= ψ(V )
ψ(W )

= ψ(V )
ψ(W )H 2

|·|(A)

where the inequality follows from Theorem 5.6 and specializes to an equality
in case V = W . This completes the proof that µ is a density contractor on
W .

We now turn to establishing the extra properties (1) and (2) stated at
the beginning of the proof. Given n = 1, 2, . . . we let

Πn = Hom(X,W ) ∩ {π : |||π||| ⩾ n} .

If i, j = 1, . . . , p and πi,j ∈ Πn then

|ui ∧ uj |2 ⩽
4Γ4ρ2

n2

according to (5.10).
With i = 1, . . . , p we associate J+

n,i = {1, . . . , p} ∩ {j : i < j and πi,j ∈
Πn} as well as J+,a

n,i = J+
n,i ∩ {j : ⟨ui, uj⟩ ⩾ 0} and J+,b

n,i = J+
n,i ∩ {j :

⟨ui, uj⟩ < 0}. Assuming that J+,a
n,i ̸= ∅ we define j∗

i = max J+,a
n,i . If j ∈ J+,a

n,i

and i < j < j∗
i then

Conv{0, uj , uj+1} ⊆ X ∩ {su1 + tuj∗
i

: 0 ⩽ s ⩽ Γ2 and 0 ⩽ t ⩽ Γ2} =: Si,

since the inner product of either uj or uj+1 with either u1 or uj∗
i

is non-
negative and max{|u1|, |uj |, |uj+1|, |uj∗

i
|} ⩽ Γ. Furthermore, by definition

of τ and the reasoning above we see that

H 2
|·|
(
Conv{0, uj∗

i
, uj∗

i
+1}
)
⩽ τH 2

|·|
(
Conv{0, uj∗

i
−1, uj∗

i
}
)
⩽ H 2

|·|(Si) .
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Therefore,∑
j∈J+,a

n,i

λj = 2
H 2

|·|
(
B∥·∥ ∩W

) ∑
j∈J+,a

n,i

H 2
|·|(Conv ({0, uj , uj+1})

= 1
ρ2

H 2
|.|

 ⋃
j∈J+,a

n,i
∼{j∗

i
}

Conv{0, uj , uj+1}

+H 2
|·|
(
Conv{0, uj∗

i
, uj∗

i
+1}
)

⩽
1 + τ

ρ2 H 2
|·|(Si) ⩽

(1 + τ)Γ4

ρ2

∣∣ui ∧ uj∗
i

∣∣
2 ⩽

4(1 + τ)Γ8

n2 .

In order to deal with indexes from J+,b
n,i we let u⊥

i ∈ W be such that
|u⊥

i | = 1, ⟨ui, u
⊥
i ⟩ = 0, and ⟨u⊥

i , uj⟩ > 0, whenever j ∈ J+,b
n,i . Given such

a j, we let αj be the acute angle between uj and −ui. Thus, |ui ∧ uj |2 =
|ui||uj | sin(αj) ⩾ Γ−2 sin(αj) and, in turn, αj ⩽ 2 sin(αj) ⩽ 8Γ6ρ2n−2.
Assuming that J+,b

n,i ̸= ∅ we define ji
∗ = min J+,b

n,i and we let Ci be the
circular sector in W of radius Γ and comprised between two half-lines of
direction up and uji

∗
, respectively. Thus, Conv{0, uj , uj+1} ⊆ Ci, for each

j ∈ J+,b
n,i . It follows that∑

j∈J+,b
n,i

λj = 2
H 2

|·|
(
B∥·∥ ∩W

) ∑
j∈J+,b

n,i

H 2
|·|(Conv ({0, uj , uj+1})

⩽
1
ρ2 H 2

|·|(Ci) =
αji

∗
Γ2

2ρ2 ⩽
4Γ8

n2 .

We conclude that ∑
j∈J+

n,i

λj ⩽
4(2 + τ)Γ8

n2 .

Similarly we let J−
n,i = {1, . . . , p} ∩ {j : j < i and πi,j ∈ Πn}. Reasoning

analogously we obtain the slightly better∑
j∈J−

n,i

λj ⩽
8Γ8

n2 .

Consequently,

(5.13) µ (Πn) =
p∑

i,j=1
πi,j∈Πn

λiλj =
p∑

i=1
λi

∑
j∈J−

n,i
∪J+

n,i

λj ⩽
4(4 + τ)Γ8

n2

and the proof of (1) is complete.
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Finally we observe that for all i = 1, . . . , p and l = 1, 2 one has |αi(vl)| ⩽
∥αi∥∥vl∥ ⩽ Γ and thus H 2

|·|(πi,j(square(v1, v2))) ⩽ 2Γ2ρ2, according
to (5.11). It therefore follows from (5.13) that∫

Πn

H 2
∥·∥(π(square(v1, v2)))dµ(π)

= ψ(W )
p∑

i,j=1
πi,j∈Πn

λiλjH
2

|·|(πi,j(square(v1, v2)))

⩽ ψ(W )2Γ2ρ2µ(Πn) = 4(4 + τ)α(2)Γ10

n2

and the proof of (2) is complete. □

Proof of Theorem 5.9 in the general case. — Fix W ∈ G2(X). We start
by choosing a sequence of crystalline norms ν1, ν2, . . . such that νk → ∥ · ∥
as k → ∞. This is done classically by choosing a finite k−1-net Fk ⊆
X ∩ {x : ∥x∥ = 1} and letting Bνk

= Conv(Fk ∪ (−Fk)). Now with each νk

we will associate a density contractor µk on W with respect to H 2
νk

as in
the first part of the proof, choosing the unit vectors uk

1 , . . . , u
k
2pk

(recall the
statement of Theorem 5.6) in order that all the |uk

i ∧ uk
i+1|2 are nearly the

same value. This is where we may have to add unit vectors to the list of
vertices vk

1 , . . . , v
k
2qk

of the polygon W ∩Bνk
. It can easily be done for the

following reason: The formula dk(u, v) = |u ∧ v|2 defines a distance of unit
vectors u, v lying in « between » vk

1 and vk
qk

such that each « segment »
[[[u, v]]] on the corresponding « half unit circle » can be partitioned into two
segments [[[u,w]]] and [[[w, v]]] of same « length »; iterating this process we can
readily achieve τk ⩽ 2.

Now since νk → ∥ · ∥ as k → ∞ we infer that supk=1,2,... Γk < ∞. It
therefore follows from the estimates (1) and (2) proved about µk in the
first part of this proof that the sequence µ1, µ2, . . . verifies the hypotheses
of Proposition 5.8. The conclusion follows. □

Theorem 5.10. — Let (X, ∥ · ∥) be a finite dimensional normed space
and m ∈ {1, . . . ,dimX − 1}. It follows that every W ∈ G(X) admits a
density contractor with respect to H m

∥·∥ when either m = 1 or m = 2 or
m = dimX − 1.

Proof. — The case m = 1 follows from Hahn’s theorem as in
Remark 5.4(2) and the case m = dimX − 1 follows from Busemann’s
theorem 5.5. In both cases a density contractor on W is given by µ = δπ

where π : X → W is a projector that contracts H m
∥·∥. The case m = 2 is
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Theorem 5.9 above, a consequence of Burago–Ivanov’s Theorem 5.6 and
the density contractor exhibited is not of the simple type δπ. □

Theorem 5.11. — Let (X, ∥ · ∥) be a finite dimensional normed
space, let (G,·) be a complete normed Abelian group and let m ∈
{1, . . . ,dimX − 1}. Assume that W ∈ Gm(X), µ is a density contractor
on W and T ∈ Rm(X,G). It follows that∫

Hom(X,W )×W

M (⟨T, π, y⟩)d
(
µ⊗ H m

∥·∥

)
(π, y) ⩽ MH(T )

and the above integrand is µ⊗ H m
∥·∥ measurable. Furthermore∫

Hom(X,W )
MH(π#T )dµ(π) ⩽ MH(T )

with equality when sptT ⊆ W , and the above integrand is Borel measur-
able.

