

ANNALES DE L'INSTITUT FOURIER

Jan Dobrowolski
Sets, groups, and fields definable in vector spaces with a bilinear form

Tome 73, $\mathrm{n}^{\mathrm{o}} 5$ (2023), p. 1795-1841.
https://doi.org/10.5802/aif. 3559

Article mis à disposition par son auteur selon les termes de la licence Creative Commons attribution - pas de modification 3.o France (c) Br-ND http://creativecommons.org/licenses/by-nd/3.0/fr/

MERSENNE

SETS, GROUPS, AND FIELDS DEFINABLE IN VECTOR SPACES WITH A BILINEAR FORM

by Jan DOBROWOLSKI (*)

Abstract

We study definable sets, groups, and fields in the theory of infinite-dimensional vector spaces over an algebraically closed field of any fixed characteristic different from 2 equipped with a nondegenerate symmetric (or alternating) bilinear form. First, we define a notion of dimension of a definable set, which enjoys many properties of Morley rank in strongly minimal theories. Then, using this dimension notion as the main tool, we prove that all definable groups are (algebraic-by-abelian)-by-algebraic. We conclude that every definable field is definably isomorphic to the field of scalars of the vector space. We derive some other consequences of good behaviour of the dimension, e.g. every generic type in any definable set is a definable type; every set is an extension base; every definable group has a definable connected component.

We also prove analogous results working over real closed fields. RÉsumé. - Nous étudions des ensembles, des groupes et des corps définissables dans la théorie des espaces vectoriels de dimension infinie sur un corps algébriquement clos de caractéristique différente de 2 munis d'une forme bilinéaire symétrique (ou alternée) non dégénérée. Tout d'abord, nous définissons une notion de dimension d'un ensemble définissable, qui possède de nombreuses propriétés de rang de Morley dans les théories fortement minimales. Ensuite, en utilisant cette notion de dimension comme outil principal, nous prouvons que tous les groupes définissables sont (algébriques-par-abéliens)-par-algébriques. Nous concluons que tout corps définissable est définissablement isomorphe au corps des scalaires de l'espace vectoriel. Nous déduisons d'autres conséquences du bon comportement de la dimension, par exemple chaque type générique dans tout ensemble définissable est un type définissable ; chaque ensemble est une base d'extension ; chaque groupe définissable a une composante connexe définissable.

Nous démontrons également des résultats analogues en travaillant sur des corps réels clos.

1. Introduction

There are two kinds of motivation for the study undertaken in this paper.
Keywords: Bilinear form, definable group, definable field.
2020 Mathematics Subject Classification: 03C60, 03C45.
$\left({ }^{*}\right)$ The author was partially supported by DFG project BA 6785/2-1.

The first is improving our understanding of definable sets and other definable objects (such as groups and fields) in classical mathematical structures. There is a variety of this kind of results in numerous contexts; we mention few of them. In algebraically closed fields there is a very well-behaved notion of dimension on definable sets (given by the algebraic dimension of the Zariski closure of a set, which coincides with a more general notion of Morley rank) and the following well-known description of definable groups and fields follows from results by Weil, Hrushovski, and van den Dries (see [1, 6, 7, 22]).

Fact 1.1. - Let K be an algebraically closed field. Then:
(1) The groups definable in K are precisely the algebraic groups over K.
(2) Every field definable in K is definably isomorphic to K.

Variants of these statements for separably closed fields were proved in [17]. In the real closed fields and their o-minimal expansions, again, there is a very nice notion of dimension, and Pillay's Conjecture provides a link between definable groups and Lie groups. Moreover, the following was proved in [18].

FACT 1.2. - Every infinite field definable in an o-minimal structure is either real closed or algebraically closed.

There are many more results on groups definable in fields and in their expansions such as differential fields, fields with a generic automorphism, or valued fields. In a different flavour, it was proved in [2] that there are no infinite fields definable in free groups. Groups definable in ordered vector spaces over ordered division rings were studied in [10].

Our second motivation is understanding certain phenomena in NSOP_{1} structures - a very broad class of "tame" structures studied intensively in recent years, with the vector spaces with a generic bilinear form being one of the main algebraic examples. This motivation is addressed most directly in Section 8, which, however, relies on our study of dimension in earlier sections.

A systematic study of vector spaces with a bilinear form was first undertaken in [11]. Several fundamental results concerning completeness, model completeness, and quantifier elimination were established there. As finitedimensional vector spaces with a bilinear form are definable in the underlying field of scalars, only the infinite-dimensional case goes really beyond the (model-theoretic) study of the field. The main focus in [11] was on the theory T_{∞} of infinite-dimensional vector spaces over an algebraically
closed field of any fixed characteristic different from 2 with a nondegenerate symmetric (or alternating) bilinear form (this is a slight abuse of notation, as this means in fact considering a family of different theories, depending on whether the form is assumed to be symmetric or alternating, and also on the characteristic of the field of scalars, all of which are denoted by T_{∞}). A certain independence relation \downarrow^{Γ} on models on T_{∞} was constructed there, and it was proved that it shares many nice properties with forking independence in stable theories (forking independence is a central notion in model theory generalising linear independence in vector spaces and algebraic independence in algebraically closed fields to abstract contexts). These results were later used in [4] to prove that T_{∞} is NSOP_{1}. T_{∞} was further studied in [14], where the canonical independence relation in NSOP_{1} theories called Kim-independence (and denoted \downarrow^{K}) was introduced, and described in particular in T_{∞} (some corrections are needed in that description, see Proposition 8.12 and the discussion preceding it). It was then deduced in [14] that \downarrow^{Γ} is strictly stronger than \downarrow^{K}.

In [3] it was proved that (the completions of) the theories of vector spaces with a nondegenerate bilinear form over an NIP (another tameness property studied extensively in model theory) field satisfy a generalisation of NIP called NIP_{2}; in particular, T_{∞} and $T_{\infty}^{\mathrm{RCF}}$ (see the paragraph below) are examples of NIP_{2} theories which are not NIP.

In this paper, we study the theory (strictly speaking, the theories) T_{∞} and the theory (two theories) $T_{\infty}^{\mathrm{RCF}}$ of infinite-dimensional vector spaces over a real closed field equipped with a nondegenerate alternating bilinear form or a nondegenerate symmetric positive-definite bilinear form (RCF stands for the theory of real closed fields). In the final chapter of [11] (12.5) it was asked whether every group definable in T_{∞} is finite Morley rank-by-abelian-by finite Morley rank, which we confirm in Section 7. We also prove that finite Morley rank quotients of groups definable in T_{∞} by definable normal subgroups are definable in T_{∞} and hence they are algebraic (by "algebraic" we mean definably isomorphic to an algebraic group over the field of scalars), thus obtaining that all groups definable in T_{∞} are (algebraic-by-abelian)-by-algebraic. This conclusion is optimal in the sense that none of the three components in "(algebraic-by-abelian)-by-algebraic" can be omitted (see Remark 7.4). Using our theorem about groups, we deduce that every field definable in T_{∞} is finite-dimensional, and hence either finite or definably isomorphic to the field of scalars. We also prove analogous results about groups and fields definable in $T_{\infty}^{\mathrm{RCF}}$. As our main tool, we develop a notion of dimension on sets definable in T_{∞} and $T_{\infty}^{\mathrm{RCF}}$,
whose good behaviour has several other consequences which may be of independent interest.