In the above statement we wrote M (⟨T, π, y⟩) without a subscript H.
Indeed no reference to the norm ∥·∥ is needed at all, as both R0(X,G) and
the mass M defined on it are independent of ∥ · ∥. Members of R0(X,G)
are G valued atomic Borel measures on X, i.e. of the form

∑
j∈J gjδxj

with
the xj all distinct, and

M

∑
j∈J

gjδxj

 =
∑
j∈J

gj

 .

Proof. — We give both X and W a fixed orientation. We start with
the first inequality in the case when T = P ∈ Pm(X,G) is polyhedral.
We choose a decomposition P =

∑κ
k=1 gkJσkK where the σ1, . . . , σκ are

nonoverlapping. Let π ∈ Hom(X,W ) be of maximal rank. For almost every
y ∈ W the following holds: For every k = 1, . . . , κ either σk ∩ π−1{y} is a
singleton or it is empty. Furthermore, letting Fy = (∪κ

k=1σk) ∩ π−1{y} one
has

⟨P, π, y⟩ =
∑

x∈Fy

(−1)ε(π,x)δx

where ε(π, x) = ±1 according to whether π|Wk
: Wk → W preserves or not

the orientation, where Wk is the affine m plane containing σk and is given
the orientation of JσkK. In particular, for those y,

M (⟨P, π, y⟩) =
κ∑

k=1

gk
1π(σk)(y) .
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The same formula holds if π is not of maximal rank; in fact in that case
both members of the identity above vanish for almost every y. That this
function of (π, y) be Borel measurable can be established along the lines
of [3, §5.4]. It now follows from Fubini’s theorem and the property of density
contractor that∫

Hom(X,W )×W

M (⟨P, π, y⟩)d
(
µ⊗ H m

∥·∥

)
(π, y)

=
κ∑

k=1

gk
∫

Hom(X,W )
H m

∥·∥(π(σk))dµ(W )

⩽
κ∑

k=1

gk
H m

∥·∥(σk) = MH(P ) .

We next assume that T ∈ Rm(X,G) and we choose a sequence P1, P2, . . . in
Pm(X,G) such that limk F (Pk −T ) = 0 and lim supk MH(Pk) ⩽ MH(T ),
see [9, Theorem 4.2]. Taking a subsequence if necessary we may assume
that P1, P2, . . . converges rapidly to T . Accordingly it follows from [11,
5.2.1(4)] that for every π ∈ Hom(X,W ) one has, for H m

∥·∥ almost every
y ∈ W , F (⟨T, π, y⟩ − ⟨Pk, π, y⟩) → 0 as k → ∞. Since M : R0(X,G) →
R is F lower semicontinuous, [11, 4.4.1], we infer at once that (π, y) 7→
M (⟨T, π, y⟩) is µ⊗ H m

∥·∥ measurable, and that

M (⟨T, π, y⟩) ⩽ lim inf
k

M (⟨Pk, π, y⟩) .

It then follows from Fatou’s lemma that∫
Hom(X,W )×W

M (⟨T, π, y⟩) d
(
µ⊗ H m

∥·∥

)
(π, y)

⩽ lim inf
k

∫
Hom(X,W )×W

M (⟨Pk, π, y⟩) d
(
µ⊗ H m

∥·∥

)
(π, y)

⩽ lim inf
k

MH(Pk) ⩽ MH(T ) .

We now turn to proving the second conclusion. As before we start
with the case when T = P ∈ Pm(X,G) is polyhedral. The function
Hom(X,W ) → R : π 7→ MH(π#P ) is continuous. It is indeed the composi-
tion of Rm(W,G) → R : S 7→ MH(S) and Hom(X,W ) → Rm(X,G) : π 7→
π#P , the former being continuous since in fact MH(S) = ψ(W )MH,|·|(S) =
ψ(W )F (S) as m = dimW . The latter is continuous as well according to the
homotopy formula F (π#P−π̃#P)⩽max{1+|||π|||, 1+|||π̃|||}m+1 diam({0}∪
sptP )N (P ), π, π̃ ∈ Hom(X,W ), see for instance [9, §2.6]. We next choose
a decomposition P =

∑κ
k=1JσkK where the σ1, . . . , σk are nonoverlapping,
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thus MH(P ) =
∑κ

k=1
gk

H m
∥·∥(σk). Given π ∈ Hom(X,W ) we notice

that π#P =
∑κ

k=1 gkJπ(σk)K, thus MH(π#P ) ⩽
∑κ

k=1
gk

H m
∥·∥(π(σk)).

Integrating over π with respect to µ we obtain∫
Hom(X,W )

MH(π#P )dµ(π) ⩽
κ∑

k=1

gk
∫

Hom(X,W )
H m

∥·∥(π(σk))dµ(π)

⩽
κ∑

k=1

gk
H m

∥·∥(σk) = MH(P ) .

In case sptP ⊆ W we reason as follows. Given π ∈ Hom(X,W ) we note
that MH(π#P ) =

∑κ
k=1

gk
H m

∥·∥(π(σk)) because either π has rank less
than or equal to m − 1 and both sides are clearly zero, or π has rank m

and then the simplexes π(σ1), . . . , π(σκ) are nonoverlapping. Thus the first
inequality above becomes an inequality. The second one as well because
each σk ⊆ W . We now see that T ∈ Rm(X,G) and as we did before, we
choose a sequence P1, P2, . . . in Pm(X,G) such that limk F (Pk − T ) = 0
and lim supk MH(Pk) ⩽ MH(T ), see [9, Theorem 4.2]. Since F (π#Pk −
π#T ) ⩽ max

{
|||π|||m, |||π|||m+1

}
F (Pk − T ) → 0 as k → ∞ we infer that

MH(π#Pk − π#T ) → 0 as k → ∞ because MH = ψ(W )F . In particular
π 7→ MH(π#T ) is Borel measurable. It then follows from the dominated
convergence theorem that∫

Hom(X,W )
MH(π#T )dµ(π) = lim

k

∫
Hom(X,W )

MH(π#Pk)dµ(π)

⩽ lim sup
k

MH(Pk) ⩽ MH(T ) .

If sptT ⊆ W then applying [9, Theorem 4.2] in W instead of X, or ap-
plying [12, Lemma 3.2] we can guarantee that each sptPk ⊆ W . In that
case also limk MH(Pk −T ) = 0 thus both inequalities above become equal-
ities. □

Theorem 5.12. — Let (X, ∥ · ∥) be a finite dimensional normed space
and let m ∈ {1, . . . ,dimX − 1}. Assume that W ∈ Gm(X), µ is a density
contractor on W and A ⊆ X is Borel measurable and countably (H m

∥·∥,m)
rectifiable. It follows that∫

Homm(X,X)
H m

∥·∥(π(A))dµ(π) ⩽ H m
∥·∥(A)

with equality when A ⊆ W , and the above integrand is Borel measurable.

Proof. — The measurability claim follows from Proposition 5.1(3). In
order to prove the inequality there is of course no restriction to assume
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H m
∥·∥(A) < ∞. We will apply Theorem 5.11 with G = Z. We start by

choosing a Borel measurable orientation of the approximate tangent spaces
of A, say ξ : A →

∧
m X, see [13, 3.2.25]. We let T ∈ Rm(X,G) be associ-

ated with the set A and the Z orientation [1, ξ(x)] at almost every x ∈ A.
Thus MH(T ) = H m

∥·∥(A). Next we recall that for H m
∥·∥ almost every y ∈ W

⟨T, π, y⟩ =
∑

x∈A∩π−1{y}

(−1)ε(π,x)δx ,

where ε(π, x) = ±1 according to whether the restriction
π : ap Tan(H m A, x) → W preserves the orientation or not. In par-
ticular for H m

∥·∥ almost every y ∈ π(A) one has M (⟨T, π, y⟩) ⩾ 1. Our
present conclusion then immediately follows from the first conclusion of
Theorem 5.11. □

6. New type of Gross measures

6.1. Choice of density contractors

Given a finite dimensional normed space (X, ∥·∥) and an integer 1 ⩽ m ⩽
dimX − 1 we say that (X, ∥ · ∥) admits density contractors of dimension m
if for every every W ∈ Gm(X) there exists a density contractor µ on W .
Under this assumption the Axiom of Choice guarantees the existence of a
choice map

µ : Gm(X) → M1(Homm(X,X)) ,
i.e. such that µ(W ) is a density contractor on W , for each W ∈ Gm(X).
Here M1(Homm(X,X)) denotes the set of Borel probability measures on
Homm(X,X). We call such µ a choice of density contractors in dimensionm
and we write µW instead of µ(W ). We shall show at the end of this section,
Theorem 6.7 that such µ can be chosen to be universally measurable, even
though this extra property of a choice of density contractors will play no
role in the other results presented here.

6.2. Convention

In the remaining part of this section we assume that (X, ∥ · ∥) admits
density contractors of dimension m and we let W 7→ µW be a choice of
density contractors in dimension m.
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6.3. Gross measure

With this data (m and µ) we shall now associate an outer measure on
X denoted as G m

µ . To start with, for each Borel subset A ⊆ X we define

ζµ(A) = sup
W ∈Gm(X)

∫
Homm(X,X)

H m
∥·∥(π(A))dµW (π) .

Now with A ⊆ X and 0 < δ ⩽ ∞ we associate

G m
µ,δ(A) = inf


∑
j∈J

ζµ(Bj) :
A ⊆ ∪j∈JBj and {Bj : j ∈ J} is a
countable family of Borel subsets
of X with diamBj < δ , j ∈ J

 ,

as well as
G m

µ (A) = sup
δ>0

G m
µ,δ(A) .

All these are outer measures on X. Furthermore Borel sets are G m
µ mea-

surable and G m
µ is Borel regular.

Our goal is to establish that G m
µ (A) = H m

∥·∥(A) in case A is countably
(H m

∥·∥,m) rectifiable. We start with a trivial observation about rectangular
matrices. Recall that Λ(n,m) denotes the set of (strictly) increasing maps
{1, . . . ,m} → {1, . . . , n} which we may identify with their image.

Lemma 6.1. — Let A ∈ Mm×n(R) and B,B′ ∈ Mn×m(R) be such that

B =
(
Im

0

)
and B′ =

(
Im

E

)
for some E ∈ M(n−m)×m(R) with ∥E∥∞ ⩽ 1. It follows that

|det(AB) − det(AB′)| ⩽ cLemma 6.1(n,m)∥E∥∞
∑

λ∈Λ(n,m)
λ ̸={1,...,m}

|det(Aλ)|

were Aλ is the square matrix whose kth column coincides with the λ(k)th

column of A.

Proof. — If F ⊆ {1, . . . , n} is a nonempty set whose elements are num-
bered j1 < . . . < jp we let AF denote the matrix whose kth column is the
jth

k column of A. We also abbreviate λ0 = {1, . . . ,m}. It is immediate that
AB = Aλ0 . Furthermore

AB′ =
(
Aλ0

(
A{m+1} · · · A{n}

))(Im

E

)
= Aλ0 +

(
A{m+1} · · · A{n}

)
E .
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It follows that the kth column of AB′ is

A{k} +
n−m∑
i=1

ei,kA{m+i}

where E = (ei,j)i=1,...,n−m
j=1,...,m

. The conclusion now ensues from the multilin-

earity of the determinant. □

Proposition 6.2. — Assume Section 6.2. Let M ⊆ X be an m dimen-
sional submanifold of X of class C1, a ∈ M and 0 < ε < 1. There then
exists r0 > 0 and W ∈ Gm(X) with the following property. For every
0 < r ⩽ r0 one has∫

Homm(X,X)
H m

∥·∥
(
π(M ∩ B∥·∥(a, r))

)
dµW (π)

⩾ (1 − ε)H m
∥·∥
(
M ∩ B∥·∥(a, r)

)
.

Proof. — Abbreviate W = Tan(M,a). Owing to the translation invari-
ance of the Hausdorff measure and to the linearity of π in the state-
ment, replacing M by M − a we may assume that a = 0. As usual we
consider a Euclidean structure on X, and we let C ⩾ 1 be such that
C−1∥x∥ ⩽ |x| ⩽ C∥x∥ for every x ∈ X and C−1 ⩽ ψ(W ) ⩽ C for ev-
ery W ∈ Gm(X) (recall Proposition 2.1). We let 0 < ε̂ < 1 be undefined
for now.

We define

Hom∼(X,W ) = Hom(X,W ) ∩ {π : rank π|W ⩽ m− 1}

as well as

Hominv(X,W ) = Hom(X,W ) ∩ {π : rank π|W = m} ,

and we notice the first set is relatively closed and second one relatively
open. For each κ = 1, 2, . . . we define

Hominv,κ(X,W ) = Hominv(X,W )∩
{
π : Lip|·| π⩽κ and Lip|·|

(
π|−1

W

)
⩽κ
}
.

Since Lip|·| π = |||π|||, and since Hominv(X,W ) → Hom(W,W ) : π 7→ π|−1
W

is continuous, it follows that Hominv,κ(X,W ) is relatively closed. Also,

Hominv(X,W ) =
∞⋃

κ=1
Hominv,κ(X,W ) .
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We abbreviate Hκ = Hom∼(X,W ) ∪ Hominv,κ(X,W ) and we infer from
the monotone convergence theorem that there exists κ such that

(6.1)
∫

Hκ

H m
∥·∥
(
π(W ∩ B∥·∥(0, 1))

)
dµW (π)

⩾ (1 − ε̂)
∫

Homm(X,X)
H m

∥·∥
(
π(W ∩ B∥·∥(0, 1))

)
dµW (π)

= (1 − ε̂) H m
∥·∥
(
W ∩ B∥·∥(0, 1)

)
= (1 − ε̂) α(m)

where the last equality is H. Busemann’s identity (2.1). For a reason that
will become clear momentarily we then define

ε̌ = min
{
ε̂,

1
2κ2

}
.

There exists r1 > 0 and f : W ∩ B|·|(0, 2r1) → W⊥ of class C1 such that
(a) Lip|·| f < ε̌;
(b) M ∩ B|·|(0, r1) ⊆ F (W ∩ B|·|(0, 2r1)) ⊆ M ,

where F = ιW + ιW ⊥ ◦ f , and ιW and ιW ⊥ are the obvious inclusion maps.
We let πW denote the orthogonal projection onto W . It clearly follows that
if 0 < r ⩽ r1/C then

(c) F
(
πW (M ∩ B∥·∥(0, r))

)
= M ∩ B∥·∥(0, r);

and furthermore,
(d) W ∩ B∥·∥

(
0, (1 − C2ε̂)r

)
⊆ πW (M ∩ B∥·∥(0, r))

⊆ W ∩ B∥·∥
(
0, (1 − C2ε̂)−1r

)
,

because for each x ∈ W ∩ B|·|(0, r1) one has
∣∣∥F (x)∥ − ∥x∥

∣∣ ⩽ ∥f(x)∥ ⩽
C2ε̂∥x∥.