Most of the arguments in the paper are carried out simultaneously for T_{∞}, where we use Morley rank to define dimension, and for $T_{\infty}^{\mathrm{RCF}}$, where we use a topological dimension (called o-minimal dimension) for this purpose. Except Section 8 where we focus on model-theoretic properties of T_{∞}, the only significant difference between the two cases is that in T_{∞} every definable set has finite multiplicity with respect to our dimension notion, which does not hold in $T_{\infty}^{\mathrm{RCF}}$. Because of this, we need separate arguments for T_{∞} and $T_{\infty}^{\mathrm{RCF}}$ in the proof of Corollary 6.4. Our proof of finiteness of multiplicity in T_{∞} implies in particular that given a system of finitely many equations using the linear space operations and the bilinear form, the algebraic varieties obtained by intersecting the set of solutions of the system with finite-dimensional nondegenerate linear subspaces have uniformly bounded number of irreducible components of maximal dimension in the sense of algebraic geometry (cf. Theorem 6.3(1)).

The paper is organised as follows. In Section 2 we recall some basic facts about Morley rank and the o-minimal (topological) dimension, and about model theory of vector spaces with bilinear forms.

In Section 3 we review the notions of dimension and codimension of a definable subset of the vector sort V introduced in [11], filling a gap in the construction.

In Section 4 we extend the notion of dimension to arbitrary definable sets and types in T_{∞} and $T_{\infty}^{\mathrm{RCF}}$, and we prove that it has properties similar to those of Morley rank in strongly minimal theories (Corollary 4.13).

In Section 5 we prove an analogue of Lascar's equality for T_{∞} and $T_{\infty}^{\mathrm{RCF}}$, and we relate our notion of dimension to the linear dimension.

In Section 6 we define multiplicity of a definable set in analogy with Morley degree, and we prove that every set definable in T_{∞} has finite multiplicity. Using this, we prove that a quotient of a group definable in T_{∞} by a definable normal subgroup is algebraic provided that it has finite Morley rank (and, using some additional argument, an analogous result for $\left.T_{\infty}^{\mathrm{RCF}}\right)$. We also derive another consequence of finiteness of multiplicity in T_{∞} : in every definable set there are only finitely many complete generic types (over any fixed model), and each of them is a definable type.

In Section 7 we first observe that every group definable in T_{∞} has a definable connected component, and then we prove the main results of this paper: every group definable in T_{∞} is (algebraic-by-abelian)-by-algebraic, and every field definable in T_{∞} has finite dimension, hence is either finite
or definably isomorphic to the field of scalars K. Simultaneously, we prove the corresponding results for $T_{\infty}^{\mathrm{RCF}}$.

In Section 8 we prove that every set of parameters in T_{∞} is an extension base (i.e. T_{∞} satisfies the existence axiom for forking independence) and we give a description of Kim-independence in T_{∞} over arbitrary sets, correcting in particular the description of Kim-independence over models in T_{∞} given in [14]. Finally, we prove that in every group G definable in T_{∞} the \downarrow^{Γ} generics are precisely the generics in the sense of dimension (in particular \downarrow^{Γ}-generics exist in G), and that the additive group $(V,+)$ of the vector sort does not have any \downarrow^{K}-generics over any set.

All sections except the last one (Section 8) require only a very basic understanding of first-order logic, and should be accessible to readers familiar with concepts such as a model, a complete theory, a type (i.e. a consistent set of formulas), and quantifier elimination.

The author thanks Ehud Hrushovski for pointing out Example 7.1(2) to him, Nick Ramsey for a discussion about Kim-independence in T_{∞}, the logic group in Leeds for helpful comments during his seminar talk reporting on this work, and the anonymous Referee for very careful reading of the paper and helpful suggestions.

2. Preliminaries

2.1. Morley rank and the o-minimal dimension

Let T be a complete theory, and let $M \models T$.
Definition 2.1. - The Morley rank of a formula ϕ over M defining a set S, denoted $\mathrm{RM}(\phi)$ or $\mathrm{RM}(S)$, is an ordinal or -1 or ∞, defined by first recursively defining what it means for a formula to have Morley rank at least α for some ordinal α :

- $\operatorname{RM}(S) \geqslant 0$ iff $S \neq \emptyset$.
- If $\alpha=\beta+1$ is a successor, then $\operatorname{RM}(S) \geqslant \alpha$ iff for every $n \in \omega$ there are disjoint sets $\left(X_{i}\right)_{i \in\{1, \ldots, n\}}$ definable in some elementary extension N of M such that $\operatorname{RM}\left(X_{i}\right) \geqslant \beta$ and $X_{i} \subseteq \phi(N)$ for each $i \in\{1, \ldots, n\}$.
- If λ is a limit ordinal then $\operatorname{RM}(S) \geqslant \lambda$ iff $\operatorname{RM}(S) \geqslant \alpha$ for every $\alpha<\lambda$.
Finally, $\operatorname{RM}(S)=\alpha$ when $\operatorname{RM}(S) \geqslant \alpha$ and for no $\beta>\alpha$ one has $\operatorname{RM}(S) \geqslant \beta$. Also, we set $\operatorname{RM}(S)=\infty$ if $\operatorname{RM}(S) \geqslant \alpha$ for every $\alpha \in$ Ord.

If $\operatorname{RM}(S) \in$ Ord, then the Morley degree of S, denoted by $\operatorname{DM}(S)$, is the maximal number of definable sets of Morley rank $\operatorname{RM}(S)$ into which S can be partitioned.

If $M=(F,+, \cdot, 0,1)$ is an algebraically closed field (which is essentially the only case in which we consider Morley rank in this paper), passing to an elementary extension N of M in the above definition is not necessary the sets X_{i} may be chosen to be definable in M.

A one-sorted structure M (or its theory $\operatorname{Th}(M)$) is called strongly minimal if $\operatorname{RM}(x=x)=\operatorname{DM}(x=x)=1$ where x is a single variable of the only sort of M. Equivalently, every definable subset of any model $\mathfrak{C} \models \operatorname{Th}(M)$ is either finite of co-finite. Any algebraically closed field is strongly minimal. For p equal zero or a prime number, ACF_{p} denotes the (complete) theory of algebraically closed fields of characteristic p.

Fact 2.2 ([16]). - An infinite field has finite Morley rank if and only if it is algebraically closed (if and only if it is strongly minimal).

If K is an algebraically closed field and X is an algebraic subset of K^{n} for some $n \in \omega$, then $\operatorname{RM}(X)$ is the dimension of X in the sense of algebraic geometry, and $\mathrm{DM}(X)$ is the number of irreducible components of X of maximal dimension.

In real closed fields Morley rank of any infinite set is equal to ∞, but there is another useful notion of dimension (having various equivalent definitions).