For the remaining part of this proof we fix 0 < r ⩽ r1/C and we abbrevi-
ate Dr = πW (M ∩ B∥·∥(0, r)). For a while we turn to computing Hausdorff
measures H m

|·| with respect to the Euclidean norm | · |.
We claim that if π ∈ Hom∼(X,W ) or π ∈ Hominv,κ(X,W ), applying the

(Euclidean) area formula to the mappings π ◦F : W → W and π|W : W →
W , [13, 3.2.22] we obtain

(6.2)
H m

|·|
(
π(M ∩ B∥·∥(0, r))

)
= H m

|·| (π(F (Dr)))

=
∫

W ∩Dr

Jm(π ◦ F )(x)dH m
|·| (x)

and

(6.3) H m
|·| (π(Dr)) =

∫
W ∩Dr

Jmπ(x)dH m
|·| (x) .
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Indeed if π ∈ Hom∼(X,W ) then the two sides of both equations obvi-
ously vanish. Furthermore the second equation is in fact valid for every
π ∈ Hominv(X,W ) as well, because in that case π|W is injective. Therefore
it remains only to establish the first equation in case π ∈ Hominv,κ(X,W ).
The reason for which it holds true is that (π ◦ F )|Dr is injective. In-
deed if π(F (x)) = π(F (x′)) for x, x′ ∈ Dr, then π(ιW (x)) − π(ιW (x′)) =
π(ιW ⊥(f(x′))) − π(ιW ⊥(f(x))) and in turn

κ−1|x− x′| ⩽
(

Lip|·| π|−1
W

)−1
|x− x′|

⩽ |π(x) − π(x′)| = |π(f(x)) − π(f(x′))|

⩽
(

Lip|·| π
)(

Lip|·| f
)

|x− x′| ⩽ κε̌|x− x′|

so that x = x′ because ε̌ ⩽ κ−2/2.
From this ensues that if π ∈ Hκ then

(6.4)
∣∣∣H m

|·|
(
π(M ∩ B∥·∥(0, r))

)
− H m

|·| (π(Dr))
∣∣∣

⩽
∫

W ∩Dr

|Jm(π ◦ F )(x) − Jmπ(x)| dH m
|·| (x) .

We choose an orthonormal basis e1, . . . , en of X such that e1, . . . , em is a
basis of W , and we let A ∈ Mm×n(Rn) be the matrix of π with respect to
these bases. Letting B ∈ Mn×m(Rn) be defined as in Lemma 6.1 it is clear
that AB is the matrix of π|W with respect to the basis e1, . . . , em of W , thus
Jmπ = | det(AB)|. Given x ∈ Dr we notice that DF (x) = ιW +ιW ⊥ ◦Df(x)
whence the matrix B′

x of DF (x) with respect to e1, . . . , em and e1, . . . , en

is of the form of B′ in Lemma 6.1 with Ex being the matrix of Df(x) with
respect to the obvious bases. In particular ∥Ex∥∞ ⩽ Lip|·| f ⩽ ε̂. Moreover
Jm(π ◦ F )(x) = | det(AB′

x)|. Thus it follows from Lemma 6.1 that

(6.5) |Jm(π ◦ F )(x) − Jmπ(x)| = || det(AB′
x)| − | det(AB)||

⩽ cLemma 6.1(n,m)ε̂
∑

λ∈Λ(n,m)
λ̸={1,...,m}

|det(Aλ)| .

Now given λ ∈ Λ(n,m) we let Wλ = span{eλ(1), . . . , eλ(m)} and we select
Oλ : X → X be a isometric linear isomorphism such that Oλ(W ) = Wλ.
It then becomes clear that Aλ is the matrix of (π ◦Oλ)|W with respect to
the basis e1, . . . , em of W . Thus | det(Aλ)| = Jm(π ◦Oλ)|W and in turn∫

W ∩Dr

| det(Aλ)|dH m
|·| = H m

|·| (π(Oλ(Dr)))
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Together with (6.4) and (6.5) this yields∣∣∣∣H m
|·|
(
π(M ∩ B∥·∥(0, r))

)
− H m

|·| (π(Dr))
∣∣∣∣

⩽ cLemma 6.1(n,m)ε̂
∑

λ∈Λ(n,m)
λ ̸={1,...,m}

H m
|·| (π(Oλ(Dr)))

Since all sets whose measure appear in the above inequality are subsets of
W , multiplying both sides by ψ(W ) we obtain at once that∣∣∣∣H m

∥·∥
(
π(M ∩ B∥·∥(0, r))

)
− H m

∥·∥ (π(Dr))
∣∣∣∣

⩽ cLemma 6.1(n,m)ε̂
∑

λ∈Λ(n,m)
λ ̸={1,...,m}

H m
∥·∥ (π(Oλ(Dr)))

Next we integrate both sides with respect to µW on the set Hκ =
Hom∼(X,W ) ∪ Hominv,κ(X,W ):

(6.6)

∣∣∣∣∣
∫

Hκ

H m
∥·∥(π(Dr))dµW (π)−

∫
Hκ

H m
∥·∥
(
π(M ∩ B∥·∥(0, r))

)
dµW (π)

∣∣∣∣∣
⩽ cLemma 6.1(n,m)ε̂

∑
λ∈Λ(n,m)

λ̸={1,...,m}

∫
Homm(X,X)

H m
∥·∥ (π(Oλ(Dr))) dµ(π)

⩽ cLemma 6.1(n,m)ε̂
∑

λ∈Λ(n,m)
λ̸={1,...,m}

H m
∥·∥ (Oλ(Dr)) .

It follows from (d) above and (6.1) that

(6.7)
∫

Hκ

H m
∥·∥ (π(Dr)) dµW (π)

⩾
(
1 − C2ε̂

)m
rm

∫
Hκ

H m
∥·∥
(
π(W ∩ B∥·∥(0, 1))

)
dµW (π)

⩾ (1 − ε̂)
(
1 − C2ε̂

)m
α(m)rm .

It further follows from (d) above and H. Busemann’s identity (2.1) that

H m
∥·∥(Dr) ⩽

(
1 − C2ε̂

)−m
α(m)rm ,

and in turn

H m
∥·∥(Oλ(Dr)) = ψ(Wλ)H m

|·| (Oλ(Dr)) = ψ(Wλ)H m
|·| (Dr)

= ψ(Wλ)ψ(W )−1H m
∥·∥(Dr) ⩽ α(m)C2 (1 − C2ε̂

)−m
rm
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Using these and (6.6) we see that∫
Homm(X,X)

H m
∥·∥
(
π(M ∩ B∥·∥(0, r))

)
dµ(π)

⩾
(
(1− ε̂)(1−C2ε̂)m − ε̂cLemma 6.1(n,m) (card Λ(n,m))C2 (1−C2)−m)

α(m)rm.

Furthermore it follows from B. Kirchheim’s area formula [17] that there
exists r2 > 0 such that for every 0 < r ⩽ r2 one has

(1 + ε̂)α(m)rm ⩾ H m
∥·∥
(
M ∩ B∥·∥(0, r)

)
.

Finally we let r0 = min{r1/C, r2} and it should now be obvious how to
choose ε̂ according to ε, n, m and C so that the conclusion holds. □

Lemma 6.3. — ζµ(A) ⩽ G m
µ (A) whenever A ⊆ X is Borel.

Proof. — If {Bj : j ∈ J} is a countable family of Borel subsets of X
so that A ⊆ ∪j∈JBj then H m

∥·∥(π(A)) ⩽
∑

j∈J H m
∥·∥(π(Bj)) for every π ∈

Homm(X,X). Thus for each W ∈ Gm(X) one has∫
Homm(X,X)

H m
∥·∥(π(A))dµW (π) ⩽

∑
j∈J

∫
Homm(X,X)

H m
∥·∥(π(Bj))dµW (π) .

Taking the supremum over W ∈ Gm(X) on both sides yields ζµ(A) ⩽∑
j∈J ζµ(Bj). The conclusion follows from the arbitrariness of {Bj : j ∈

J}. □

Theorem 6.4. — If A ⊆ X is Borel and countably (H m
∥·∥,m) rectifiable

then G m
µ (A) = H m

∥·∥(A).

Proof. — We start by showing that G m
µ (A) ⩽ H m

∥·∥(A). Given δ > 0
choose a countable Borel partition {Bj : j ∈ J} of A with diamBj < δ,
j ∈ J (for instance the Bj are the intersection of A with dyadic semicubes
of some generation). Since each Bj is countably (H m

∥·∥,m) rectifiable it
follows from Theorem 5.12 that ζµ(Bj) ⩽ H m

∥·∥(Bj). Therefore

G m
µ,δ(A) ⩽

∑
j∈J

ζµ(Bj) ⩽
∑
j∈J

H m
∥·∥(Bj) = H m

∥·∥(A)

and it remains to let δ → 0+.
In order to establish the reverse inequality we start with the case when

A = M is an m dimensional submanifold of X of class C1 such that
H m

∥·∥(M) < ∞. Let ε > 0 and a ∈ M . It follows from Proposition 6.2 that
there exists r(a) > 0 and W ∈ Gm(X) such that for every 0 < r ⩽ r(a)
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one has∫
Homm(X,X)

H m
∥·∥
(
π(M ∩ B∥·∥(a, r))

)
dµW (π)

⩾ (1 − ε)H m
∥·∥
(
M ∩ B∥·∥(a, r)

)
.