Definition 2.3. - Let $(R,+, \cdot, \leqslant)$ be a real closed field (or, more generally, an o-minimal structure). For a nonempty definable $X \subseteq R^{k}$ the (topological) dimension of X, denoted by $\operatorname{dim}_{t}(X)$, is the greatest number n such that a nonempty definable open (in the order topology) subset of R^{n} embeds definably into X. We also put $\operatorname{dim}_{t}(\emptyset)=-1$.

Again, for algebraic subsets of R^{n} where $R \models \mathrm{RCF}$, dim_{t} coincides with the dimension in the sense of algebraic geometry.

Definition 2.4. - We say an S-valued (where S is any set) rank rk on the collection of all sets definable in T is definable (over \emptyset) if for any formula $\phi(x, y)$ over $\emptyset, n \in S$, and $\mathfrak{C} \models T$ the set $\{a \in \mathfrak{C}: \operatorname{rk}(\phi(x, a))=n\}$ is definable over \emptyset.

For the following properties of Morley rank and the topological dimension consult e.g. [21, Section 6.2] and [8, Section 4.1]; for (6) see [13, Lemma 3].

Fact 2.5. - Let rk be either Morley rank in a strongly minimal theory, or the topological dimension in a real closed field (or in any o-minimal theory). Suppose X_{1} and X_{2} are definable. Then:
(0) $\operatorname{rk}\left(X_{1}\right) \in \omega \cup\{-1\}$ and $\operatorname{rk}\left(X_{1}\right)=0$ iff X_{1} is finite and nonempty.
(1) If $X_{1} \subseteq X_{2}$, then $\operatorname{rk}\left(X_{1}\right) \leqslant \operatorname{rk}\left(X_{2}\right)$.
(2) $\operatorname{rk}\left(X_{1} \cup X_{2}\right)=\max \left(\operatorname{rk}\left(X_{1}\right), \operatorname{rk}\left(X_{2}\right)\right)$.
(3) If there is a definable bijection between X_{1} and X_{2}, then $\operatorname{rk}\left(X_{1}\right)=$ $\operatorname{rk}\left(X_{2}\right)$.
(4) More generally, if $f: X_{1} \rightarrow X_{2}$ is a definable surjection and there is $d \in \omega$ is such that $\operatorname{rk}\left(f^{-1}(y)\right)=d$ for each $y \in X_{2}$, then $\operatorname{rk}\left(X_{1}\right)=$ $\operatorname{rk}\left(X_{2}\right)+d$ unless X_{2} is empty.

In particular, if $\emptyset \neq Z \subseteq Y \times X$ and there is $d \in \omega$ such that $\operatorname{rk}(\{x \in X:(y, x) \in Z\})=d$ for every $y \in Y$, then $\operatorname{rk}(Z)=$ $\operatorname{rk}(Y)+d$.
(5) rk is definable over \emptyset.

Additionally, in any algebraically closed fields RM satisfies definable multiplicity property:
(6) For any $n, d \in \omega$ and a formula $\phi(x, y)$ the set

$$
\{a \in \mathfrak{C}: \operatorname{RM}(\phi(x, a))=n, \operatorname{DM}(\phi(x, a))=d\}
$$

is definable over \emptyset, and only for finitely many pairs (n, d) this set is nonempty.

In any strongly minimal theory we also have:
(7) If $\operatorname{RM}\left(X_{1}\right)<\operatorname{RM}\left(X_{2}\right)$, then $\mathrm{DM}\left(X_{1} \cup X_{2}\right)=\operatorname{DM}\left(X_{2}\right)$.
(8) $\operatorname{DM}\left(X_{1} \cup X_{2}\right) \leqslant \operatorname{DM}\left(X_{1}\right)+\operatorname{DM}\left(X_{2}\right)$
(9) If $f: X \rightarrow Y$ is a definable surjection such that $\mathrm{DM}(Y)=m \in \omega$ and there are $s, m^{\prime} \in \omega$ such that

$$
\operatorname{RM}\left(f^{-1}(y)\right)=s \text { and } \operatorname{DM}\left(f^{-1}(y)\right) \leqslant m^{\prime}
$$

for every $y \in Y$, then $\mathrm{DM}(Y) \leqslant \mathrm{DM}(X) \leqslant m m^{\prime}$.
(9) above can be proved in the same way as Proposition 6.2(4).

Finally, let us mention that if K is an algebraically closed field or a real closed field, then it admits (uniform) elimination of imaginaries (EI), that is, if E is any definable equivalence relation on K^{n} then the quotient K^{n} / E is in a definable bijection (in the structure K with the sort K^{n} / E added) with a definable subset of K^{m} for some m. However, the theories T_{∞} and $T_{\infty}^{\mathrm{RCF}}$ considered in this paper do not admit EI, hence we will need some extra care when dealing with quotients there.

2.2. Generic bilinear forms

We start by recalling some notation from [11]. Let L be the two-sorted language with sorts V (vectors), and K (scalars), containing constant symbols $0_{V}, 0_{K}$, and 1_{K}, as well as binary function symbols: $+_{V},+_{K}, \circ_{K}, \gamma$, $[\cdot, \cdot]$, which we shall interpret as: vector addition, field addition, field multiplication, scalar multiplication, and a bilinear form on the vector space.

We fix p to be 0 or a prime number different from 2 , and we let $T_{0}=$ ACF_{p}, the (complete) theory of algebraically closed fields of characteristic p. As the value of p does not play any role in the paper (and in the results of [11]), it is omitted in the notation below.

Definition 2.6. - Let $m \in \omega \cup\{\infty\}$ and T_{0} be either $A C F_{p}$ or RCF. By ${ }_{S} T_{m}^{T_{0}}$ [respectively, ${ }_{A} T_{m}^{T_{0}}$] we denote the L-theory expressing that the sort K is a model of T_{0}, the sort V is an m-dimensional vector space over K, and that $[\cdot, \cdot]$ is a nondegenerate symmetric [respectively, alternating] K-bilinear form on V, and additionally ${ }_{S} T_{m}^{\mathrm{RCF}}$ says that $[\cdot, \cdot]$ is positivedefinite. We will write $T_{m}^{T_{0}}$ to mean either ${ }_{S} T_{m}^{T_{0}}$ or ${ }_{A} T_{m}^{T_{0}}$. We will also simply write T_{m} to mean $T_{m}^{\mathrm{ACF}_{p}}$, which is consistent with [11, Chapter 12], and T_{m}^{*} to mean either $T_{m}^{\mathrm{ACF}}{ }_{p}$ or T_{m}^{RCF}.

If $m \in \omega$ then ${ }_{S} T_{m}^{T_{0}}$ is consistent only when m is even, so below we will always assume that $m=\infty$ or m is even in the symmetric case.

Definition 2.7. - For any $n<\omega$ let $\theta_{n}\left(X_{1}, \ldots, X_{n}\right)$ be the L-formula saying that the vectors X_{1}, \ldots, X_{n} are linearly independent. Let L_{θ} be the expansion of L obtained by adding to L a symbol θ_{n} for each n (which we shall interpret as the relation given by the formula θ_{n}).