Thus also

ζµ

(
M ∩ B∥·∥(a, r)

)
⩾ (1 − ε)H m

∥·∥
(
M ∩ B∥·∥(a, r)

)
.

It follows from [13, 2.8.9 and 2.8.18] that {B∥·∥(a, r) : a ∈ M and 0 < r ⩽
r(a)} is an H m

∥·∥ M Vitali relation. Therefore there exists a countable
subset {aj : j ∈ J} of M and corresponding 0 < rj ⩽ r(aj), j ∈ J , such
that, upon abbreviating Bj = B∥·∥(aj , rj), the family {Bj : j ∈ J} is
disjointed and H m

∥·∥ (M ∼ ∪j∈JBj) = 0. Thus,

(1 − ε)H m
∥·∥(M) =

∑
j∈J

(1 − ε)H m
∥·∥(M ∩Bj)

⩽
∑
j∈J

ζµ(M ∩Bj) ⩽
∑
j∈J

G m
µ (M ∩Bj) ⩽ G m

µ (M) ,

where the second inequality is a consequence of Lemma 6.3. It follows from
the arbitrariness of ε > 0 that the inequality is established in case A = M

is an m dimensional C1 submanifold. We consider the Borel finite measures
ϕH = H m

∥·∥ M and ϕG = G m
µ M (that ϕG be finite follows from the

fact that so is ϕH – by assumption – and the first part of this proof). Now
if U ⊆ X is open then M ∩U is also an m dimensional C1 submanifold and
therefore ϕH (U) ⩽ ϕG (U). Since ϕG is outer regular (being a finite Borel
measure in a metric space) we infer that ϕH (A) ⩽ ϕG (A) for all Borel
subsets A ⊆ M . Assuming now that A is a Borel countable (H m

∥·∥,m)
rectifiable subset of X, the conclusion follows from the fact that A admits
a partition into Borel sets A0, A1, . . . such that H m

∥·∥(A0) = 0 and each Aj ,
j ⩾ 1, is a subset of some m dimensional submanifold of X of class C1,
[13, 3.2.29]. □

We close this section by showing that there exists a universally measur-
able choice of density contractors.

Proposition 6.5. — Assume that W,W1,W2, . . . are members of
Gm(X) and that d(W,Wk) → 0 as k → ∞. For every n = 1, 2, . . . the
following holds:

lim
k

sup
π∈Homm(X,X)

|||π|||⩽n

∣∣∣∣∣H m
∥·∥
(
π(Wk ∩B|·|)

)
− H m

∥·∥
(
π(W ∩B|·|)

) ∣∣∣∣∣ = 0 .
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Proof. — We show how this is a consequence of Steiner’s formula. Let
π ∈ Homm(X,X) and choose V ∈ Gm(X) such that im π ⊆ V . Through
the choice of an orthonormal basis we identify V with ℓm

2 . For any convex
set C ⊆ V and δ > 0 we have

(6.8) H m
|·| (B|·|(C, δ)) = H m

|·| (C) +
m−1∑
k=0

δm−kα(m− k)ζk(C)

where
ζk(C) = β1(m, k)−1

∫
O∗(m,k)

L k(p(C))dθ∗
m,k(p) ,

see for instance [13, 3.2.35]. Now if n is an integer so that C ⊆ V ∩B|·|(0, n)
then p(C) ⊆ Rk ∩ B(0, n) for all p ∈ O∗(m, k) and therefore ζk(C) ⩽
β1(m, k)−1α(k)nk. Thus if C,C ′ ⊆ V ∩ B|·|(0, n) are compact convex and
δ = distH (C,C ′) ⩽ 1 then it follows from (6.8) that∣∣∣H m

|·| (C) − H m
|·| (C ′)

∣∣∣ ⩽ δc(m)

where

c(m) =
m−1∑
k=0

β1(m, k)−1α(m− k)α(k)nk .

Now we let Ck = π(Wk ∩B|·|), C = π(W ∩B|·|), δk = distH (Ck, C) and we
assume that |||π||| ⩽ n. Since d(Wk,W ) → 0 we have δk ⩽ ndistH (Wk ∩
B|·|,W ∩B|·|) → 0 as well. Finally,∣∣∣∣∣H m

∥·∥
(
π(Wk ∩B|·|)

)
− H m

∥·∥
(
π(W ∩B|·|)

) ∣∣∣∣∣
= ψ(W )

∣∣∣∣∣H m
|·|
(
π(Wk ∩B|·|)

)
− H m

|·|
(
π(W ∩B|·|)

) ∣∣∣∣∣
⩽ Cc(m)n distH (Wk ∩B|·|,W ∩B|·|)

if k is large enough (for nδk ⩽ 1), where

C = max{ψ(W ) : W ∈ Gm(X)}. □

6.4. Space of probability measures

We recall that Homm(X,X), the collection of linear maps X → X of
rank at most m, is a closed subspace of Hom(X,X) and therefore a Pol-
ish space. The set M1(Homm(X,X)) consisting of those probability Borel
measures on Homm(X,X) is itself a Polish space, equipped with the so
called topology of weak convergence of measures, [19, Chapter II §6].
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Theorem 6.6. — The set

E = Gm(X)×M1(Homm(X,X))∩

{
(W,µ) :

µ is a density contractor
on W with respect to H m

∥·∥

}
is Borel.

Proof. — We define

Ea = {(W,µ) : µ is supported in Hom(X,W )}

and

Eb =

(W,µ) :
for every V ∈ Gm(X) one has∫

Homm(X,X)
H m

∥·∥
(
π(V ∩B|·|)

)
dµ(π) ⩽ H m

∥·∥
(
V ∩B|·|

)


and

Ec =
{

(W,µ) :
∫

Homm(X,X)
H m

∥·∥
(
π(W ∩B|·|)

)
dµ(π) = H m

∥·∥
(
W ∩B|·|

)}
.

It follows from Proposition 5.7 that E = Ea ∩ Eb ∩ Ec.
The set Ea is closed. Let (W1, µ1), (W2, µ2), . . . be members of Ea such

that (Wk, µk) → (W,µ) in Gm(X) × M1(Homm(X,X)) as k → ∞. We
observe that Homm(X,X) ∼ Hom(X,W ) = ∪∞

j=1Uj where

Uj = Homm(X,X) ∩
{
π : dist (π,Hom(X,W )) > |||π|||

j

}
.

Since |||πWk
−πW ||| → 0 by assumption, it is easily seen that for each fixed

j = 1, 2, . . . there exists an integer k(j) such that Hom(X,Wk) ∩ Uj = ∅
whenever k ⩾ k(j). For such k ⩾ k(j) it follows that µk(Uj) = 0. Since
Uj is open we have µ(Uj) ⩽ lim infk µk(Uj) = 0. It follows that suppµ ⊆
Hom(X,W ).

The set Eb is closed. Given V ∈ Gm(X) we define

Eb,V =
{

(W,µ) :
∫

Homm(X,X)
H m

∥·∥
(
π(V ∩B|·|)

)
dµ(π)⩽H m

∥·∥
(
V ∩B|·|

)}
.

Since clearly Eb = ∩V ∈Gm(X)Eb,V it suffices to show that each Eb,V is closed.
Define ΥV : Gm(X) × M1(Homm(X,X)) → R by the formula

ΥV (W,µ) =
∫

Homm(X,X)
H m

∥·∥
(
π(V ∩B|·|)

)
dµ(π)

(thus ΥV does depend upon its first variable W ). As before define fV ∩B|·| :
Homm(X,X) → R by fV ∩B|·|(π) = H m

∥·∥
(
π(V ∩B|·|)

)
. It follows from

Proposition 5.1(2) that for each n = 1, 2, . . . the function min{n, fV ∩B|·|} is
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bounded and continuous. Given (W1, µ1), (W2, µ2), . . . members of
Gm(X) × M1(Homm(X,X)) such that (Wk, µk) → (W,µ) we infer that,
for each n = 1, 2, . . .,∫

Homm(X,X)
min{n, fV ∩B|·|}dµ = lim

k

∫
Homm(X,X)

min{n, fV ∩B|·|}dµk

⩽ lim inf
k

∫
Homm(X,X)

fV ∩B|·|dµk = lim inf
k

ΥV (Wk, µk) .