For any $n \in\{1,2, \ldots\}$ let $F_{n}: V^{n+1} \rightarrow K^{n}$ be a definable function sending any tuple $\left(v_{1}, \ldots, v_{n+1}\right)$ with v_{1}, \ldots, v_{n} linearly independent and $v_{n+1} \in \operatorname{Lin}_{K}\left(v_{1}, \ldots, v_{n}\right)$ to the unique tuple $\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ such that $v_{n+1}=a_{1} v_{1}+\cdots+a_{n} v_{n}$ (and any other tuple to ($0_{K}, \ldots, 0_{K}$), say). In [11, Corollary 9.2.3] Granger claimed that $T_{m}^{T_{0}}$ has quantifier elimination in the language $L_{\theta} \cup L_{K}$, where L_{K} is any language on K bidefinable with $(K,+, \cdot)$ in which K has quantifier elimination. D. MacPherson has later pointed out that there is a problem with this result, unless one adds function symbols for each F_{n} to the language: for example, working over an algebraically closed field, if α is a scalar transcendental over the prime field and $v \neq 0$ is a vector with $[v, v]=0$, then the tuples $\left(v, \alpha v, \alpha^{2} v\right)$ and $\left(v, \alpha v, \alpha^{3} v\right)$ have the same $L_{\theta} \cup L_{R}$-quantifier-free type, where L_{R} is the language of rings, but they do not have the same type, as the formula $\phi(x, y, z)=\exists u\left(y=u x \wedge z=u^{2} x\right)$ is satisfied by $\left(v, \alpha v, \alpha^{2} v\right)$ but not by ($v, \alpha v, \alpha^{3} v$).
A. Chernikov and N. Hempel have proved that indeed $T_{m}^{T_{0}}$ eliminates quantifiers in $L_{\theta} \cup L_{K} \cup\left\{F_{n}: n \in \omega\right\}$. Let us remark here that, in the symmetric positive-definite case over a real closed field, the functions F_{n} are equal to some terms in the language L_{θ}, hence adding the F_{n} 's to the language is necessary only in the alternating case. For let $v_{1}, \ldots, v_{n} \in V$ be linearly independent, and $v_{n+1}=\sum_{i \leqslant n} a_{i} v_{i}$ for some $a_{1}, \ldots, a_{n} \in K$. Let A be the $n \times n$-matrix $\left(\left[v_{i}, v_{j}\right]\right)_{i, j \leqslant n}$ and note that $A\left(a_{1}, \ldots, a_{n}\right)^{T}=$ $\left(\left[v_{1}, v_{n+1}\right], \ldots,\left[v_{n}, v_{n+1}\right]\right)^{T}$. Note that if b_{1}, \ldots, b_{n} is such that

$$
A\left(b_{1}, \ldots, b_{n}\right)^{T}=\left(\left[v_{1}, v_{n+1}\right], \ldots,\left[v_{n}, v_{n+1}\right]\right)^{T}
$$

then $\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$ as otherwise $\Sigma_{i \leqslant n}\left(a_{i}-b_{i}\right) v_{i}$ would be a non-zero vector orthogonal to v_{1}, \ldots, v_{n}, hence orthogonal to itself, which is a contradiction. So the equation

$$
A\left(x_{1}, \ldots, x_{n}\right)^{T}=\left(\left[v_{1}, v_{n+1}\right], \ldots,\left[v_{n}, v_{n+1}\right]\right)^{T}
$$

has exactly one solution $\left(x_{1}, \ldots, x_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$, and so A is a nonsingular matrix and

$$
F\left(v_{1}, \ldots, v_{n+1}\right)=\left(a_{1}, \ldots, a_{n}\right)=A^{-1}\left(\left[v_{1}, v_{n+1}\right], \ldots,\left[v_{n}, v_{n+1}\right]\right)^{T}
$$

hence $F\left(v_{1}, \ldots, v_{n+1}\right)$ is equal to a term in L_{θ}. Summarising, we have:
FACT 2.8. - Put $L_{\theta}^{F}:=L_{\theta} \cup\left\{F_{n}: n \in \omega\right\}$ and let T_{0} be a completion of the theory of fields admitting quantifier elimination in a language L_{K}. Then, for every $m \in \omega$, the theories ${ }_{S} T_{m}^{T_{0}}$ and ${ }_{A} T_{m}^{T_{0}}$ have quantifier elimination in $L_{\theta}^{F} \cup L_{K}$.

In particular, for every $m \in \omega \cup\{\omega\}$ (with m even in the alternating case) the theories ${ }_{S} T_{m}$ and ${ }_{A} T_{m}$ have quantifier elimination in $L_{\theta}^{F},{ }_{S} T_{m}^{\mathrm{RCF}}$ has quantifier elimination in $L_{\theta} \cup\{\leqslant\}$ (by the discussion above) and ${ }_{A} T_{m}^{\mathrm{RCF}}$ has quantifier elimination in $L_{\theta}^{F} \cup\{\leqslant\}$, where \leqslant is a binary relation symbol interpreted as the unique field ordering on K in the real closed case.

The following fact follows from the proof of [11, Corollary 9.2.9]: although in the case $T_{m}^{*}={ }_{S} T_{m}^{\mathrm{RCF}}$ it does not formally follow from [11, Corollary 9.2 .9$]$ as in a real closed field not all elements have square roots, this condition is only used to transform a normal basis to an orthonormal basis (see the proof of [11, Proposition 9.1.5]), which clearly can be done over any real closed field if $[\cdot, \cdot]$ is positive definite.

FACT 2.9. - For any $m \in \omega \cup\{\infty\}$ the L-theory T_{m}^{*} is complete.
For a set or a tuple A, by $V(A)$ we mean the set of vectors belonging to A, and $\operatorname{acl}(A)$ respectively, $\operatorname{dcl}(A)]$ denotes the model-theoretic algebraic [definable] closure of A, that is, the set of elements whose type over
A has finitely many realisations [only one realisation]. The following fact easily follows from quantifier elimination (cf. [11, Proposition 9.5.1, Proposition 12.4.1]).

FACt 2.10. - Let $M=(V, K) \models T_{\infty}^{*}$ and $A \subseteq M$. Then:
(1) For any $v \in V \backslash \operatorname{Lin}_{K}(A)$ the type $t p(v / A)$ is implied by $p_{v, A}(x):=$ $\{[x, a]=[v, a]: a \in V(A)\} \cup\{[x, x]=[v, v]\} \cup\left\{\theta_{n}\left(a_{1}, \ldots, a_{n}\right) \rightarrow\right.$ $\left.\theta_{n+1}\left(a_{1}, \ldots, a_{n}, x\right): a_{1}, \ldots, a_{n} \in V(A)\right\}$.
(2) $\operatorname{acl}(A) \subseteq \operatorname{Lin}_{K}(V(A))$.

Proof.
(1). - Suppose $w \models p_{(v, A)}$. Then $v, w \notin \operatorname{Lin}_{K}(V(A))$, so there is a K-linear isomorphism $g: \operatorname{Lin}_{K}(V(A) \cup\{v\}) \rightarrow \operatorname{Lin}_{K}(V(A) \cup\{w\})$ fixing $\operatorname{Lin}_{K}(V(A))$ pointwise and sending v to w. Then g preserves $[\cdot, \cdot]$, so $g \cup \operatorname{id}_{K}$ is an elementary map by quantifier elimination. In particular, $\operatorname{tp}(w / A)=$ $\operatorname{tp}(v / A)$.
(2). - By finite character of acl we may assume that A is finite. Now, if $v \notin \operatorname{Lin}_{K}(V(A))$ then for any $u \in V$ which is orthogonal to $V(A) \cup\{v\}$ we have by (1) that $\operatorname{tp}(v+u / A)=\operatorname{tp}(v / A)$, so in particular $\operatorname{tp}(v / A)$ has infinitely many realisations, i.e. $v \notin \operatorname{acl}(A)$.

3. Dimension on V

This section is in a large part a review of the results from [11, Subsection 12.4], where the notions of dimension and codimension of a definable subset of the vector sort V in T_{∞} were introduced. However, the definition of codimension there uses a false claim (see Remark 3.11 below), so we provide an argument fixing it.

In the rest of this paper, T_{∞}^{*} means either T_{∞}, in which case we put $\mathrm{rk}=\mathrm{RM}$, or $T_{\infty}^{\mathrm{RCF}}$, in which case we put $\mathrm{rk}=\operatorname{dim}_{t}$ (see Definition 3.4 below). When we write $X \subseteq V$ we mean that X is a set of single elements of the sort V, but when we write $X \subseteq M$ where M is a model [or when we say that X is definable in M], we mean that X is a [definable] set of arbitrary finite compatible tuples in M. We will be working in a fixed \aleph_{0}-saturated model $\mathfrak{C} \models T_{\infty}^{*}$, which means every type in a single variable over a finite subset of M is realised in M. By Fact 2.10 it is easy to see that this is equivalent to saying that the field of scalars $K(\mathfrak{C})$ has infinite transcendence degree over its prime subfield (we will need \aleph_{0}-saturation only to choose generic elements in the proof of Theorem 7.3).

As in [11], we deal with the case of a symmetric bilinear form unless stated otherwise, and the alternating case can be treated analogously by replacing an orthonormal basis by a symplectic basis. We will occasionally point out the main differences between the symmetric and the alternating case. In fact, the alternating case tends to be easier, as the condition $[x, x]=$ $[v, v]$ in the type $p_{v, A}(x)$ implying $\operatorname{tp}(v / A)$ (see Fact 2.10(1)) is trivially satisfied by any vector x, so it can be omitted.

The following definition was introduced (in a more general version) in [11, Section 12.1].

Definition 3.1. - If $M=(K(M), V(M)) \models T_{\infty}^{*}$ and $V(M)$ is countably dimensional over $K(M)$, then an approximating sequence for M is a sequence $\left(N_{r}\right)_{r \in \omega}$ of substructures of M with $K\left(N_{r}\right)=K(M)$ such that $N_{r} \models T_{r}, M=\bigcup_{r \in \omega} N_{r}$, and $N_{r} \subseteq N_{r}^{\prime}$ for all $r \leqslant r^{\prime}$.

In the alternating case, an approximating sequence is a sequence $\left(N_{r}\right)_{r \in\{2,4, \ldots\}}$ satisfying analogous properties.

We will write $M=\bigcup_{r}^{a} N_{r}$ to mean that $\left(N_{r}\right)_{r}$ is an approximating sequence for M (so in particular, $M \models T_{\infty}^{*}$).

The following fact follows by, for example, the proofs of Theorem 1 and Corollary 1 in [12, Chapter II.2].

FACT 3.2. - If $M \models{ }_{S} T_{\infty}^{*}$ and $V(M)$ has dimension \aleph_{0} over $K(M)$, then M has an approximating sequence $\left(N_{r}\right)_{r \in \omega}$, and for any such sequence we can find by the Gram-Schmidt process an orthonormal basis $\left(e_{i}\right)_{i \in\{1,2, \ldots\}}$ for $V(M)$ over $K(M)$ such that $V\left(N_{r}\right)=\operatorname{Lin}_{K(M)}\left(e_{1}, \ldots, e_{r}\right)$ for each $r \in \omega$. Similarly, in the alternating case, if $V(M)$ is countably dimensional over $K(M)$ then we can find an approximating sequence $\left(N_{r}\right)_{r \in\{2,4, \ldots\}}$ for M and a symplectic basis $\left(e_{i}, f_{i}\right)_{i \in \omega}$ for $V(M)$ over $K(M)$ such that $T_{2 r}=\operatorname{Lin}_{K(M)}\left(e_{1}, f_{1}, \ldots, e_{r}, f_{r}\right)$ for every $r \in \omega$. In both cases, given an orthonormal [symplectic] basis B for some N_{r} with $r \in \omega[r \in$ $\{2 l: l \in \omega\}$], we can find such an orthonormal [symplectic] basis for M (or for any $N_{r^{\prime}}$ with $r^{\prime} \geqslant r$) which extends B.

Moreover, both in the symmetric and the alternating case, if $v_{1}, \ldots, v_{m} \in$ $V(M)$, then there is a $K(M)$-linear subspace V_{0} of $V(M)$ such that $v_{1}, \ldots, v_{m} \in V_{0}$ and $\left(K(M), V_{0}\right) \models T_{2 m}$, and there is an approximating sequence $\left(N_{r}\right)_{r}$ for M with $N_{2 m}=\left(K(M), V_{0}\right)$.

By (the proof of) [11, Lemma 10.1.3] and quantifier elimination we have:
FACT 3.3. - Let $r \in \omega \cup\{\infty\}$ and $N=(V, K) \models T_{r}^{*}$.
(1) If $r \in \omega$, then the structure N is definable (over some parameters) in the pure field $(K,+, \cdot)$.
(2) For any $n \in \omega$, all definable [\emptyset-definable] in N subsets of K^{n} are definable [\emptyset-definable] in the pure field $(K,+, \cdot)$.

Definition 3.4. - Let $N=(V, K) \models T_{m}^{\mathrm{RCF}}$ for some $m \in \omega$. For any set X definable in N we put $\operatorname{dim}_{t}(X):=\operatorname{dim}_{t}^{K}(f[X])$ where f is any definable bijection between X and a subset of K^{n} for some n (note that $f[X]$ is definable in $(K,+, \cdot)$ by Fact 3.3(1)). This does not depend on the choice of f, because for any other definable bijection g between X and a subset of $K^{m^{\prime}}$, the sets $f[X]$ and $g[X]$ are in a K-definable bijection by Fact 3.3(2).

The following was stated in [11, Corollary 12.4.2] for definable subsets of V and $T_{\infty}^{*}=T_{\infty}$, but exactly the same proof works for definable subsets of any V^{k} and $T_{\infty}^{*} \in\left\{T_{\infty}, T_{\infty}^{\mathrm{RCF}}\right\}$ using quantifier elimination and definability of rk (Fact 2.5(5)).