Letting n → ∞ it then follows from the monotone convergence theorem
that

ΥV (W,µ) =
∫

Homm(X,X)
fV ∩B|·|dµ

= lim
n

∫
Homm(X,X)

min{n, fV ∩B|·|}dµ ⩽ lim inf
k

ΥV (Wk, µk) .

This shows that ΥV is lower semicontinuous and in turn that Eb,V is closed.
The set Ec is Borel. We define Υ : Gm(X) × M1(Homm(X,X)) → R by

the formula

Υ(W,µ) =
∫

Homm(X,X)
H m

∥·∥
(
π(W ∩B|·|)

)
dµ(π)

so that

Ec = Gm(X)×M1(Homm(X,X))∩
{

(W,µ) : Υ(W,µ) = H m
∥·|
(
W ∩B|·|

)}
.

Since H m
∥·|
(
W ∩B|·|

)
= ψ(W )α(m) is continuous according to Proposi-

tion 2.1 the conclusion will follow from the lower semicontinuity of Υ which
we now establish. We choose χ1, χ2, . . . a nondecreasing sequence of cut-
off functions on Homm(X,X) as in (5.4). With each n = 1, 2, . . . we then
associate

Υn(W,µ) =
∫

Homm(X,X)
χn(π)H m

∥·∥
(
π(W ∩B|·|)

)
dµ(π) .

As Υ = supn=1,2,... Υn according to the monotone convergence theorem, it
is enough to show that each Υn is continuous. Fix n = 1, 2, . . .
Let (W1, µ1), (W2, µ2), . . . be members of Gm(X) × M1(Homm(X,X))
such that (Wk, µk) → (W,µ). It follows from Proposition 5.1(2) that
χnfW1∩B|·| , χnfW2∩B|·| , . . . is a sequence in Cb(Homm(X,X)) and it fol-
lows from Proposition 6.5 that it converges uniformly to χnfW ∩B|·| . The
weak* convergence of µ1, µ2, . . . clearly implies its uniform convergence on
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compact subsets of Cb(Homm(X,X)), thus

Υn(W,µ) =
∫

Homm(X,X)
χnfW ∩B|·|dµ

= lim
k

∫
Homm(X,X)

χnfWk∩B|·|dµk = lim
k

Υn(Wk, µk) □

Theorem 6.7. — Under the assumption Section 6.2 there exists a choice
of density contractors µ : Gm(X) → M1(Homm(X,X)) which is univer-
sally measurable.

Proof. — Since Gm(X) and M1(Homm(X,X)) are Polish spaces, and E

is Borel according to Theorem 6.6, the result is a consequence of J. von
Neumann’s selection theorem, [21, 5.5.2]. □

7. New type of Gross mass

7.1. Gross mass

In this section we work again under the same assumption as Section 6.2:
µ is a choice of density contractors of dimension m. The corresponding
Gross measure G m

µ is defined in the previous section. Given T ∈ Rm(X,G)
we define its Gross mass as

MG(T ) =
∫

setm ∥T ∥

g(x)
dG m

µ (x) .

It follows at once from Theorem 6.4, approximation by simple functions
and the monotone convergence theorem that

(7.1) MG(T ) = MH(T ) .

We also define

ζµ(T ) = sup
W ∈Gm(X)

∫
Homm(X,X)

MH(π#T )dµW (π) .

We recall that integrand in the above formula is Borel measurable, and
that

(7.2) ζµ(T ) ⩽ MH(T ) ,

both according to Theorem 5.11. We also notice that ζµ(T1+T2) ⩽ ζµ(T1)+
ζµ(T2) and ζµ(T ) = ζµ(−T ).

Proposition 7.1. — ζµ : Rm(X,G) → R is lower semicontinuous with
respect to F convergence.
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Proof. — Let T, T1, T2, . . . be members of Rm(X,G) such that F (T −
Tj) → 0 as j → ∞. Fix W ∈ Gm(X) and π ∈ Hom(X,W ). Since F (π#T−
π#Tj) → 0 and F (S) = MH(S) for each S ∈ Rm(X,G) we infer that
MH(π#T ) = limj MH(π#Tj). It thus ensues from Fatou’s Lemma that∫

Homm(X,X)
MH(π#T )dµW (π) ⩽ lim inf

j

∫
Homm(X,X)

MH(π#Tj)dµW (π) .

Taking the supremum over W ∈ Gm(X) on both sides yields the conclu-
sion. □

Proposition 7.2. — Let T ∈ Rm(X,G) and 0 < ε < 1. For H m
∥·∥

almost every x ∈ setm ∥T∥ there then exist r(x) > 0 with the following
property. For every 0 < r ⩽ r(x) one has

ζµ

(
T B∥·∥(x, r)

)
⩾ (1 − ε)MH

(
T B∥·∥(x, r)

)
.

Proof. — Part of the proof is very similar to that of Proposition 6.2.
We indicate how to modify the argument and leave out the details. We
start with the case when suppT ⊆ M for some m dimensional submanifold
M ⊆ X of class C1. We restrict to H m

∥·∥ almost every x ∈ setm ∥T∥ by
considering only those which are Lebesgue points of

g
, [13, 2.9.9], i.e.

0 = lim
r→0+

1
α(m)rm

∫
B∥·∥(x,r)

∣∣g(ξ)
−

g(x)
∣∣dH m

∥·∥ M(ξ) .

Assuming without loss of generality that x = 0 and that
g(0)

 > 0 the
proof then proceeds as that of Proposition 6.2 with a few changes. We keep
the same notation as there. If π ∈ Hκ then for each y ∈ π(M ∩ B∥·∥(0, r))
there is a unique ξ = π−1{y} ∩ M ∩ B∥·∥(0, r) and one has (here χ :
R0(X,G) → G denotes the augmentation map)

gπ#(T B∥·∥(0,r))(y) = χ
(
⟨T B∥·∥(0, r), π, y⟩

)
= χ

(
δξ gT B∥·∥(0,r)(ξ)

)
= gT B∥·∥(0,r)(ξ) .

Now (6.2) becomes

(7.3) MH,|·|
(
π#
(
T B∥·∥(0, r)

))
=
∫

π(F (Dr))

gπ#(T B∥·∥(0,r))(y)
 dH m

|·| (y)

=
∫

W ∩Dr

gT B∥·∥(0,r)(F (x))
 Jm(π ◦ F )(x)dH m

|·| (x) .
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We henceforth abbreviate g = gT B∥·∥(0,r). Combining (7.3) and (6.3), we
obtain the following replacement for (6.4)

(7.4)
∣∣∣∣MH,|·|

(
π#
(
T B∥·∥(0, r)

))
−
g(0)

H m
|·| (π(Dr))

∣∣∣∣
⩽
∫

W ∩Dr

∣∣∣∣g(F (x))
 Jm(π ◦ F )(x) −

g(0)
 Jmπ(x)

∣∣∣∣dH m
|·| (x)

⩽
∫

W ∩Dr

∣∣∣∣g(F (x))
−

g(0)
∣∣∣∣Jm(π ◦ F )(x)dH m

|·| (x)

+
g(0)

∫
W ∩Dr

|Jm(π ◦ F )(x) − Jmπ(x)| dH m
|·| (x)

= I + II .

The second term II is bounded from above in the exact same way as in the
proof of Proposition 6.2, see (6.5), (6.6) and the lines thereafter:

(7.5)
∫

Hκ

dµ(π)
∫

W ∩Dr

|Jm(π ◦ F )(x) − Jmπ(x)| dH m
|·| (x)

⩽ ε̂cLemma 6.1(n,m)C2(1 − C2ε̂)−m(card Λ(n,m))α(m)rm .

In order to bound I from above we use our restriction to 0 being a Lebesgue
point of

g(·)
. Choose r3 > 0 small enough (according to ε̂ and κ) for

(7.6)
∫

B∥·∥(0,r)

∣∣∣∣g(ξ)
−

g(0)
∣∣∣∣dH m

|·| M(ξ) ⩽ ε̂

2mκm
α(m)rm

whenever 0 < r ⩽ r3. We notice that for x ∈ Dr,

Jm(π ◦ F )(x) ⩽ (Lipπ ◦ F )m ⩽ κm (1 + ε̂)m ⩽ κm (1 + ε̂)m
JmF (x) .

We now apply the area formula [13, 3.2.22],

(7.7)
∫

W ∩Dr

∣∣∣∣g(F (x))
−

g(0)
∣∣∣∣Jm(π ◦ F )(x)dH m

|·| (x)

⩽ κm (1 + ε̂)m
∫

W ∩Dr

∣∣∣∣g(F (x))
−

g(0)
∣∣∣∣JmF (x)dH m

|·| (x)

= κm (1 + ε̂)m
∫

M∩B∥·∥(0,r)

∣∣∣∣g(ξ)
−

g(0)
∣∣∣∣dH m

|·| (ξ)

⩽ ε̂α(m)rm .
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Now multiplying both members of (7.4) by ψ(W ) it follows from (7.5)
and (7.7) that

(7.8)

∣∣∣∣∣
∫

Hκ

MH,∥·∥
(
π#
(
T B∥·∥(0, r)

))
dµW (π)

−
g(0)

∫
Hκ

H m
∥·∥ (π(Dr)) dµW (π)

∣∣∣∣∣ ⩽ ε̂Cα(m)rm

where

C = C

(
cLemma 6.1(n,m)C2(1 − C2ε̂)−m(card Λ(n,m))

+
g(0)

C(1 + C2)m + 1
)
.

Recalling (6.7) it ensues from (7.8) that∫
Homm(X,X)

MH,∥·∥
(
π#
(
T B∥·∥(0, r)

))
dµW (π)

⩾

(
(1 − ε̂)

(
1 − C2ε̂

)m − C
g(0)

−1
ε̂

)
α(m)rm

g(0)
 .

Choosing r2 > 0 according to B. Kirchheim’s area formula as at the end of
the proof of Proposition 6.2 we infer that if also 0 < r ⩽ r2 then

MH

(
T B∥·∥(0, r)

)
=
∫

B∥·∥(0,r)

g(ξ)
d

(
H m

∥·∥ M
)

(ξ)

⩽
g(0)

H m
∥·∥
(
M ∩ B∥·∥(0, r)

)
+
∫

B∥·∥(0,r)

∣∣∣∣g(ξ)
−

g(0)
∣∣∣∣dH m

|·| M(ξ)

⩽ (1 + ε̂)
g(0)

α(m)rm + ε̂Cmα(m)rm .

Letting r0 = min{r1/C, r2, r3} it becomes clear that∫
Homm(X,X)

MH

(
π#
(
T B∥·∥(0, r)

))
dµW (π)

⩾ (1 − ε)MH

(
T B∥·∥(0, r)

)
whenever 0 < r ⩽ r0, provided ε̂ has been chosen small enough according
to ε, n, m and

g(0)
. This readily implies that

ζµ

(
T B∥·∥(0, r)

)
⩾ (1 − ε)MH

(
T B∥·∥(0, r)

)
for such 0 < r ⩽ r0.
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We now turn to the general case. Since T is concentrated on a countably
(H m

∥·∥,m) rectifiable Borel set it follows from [13, 3.2.29] that there exists
a disjointed sequence A1, A2, . . . of Borel sets such that T = T ∪Ak and
each Ak is contained in some m dimensional submanifold Mk ⊆ X of class
C1. It suffices to show that conclusion holds for H m

∥·∥ almost every x ∈ Ak,
with k fixed. Defining Tk = T Ak and Rk = T − Tk = T Ek where
Ek = ∪j ̸=kAj we claim that for almost every x ∈ Ak the following holds.
Given 0 < ε̂ < 1 there exists r(x, ε̂) > 0 such that the following three
conditions are satisfied for all 0 < r ⩽ r(x, ε̂).

(A) ζµ

(
Tk B∥·∥(x, r)

)
⩾ (1 − ε̂) MH

(
Tk B∥·∥(x, r)

)
;

(B) MH

(
T B∥·∥(x, r)

)
⩾ (1 − ε̂)

gk(x)
α(m)rm;

(C) MH

(
Rk ∩ B∥·∥(x, r)

)
⩽ ε̂α(m)rm.

Indeed (A) follows from the first part of this proof and (B) follows from
the fact that MH

(
T B∥·∥(x, r)

)
⩾ MH

(
Tk B∥·∥(x, r)

)
and that the

inequality with T replaced by Tk holds true at small scales according to
B. Kirchheim’s area formula as in the first part of this proof. Finally we
leave it to the reader to check that (C) can be deduced from [13, 2.10.19(4)].
Finally, recalling (7.2) we infer that

ζµ

(
T B∥·∥(x, r)

)
⩾ ζµ

(
Tk B∥·∥(x, r)

)
− ζµ

(
Rk B∥·∥(x, r)

)
⩾ (1 − ε̂) MH

(
Tk B∥·∥(x, r)

)
− MH

(
Rk ∩ B∥·∥(x, r)

)
⩾ (1 − ε̂) MH

(
T B∥·∥(x, r)

)
− (2 + ε̂) MH

(
Rk ∩ B∥·∥(x, r)

)
⩾

(
1 − ε̂

(
1 + 2 + ε̂

1 − ε̂

)gk(x)
−1

)
MH

(
T B∥·∥(x, r)

)
.

For such good x ∈ Ak it should now be clear how to initially choose ε̂

according to ε and x so that the conclusion holds. □

Theorem 7.3. — Assume that (X, ∥ · ∥) admits density contractors of
dimension m and let µ be a choice of density contractors. It follows that
the Gross mass G m

µ is lower semicontinuous with respect to F convergence
on Rm(X,G).

Proof. — Let T, T1, T2, . . . be members of Rm(X,G) such that F (T −
Tj) → 0 as j → ∞. Given ε > 0 we apply Proposition 7.2 and [11, 5.2.3(2)]
to T . It follows that for H m

∥·∥ almost every x ∈ setm ∥T∥ there exists r(x) >
0 with the the property that for L 1 almost every 0 < r ⩽ r(x) one has

(A) (1 − ε)MH

(
T B∥·∥(x, r)

)
⩽ ζµ

(
(T B∥·∥(x, r)

)
;

(B) F
(
T B∥·∥(x, r) − Tj B∥·∥(x, r)

)
→ 0 as j → ∞.
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The collection of those balls B∥·∥(x, r) for which both conditions (A) and (B)
hold thus constitutes a fine covering of a set on which ∥T∥ concentrates.
It follows from [13, 2.8.9 and 2.8.15] that it contains a disjointed count-
able subcollection Bk = B∥·∥(xk, rk), k = 1, 2, . . . such that MG(T ) =∑

k MG(T Bk). Therefore

(1 − ε)MG(T ) = (1 − ε)
∑

k

MG(T Bk)

⩽
∑

k

ζµ(T Bk)

(by (A))

⩽
∑

k

lim inf
j

ζµ(Tj Bk)

(by (B) and Proposition 7.1)

⩽ lim inf
j

∑
k

ζµ(Tj Bk)

⩽ lim inf
j

∑
k

MG(Tj Bk)

(by (7.2) and (7.1))

⩽ lim inf
j

MG(Tj) .

Since ε > 0 is arbitrary the proof is complete. □

8. Mass minimizing chains of dimension 2 or of
codimension 1

We are now able to dispense with hypothesis (C) of Theorem 3.1 in case
of chains of dimension 2 or codimension 1.