Remark 3.5. - If $M=\bigcup_{r}^{a} N_{r}, M^{\prime}=\bigcup_{r}^{a} N_{r}^{\prime}, R \in \omega$ and X is a set definable over $N_{R} \cap N_{R}^{\prime}$, then $\mathrm{rk}_{N_{r}}\left(X \cap N_{r}\right)=\operatorname{rk}_{N_{r}^{\prime}}\left(X \cap N_{r}^{\prime}\right)$ for all $r \geqslant R$.

Remark 3.6. - If X is a set definable in T_{∞}^{*} over a model $M=\bigcup_{r}^{a} N_{r}$ and $X(M) \subseteq N_{R}$ for some $R \in \omega$, then for any $r \geqslant R$ we have

$$
\operatorname{rk}_{N_{r}}\left(X \cap N_{r}\right)=\operatorname{rk}_{N_{R}}\left(X \cap N_{R}\right)
$$

If $*=\mathrm{ACF}_{p}$, then also $\mathrm{rk}_{N_{R}}\left(X \cap N_{R}\right)=\mathrm{RM}_{M}(X(M))$.
Proof. - If $*=\mathrm{ACF}_{p}$, then, as the definable subsets of $X(M)=X \cap$ $N_{r}=X \cap N_{R}$ in the sense of N_{R}, N_{r} and M all coincide by Fact 3.3, we get $\mathrm{rk}_{N_{r}}\left(X \cap N_{r}\right)=\operatorname{rk}_{N_{R}}\left(X \cap N_{R}\right)=\operatorname{rk}_{M}(X(M))$.

If $*=\mathrm{RCF}$, then the equality $\mathrm{rk}_{N_{R}}\left(X \cap N_{R}\right)=\operatorname{rk}_{N_{R}}\left(X \cap N_{r}\right)=\operatorname{rk}_{N_{r}}(X \cap$ N_{r}) follows directly from Definition 3.4, as an N_{R}-definable bijection between $X \cap N_{r}$ and a set definable in K is in particular N_{r}-definable.

For a tuple of parameters [tuple of single variables, respectively] a, by $l(a)$ we will mean the number of vectors [vector variables] in a.

By Fact 2.10(1) we have:
FACT 3.7. - Let M be a countably dimensional model of S_{S}^{*} with an orthonormal basis $\left(e_{i}\right)_{i \in\{1,2, \ldots\}}$ and put $N_{r}=\left(K(M), \operatorname{Lin}_{K(M)}\left(e_{1}, \ldots, e_{r}\right)\right)$ for every $r \in \omega$. Suppose $R \in \omega$ and $a \in V(M) \backslash V\left(N_{R}\right)$. If we put $\beta_{i}=\left[a, e_{i}\right]$ for $i=1, \ldots, e_{R}$ and $\gamma=[a, a]$, then $\operatorname{tp}\left(a / N_{R}\right)$ is isolated by the formula

$$
\phi_{a, R}(x):=\bigwedge_{i=1, \ldots, R}\left[x, e_{i}\right]=\beta_{i} \wedge[x, x]=\gamma \wedge \theta_{R+1}\left(e_{1}, \ldots, e_{R}, x\right)
$$

(note that if $*=\mathrm{RCF}$ then the formula $\theta_{R+1}\left(e_{1}, \ldots, e_{R}, x\right)$ can be omitted here, as $\gamma \neq \sum_{i=1, \ldots, R} \beta_{i}^{2}$ since $a \notin N_{R}$, so $\bigwedge_{i=1, \ldots, R}\left[x, e_{i}\right]=\beta_{i} \wedge[x, x]=\gamma$ implies $\left.\theta_{R+1}\left(e_{1}, \ldots, e_{R}, x\right)\right)$.

Remark 3.8. - Suppose $n \in \omega$ and $M=\left(K, V_{0}\right)$ is a model of ${ }_{S} T_{n}^{*}$ (i.e. a model of ${ }_{S} T_{n}^{\mathrm{ACF}_{p}}$ or of $\left.{ }_{S} T_{n}^{\mathrm{RCF}}\right)$. Let $c \in K$ and assume $c>0$ in the real closed case. Then

$$
\operatorname{rk}_{M}\left(\left\{v \in V_{0}:[v, v]=c\right\}\right)=n-1
$$

and if $M \models{ }_{S} T_{m}^{\mathrm{ACF}_{p}}$ and $n \geqslant 3$, then we also have $\operatorname{DM}\left(\left\{v \in V_{0}:[v, v]=\right.\right.$ $c\})=1$.

Proof. - Choose an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of V_{0} over K. Then $\sum x_{i} e_{i} \mapsto\left(x_{1}, \ldots, x_{n}\right)$ gives a definable bijection between $\left\{v \in V_{0}:[v, v]=\right.$ $c\}$ and $\left\{\left(x_{1}, \ldots, x_{n}\right) \in K^{n}: x_{1}^{2}+\cdots+x_{n}^{2}=c\right\}$, which has dimension $n-1$ when $*=\mathrm{ACF}_{p}$, and topological dimension $n-1$ when $*=$ RCF (and $c>0)$, hence $\operatorname{rk}\left(\left\{v \in V_{0}:[v, v]=c\right\}\right)=n-1$. Assume now $M \models{ }_{S} T_{m}^{\mathrm{ACF}_{p}}$. If $c \neq 0$ then the sphere $\left\{\left(x_{1}, \ldots, x_{n}\right) \in K^{n}: x_{1}^{2}+\cdots+x_{n}^{2}=c\right\}$ is known to be irreducible for any $n \geqslant 2$. Also $\left\{\left(x_{1}, \ldots, x_{n}\right) \in K^{n}: x_{1}^{2}+\cdots+x_{n}^{2}=c\right\}$ is known to be irreducible for any $n \geqslant 3$ (this can be deduced, for example, from the Eisenstein criterion). Hence, $\operatorname{DM}\left(\left\{v \in V_{0}:[v, v]=c\right\}\right)=1$ for any $n \geqslant 3$ and any $c \in K$.

Corollary 3.9. - With the notation of Fact 3.7, for any $r>R$ with $a \in N_{r}$ we have $\operatorname{rk}_{N_{r}}\left(\phi_{a, R}\left(N_{r}\right)\right)=r-R-1$ and, if $*=A C F_{p}$ and $r \geqslant R+3$, then $\mathrm{DM}_{N_{r}}\left(\phi_{a, R}\left(N_{r}\right)\right)=1$.

Proof. - Put $V_{0}:=\operatorname{Lin}_{K(M)}\left(e_{R+1}, \ldots, e_{r}\right)$. Then clearly $\left(K(M), V_{0}\right) \models$ ${ }_{S} T_{r-R}^{*}$. Let a_{0} be the projection of a on $V\left(N_{R}\right)$. Then $w \mapsto w-a_{0}$ gives a definable bijection between $\phi_{a, R}\left(N_{r}\right)$ and $\left\{v \in V_{0}:[v, v]=[a, a]-\left[a_{0}, a_{0}\right]\right\}$. Hence the conclusion follows by Remark 3.8 (note that if $*=$ RCF then $[a, a]-\left[a_{0}, a_{0}\right] \neq 0$ as $\left.a \notin V\left(N_{R}\right)\right)$.