Theorem 8.1. — Assume that
(A) (X, ∥ · ∥) is a finite dimensional normed space and (G,·) is an

Abelian normed locally compact White group;
(B) m = 2 or m = dimX − 1;
(D) B ∈ Rm−1(X,G) and ∂B = 0.

It follows that the Plateau problem

(P)
{

minimize MH(T ),
among T ∈ Rloc

m (X,G) such that ∂T = B,
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admits a solution. If one further assumes that

0 < inf {
g : g ∈ G and g ̸= 0G}

then each solution of (P) has compact support.

Proof. — In view of Theorem 3.1 it suffices to show that the Hausdorff
mass is lower semicontinuous with respect to F convergence, under as-
sumption (B). We have in fact given two distinct proofs of this. First recall
that (X, ∥ · ∥) admits density contractors of dimension m with respect to
H m

∥·∥, Theorem 5.10, when m = 2 or m = dimX − 1. The first proof
then goes as follows: The triangle inequality for cycles is established in
Theorem 5.3 and this in turn implies the sought for lower semicontinuity
according to Theorem 4.5. The second proof refers to the lower semiconti-
nuity of a Gross mass, Theorem 7.3 and the fact that Hausdorff mass and
Gross mass coincide, Section 7.1. □

9. Convex hulls

In this final section we restrict to the case when m = dimX − 1.

Proposition 9.1. — Assume W1, . . . ,WQ are affine hyperplanes and
W+

1 , . . . ,W
+
Q are half spaces determined by these hyperplanes. Define C =

∩Q
q=1W

+
q . There then exists a Lipschitz map f : X → X with the following

properties.
(1) f |C = idC ;
(2) For every T ∈ Rdim X−1(X,G) one has MH(f#T ) ⩽ MH(T ). Fur-

thermore if supp ∂T ⊆ C then supp f#T ⊆ C and ∂f#T = ∂T .

Proof. — We each q = 1, . . . , Q we associate a measure contracting pro-
jector πq : X → X on Wq as in Theorem 5.5 (in fact, a translation of those)
and we define

ρq : X → X : x 7→

{
x if x ∈ W+

q ,

πq(x) if x ̸∈ W+
q .

It is obvious that each ρq is Lipschitz, and so is f = ρQ ◦ ρQ−1 ◦ . . . ◦
ρ1. Readily, f |C = idC . Given S ∈ Rdim X−1(X,G) and q = 1, . . . , Q we
observe that

ρq #S = ρq #

(
S

(
IntW+

q

))
+ ρq #

(
S

(
IntW+

q

)c
)

= S
(
IntW+

q

)
+ πq #

(
S

(
IntW+

q

)c
)
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according to [11, 5.5.2(1)]. It further follows from Theorem 5.11 (applied
with the obvious density contractor µ = δπq

on Wq) that

MH

(
πq #

(
S

(
IntW+

q

)c
))

⩽ MH

(
S

(
IntW+

q

)c
)
.

We conclude that MH(ρq #S) ⩽ MH(S).
Let T ∈ Rdim X−1(X,G). We define inductively Tq = ρq #Tq−1, q =

1, . . . , Q, where T0 = T . Thus TQ = f#T . It follows from the preceding
paragraph that MH(Tq) ⩽ MH(Tq−1) for each q, whence MH(f#T ) ⩽
MH(T ). In the remaining part of this proof we assume that supp ∂T ⊆ C.
We will establish by induction that for every q = 0, 1, . . . , Q the following
hold:

(A)q ∂Tq = ∂T ;
(B)q suppTq ⊆ ∩q

j=1W
+
j .

Condition (A)0 is trivially true. Assuming (A)q−1 holds we notice that
∂Tq = ∂ρq #Tq−1 = ρq #∂Tq−1 = ρq #∂T . Since supp ∂T ⊆ C ⊆ W+

j

and ρq|W +
q

= idW +
q

it follows that ∂Tq = ρq #∂T = ∂T according to [11,
5.5.2(1)].

Condition (B)1 is verified because suppT1 = supp ρ1 #T ⊆ ρ1(X) =
W+

1 . We now assume (B)q−1 holds true and we prove (B)q. Abbreviate
Eq = ∩q

j=1W
+
j . One easily checks that

ρq(Eq−1) ⊆ Wq ∪ Eq .

It then ensues from (B)q−1 that suppTq ⊆ Wq ∪Eq and it remains to show
that T ′

q := Tq (Wq ∼ Eq) = 0. Let U be a component of Wq ∼ Eq. It
is open, and unbounded (if x ∈ U and L ⊆ Wq is a line through x, then
L ∩ Eq is convex, hence an interval and consequently one of the lines in L

starting at x is included in U). Since supp ∂Tq ⊆ C ⊆ Eq according to (A)q

we infer that (∂T ′
q) U = 0. It follows from the constancy theorem [12,

Theorem 6.4] that T ′
q = gJUK for some g ∈ G and where an orientation of

Wq has been chosen. Since suppT ′
q ⊆ suppTq is compact and since U is

unbounded it follows that g = 0. Accordingly T ′
q = 0 and the proposition

is proved. □

In the following Conv(suppB) denotes the convex hull of suppB.

Theorem 9.2. — Assume that
(A) (X, ∥ · ∥) is a finite dimensional normed space and (G,·) is an

Abelian normed locally compact White group;
(D) B ∈ Rm−1(X,G) and ∂B = 0.
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It follows that the Plateau problem

(P)
{

minimize MH(T ),
among T ∈ Rdim X−1(X,G) such that ∂T = B,

admits a minimizer T such that suppT ⊆ Conv(suppB).

Proof. — Let C = Conv(suppB). For each x ∈ BdryC there exists a half
space W+

x ⊇ C according to Hahn’s theorem. The separability of X∗ guar-
antees that C = ∩x∈DW

+
x for some countable subset D ⊆ BdryC. Choose

a numbering D = {x1, x2, . . .}. Choose also a compact convex polytope C0

such that C ⊆ C0. For each n = 1, 2, . . . define Cn = C0∩
(

∩n
j=1W

+
xj

)
. Given

a minimizing sequence T1, T2, . . . for problem (P) we apply Proposition 9.1
to Cn and Tk. We obtain Tn,k = fn #Tk and we notice that Tn,1, Tn,2, . . . is
another minimizing sequence with suppTn,k ⊆ Cn for each k = 1, 2, . . .. As
Cn ⊆ C0 is compact, the compactness theorem guarantees the existence of
a subsequence converging in the flat norm F to some T̂n ∈ Rdim X−1(X,G)
with supp T̂n ⊆ Cn. Since MH is F lower semicontinuous in codimension 1
we also infer that MH(T̂n) = inf(P). Applying the compactness theorem
to the sequence T̂1, T̂2, . . . we obtain a subsequence T̂φ(1), T̂φ(2), . . . converg-
ing in the flat norm to some T ∈ Rdim X−1(X,G) such that ∂T = B and
MH(T ) = inf(P). Finally suppT ⊆ Cφ(n) for every n = 1, 2, . . . and since
the sequence C1, C2, . . . is decreasing we conclude that suppT ⊆ C. □

Example 9.3. — We close this paper by observing that under the assump-
tion of Theorem 9.2 there may also exist minimizers T of problem (P) such
that suppT ̸⊆ Conv(suppB). Consider X = ℓN

∞, A = [−1, 1]N−1 ⊆ RN−1

and any f : A → R with |f(x) − f(x′)| ⩽ ∥x − x′∥∞ for every x, x′ ∈ A

and f(x) = 0 whenever x ∈ BdryA. Define F : RN−1 → RN by F (x) =
(x, f(x)). Let also f0 = 0 and F0 = 0. The key point is that since Lip f ⩽ 1
one has H N−1

∥·∥∞
(F (A)) = H N−1

∥·∥∞
(F0(A)) = α(N−1) independently of f , as

the happy reader will easily check. Then for any G, any g ∈ G ∼ {0}, letting
T0 = gJAK ∈ RN−1(X,G) and T = F#T0 we see that MH(T ) = MH(T0)
and ∂T = ∂T0. Among those T only one, namely T0, is supported in the
convex hull of the support of its boundary.
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