Proposition 3.10. - Suppose $M=\bigcup_{r \in \omega}^{a} N_{r}$ and $X \subseteq V$ is a set definable by a formula $\phi(x, a)$ which is not contained in any finite-dimensional subspace of V. Let $R \in \omega$ be minimal such that $R \geqslant 4 l(a)+1$ and $a \subseteq N_{R}$. Then there is $d \leqslant 2 l(a)+1$ such that for any $r \geqslant R$ we have

$$
\operatorname{rk}_{N_{r}}\left(X \cap N_{r}\right)=r-d
$$

By Fact 3.5, d does not depend on the choice of M and $\left(N_{r}\right)_{r \in \omega}$.
Moreover, if $*=A C F_{p}$ and $r \geqslant R+2$ for R as above, then $\operatorname{DM}\left(X \cap N_{r}\right)=$ $\operatorname{DM}\left(X \cap N_{R+2}\right)$.

Proof. - By modifying N_{r} 's for $r<R$ (using Fact 3.2), we may assume that $a \subseteq N_{2 l(a)}$. Choose an orthonormal basis $\left(e_{0}, e_{1}, \ldots\right)$ for M such that $N_{r}=\operatorname{Lin}_{K(M)}\left(e_{1}, \ldots, e_{r}\right)$ for every $r \in \omega$.

Claim 1. - There is $d \in\{0,1, \ldots, 2 l(a)+1\}$ such that for any $r \geqslant$ $2 l(a)+1$ we have $\operatorname{rk}_{N_{r}}\left(\left(X \backslash N_{2 l(a)}\right) \cap N_{r}\right)=r-d$.

Proof of the claim. - For any $v \in\left(X \backslash N_{2 l(a)}\right) \cap N_{r}$ there is at least one, and at most two vectors in $\phi_{v, N_{2 l(a)}}\left(N_{2 l(a)+1}\right)$ (as defined in Fact 3.7). Namely, if $v=v_{0}+v_{1}$ where $v_{0} \in N_{2 l(a)}$ and v_{1} is orthogonal to $N_{2 l(a)}$, then w must be of the form $v_{0}+v_{1}^{\prime}$ where $v_{1}^{\prime} \in \operatorname{Lin}_{K(M)}\left(e_{2 l(a)+1}\right)$ and $\left[v_{1}^{\prime}, v_{1}^{\prime}\right]=\left[v_{1}, v_{1}\right]$. Clearly there are two possibilities on such a v_{1}^{\prime} in case $v_{1} \neq 0$, and they are additive inverses of each other, and one such vector if $v_{1}=0$. Thus we have a definable surjection

$$
f_{2 l(a)+1}^{r}:\left(X \backslash N_{2 l(a)}\right) \cap N_{r} \rightarrow\left(X \backslash N_{2 l(a)}\right) \cap N_{2 l(a)+1} / \sim
$$

sending $v \in\left(X \backslash N_{2 l(a)}\right) \cap N_{r}$ to the at most two-element set $\phi_{v, N_{2 l(a)}}\left(N_{2 l(a)+1}\right)$, where \sim is the relation identifying $v_{0}+v_{1}$ with $v_{0}-v_{1}$ for $v_{0} \in N_{2 l(a)}$ and $v_{1} \in \operatorname{Lin}_{K(M)}\left(e_{2 l(a)+1}\right)$. Put

$$
t:=\operatorname{rk}_{N_{2 l(a)+1}}\left(\operatorname{im}\left(f_{2 l(a)+1}^{r}\right)\right)=\operatorname{rk}_{N_{2 l(a)+1}}\left(\left(X \backslash N_{2 l(a)}\right) \cap N_{2 l(a)+1} / \sim\right)
$$

(\sim above actually does not change the rank by Fact 2.5(4), as all \sim classes are finite, and hence of rank 0). Clearly $t \leqslant 2 l(a)+1$. Now, for any $w \in\left(X \backslash N_{2 l(a)}\right) \cap N_{2 l(a)+1}$ we have that $\left(f_{2 l(a)+1}^{r}\right)^{-1}\left([w]_{\sim}\right)=\phi_{w, N_{2 l(a)}}\left(N_{r}\right)$, which, by Corollary 3.9, has rank $r-2 l(a)-1$, and degree 1 when $*=\mathrm{ACF}_{p}$ and $r \geqslant R+2$. Hence, by Fact 2.5(4) we get that

$$
\operatorname{rk}_{N_{r}}\left(\left(X \backslash N_{2 l(a)}\right) \cap N_{r}\right)=r-2 l(a)-1+t=r-d
$$

for $d:=2 l(a)+1-t$. As t did not depend on r, neither does d, so we are done.

As $X \cap N_{r}=\left(\left(X \backslash N_{2 l(a)}\right) \cap N_{r}\right) \cup\left(X \cap N_{2 l(a)}\right)$ and $r k\left(X \cap N_{2 l(a)}\right) \leqslant 2 l(a) \leqslant$ $r-d$ for $r \geqslant 4 l(a)+1$, we conclude by Fact $2.5(2)$ that $\mathrm{rk}_{N_{r}}\left(X \cap N_{r}\right)=r-d$ for every $r \geqslant 4 l(a)+1$.

Now assume that $*=\mathrm{ACF}_{p}$ and $r \geqslant R+2$. We have $\operatorname{RM}\left(\left(X \backslash N_{2 l(a)}\right) \cap\right.$ $\left.N_{r}\right)>\operatorname{RM}\left(X \cap N_{2 l(a)}\right)$, which, by Fact 2.5(7), implies that

$$
\begin{aligned}
\operatorname{DM}\left(X \cap N_{r}\right) & =\operatorname{DM}\left(\left(X \backslash N_{2 l(a)}\right) \cap N_{r}\right)=\operatorname{DM}\left(\left(X \backslash N_{2 l(a)}\right) \cap N_{2 l(a)+1} / \sim\right) \\
& =\operatorname{DM}\left(\left(X \backslash N_{2 l(a)}\right) \cap N_{R+2}\right)=\operatorname{DM}\left(X \cap N_{R+2}\right)
\end{aligned}
$$

where the second and third equalities follow by Fact 2.5(9) applied to $f_{2 l(a)+1}^{r}$ and to $f_{2 l(a)+1}^{R+2}$, respectively.

Remark 3.11. - Proposition 12.4.1 from [11] uses the claim stated in the paragraph preceding it which says that for X and $\left(N_{r}\right)_{r \in \omega}$ as above (with $\left.*=\mathrm{ACF}_{p}\right)$, then one has $\mathrm{RM}_{N_{r}}\left(X \cap N_{r}\right) \leqslant \mathrm{RM}_{N_{r+1}}\left(X \cap N_{r+1}\right)+1$ for every r. This is not true even if we assume that X is definable over N_{r} : for example, if $X=V \backslash \operatorname{Lin}_{K}\left(e_{1}, \ldots, e_{r}\right)$, then $\operatorname{RM}_{N_{r}}\left(X \cap N_{r}\right)=\operatorname{RM}(\emptyset)=-1$, but $\mathrm{RM}_{N_{r+1}}\left(X \cap N_{r+1}\right)=r+1$.

Remark 3.12. - If $[\cdot, \cdot]$ is alternating rather than symmetric, then in the setting of Proposition 3.10 we get that there is $d \leqslant 2 l(a)$ such that for any $R \geqslant 2 l(a)$ for which $a \subseteq N_{2 R}$ we have $\mathrm{rk}_{N_{2 R}}\left(X \cap N_{2 R}\right)=2 R-d$ and if $*=\mathrm{ACF}_{p}$ then $\mathrm{DM}_{N_{2 r}}\left(X \cap N_{2 r}\right)=1$ for any $r>R$. The argument is very similar to that in the symmetric case: First, by Fact 3.2 we can find a substructure $N \models T_{2 l(a)}^{*}$ of $N_{2 R}$ containing a with $K(N)=K(M)$, so we may assume that $a \subseteq N_{2 l(a)}$. Next, we choose $\left(e_{i}, f_{i}\right)_{i \in \omega}$ such that $\left(e_{i}, f_{i}\right)_{i \leqslant R}$ is a symplectic basis for $N_{2 R}$ for every R and let $\pi: N_{2 R} \rightarrow N_{2 l(a)}$ be the projection with respect to the basis $\left(e_{i}, f_{i}\right)_{i}$. Then for any $R>l(a)$ we have that $X \cap N_{2 R}=\left(X \cap N_{2 l(a)}\right) \cup\left(\left(\pi\left(X \cap N_{2 R}\right) \oplus \operatorname{Lin}_{K(M)}\left(\left(e_{i}, f_{i}\right)_{l(a)<i \leqslant R}\right)\right) \backslash N_{2 l(a)}\right)$ has rank $2 R-2 l(a)+\operatorname{rk}\left(\pi\left(X \cap N_{2 R}\right)\right)=2 R-2 l(a)+\operatorname{rk}\left(\pi\left(X \cap N_{2(l(a)+1)}\right)\right)$, so we can put $d:=2 l(a)-\operatorname{rk}\left(\pi\left(X \cap N_{2(l(a)+1)}\right)\right.$, and the second assertion follows as in the symmetric case.

Below we continue working with the symmetric case, the arguments in the alternating case being virtually the same.

Having Proposition 3.10, the rest of the arguments from [11, Subsection 12.4] go through unchanged.

Fact/Definition 3.13 ([11, Proposition 12.4.1, Corollary 12.4.2, Definition 12.4.3]). - Let $X \subseteq V$ be non-empty and definable in T_{∞} over a finite tuple a. Then there exists $d \leqslant 2 l(a)+1$ such that whenever $M=\bigcup_{r}^{a} N_{r}$, and $R \in \omega$ is such that $a \subseteq N_{R}$ and $R \geqslant 4 l(a)+1$, then:

$$
\operatorname{rk}_{N_{n}}\left(X \cap N_{n}\right)=d \text { for all } n \geqslant R \text { or } \operatorname{rk}_{N_{n}}\left(X \cap N_{n}\right)=n-d \text { for all } n \geqslant R .
$$

In the first case, we write $\operatorname{Dim}(X)=d$ and $\operatorname{Codim}(X)=\infty$, and in the second case we write $\operatorname{Dim}(X)=\infty$ and $\operatorname{Codim}(X)=d$. In the first case d can be chosen not greater than $2 l(a)$.

Fact 3.14 ([11, Theorem 12.4.5]). - Let X be a definable subset of the vector sort V. Then:
(1) Exactly one of $\operatorname{Dim}(X)$ and $\operatorname{Codim}(X)$ is finite.
(2) If $\phi(x, y)$ is a formula with x a single variable, then there are formulas without parameters $\left(\psi_{n}(y)\right)_{n \in \omega}$ and $\left(\chi_{n}(y)\right)_{n \in \omega}$ such that,
for each $n \in \omega$, one has $\operatorname{Dim}(\phi(x, b))=n \Longleftrightarrow \models \psi_{n}(b)$ and $\operatorname{Codim}(\phi(x, b))=n \Longleftrightarrow \models \chi_{n}(b)$.
(3) $\operatorname{Dim}(X)$ is finite iff X is contained in a finite-dimensional subspace of V, and in this case $\operatorname{rk}(X)=\operatorname{Dim}(X)$.
Remark 3.15. - It is clear from the above result that there are formulas $\psi_{\text {fin }}(y)$ and $\chi_{\text {fin }}(y)$ such that $\operatorname{Dim}(\phi(x, b)) \in \omega \Longleftrightarrow \models \psi_{\text {fin }}(b)$ and $\operatorname{Codim}(\phi(x, b)) \in \omega \Longleftrightarrow \models \chi_{\text {fin }}(b)$.

4. Dimension on all definable sets

In this section, we define a notion of dimension of an arbitrary set definable in T_{∞}^{*} and we study its properties. On definable subsets of V it is going to distinguish between infinite-dimensional sets of distinct codimensions, so formally it is not an extension of Dim. Thus we are going to denote it by dim rather than Dim to avoid confusion. We continue working in T^{*} with $* \in\left\{\mathrm{ACF}_{p}, \mathrm{RCF}\right\}$.

Let $I=\left\{f \in(\mathbb{Z},+)^{\omega}: f(n)=0\right.$ for almost all $\left.n \in \omega\right\} \leqslant(\mathbb{Z},+)^{\omega}$. Consider the quotient group:

$$
S:=(\mathbb{Z},+)^{\omega} / I
$$

For a function $f: \omega \rightarrow \mathbb{Z}$ we will write $[f]$ to mean f / I, and when f is a given by a linear function over \mathbb{Z}, i.e. there are $d_{0}, d_{1} \in \mathbb{Z}$ such that $f(n)=d_{0}+d_{1} n$ for every $n \in \omega$, we shall identify f with the linear polynomial $d_{0}+d_{1} n$ in variable n. For example, $[n]$ denotes the class of the function $g: \omega \rightarrow \mathbb{Z}$ given by $g(n)=n$ for any n. Now put

$$
S_{\text {lin }}:=\left\{\left[d_{0}+d_{1} n\right]: d_{0}, d_{1} \in \mathbb{Z}\right\} \leqslant S
$$

We will write $[f] \leqslant[g]$ if $f(k) \leqslant g(k)$ for almost all $k \in \omega$. For a partial function $f: \omega \nrightarrow \mathbb{Z}$ with domain co-finite in ω, by $[f]$ we will mean $[\bar{f}]$ for any $\bar{f}: \omega \rightarrow \mathbb{Z}$ extending f.

Remark 4.1. - $\left(S_{\operatorname{lin}},+, \leqslant\right)$ is an ordered abelian group isomorphic to $(\mathbb{Z} \times \mathbb{Z},+, \leqslant l e x)$.

We will write $[f]<[g]$ when $[f] \leqslant[g]$ but $[f] \neq[g]$.
Definition 4.2. - Suppose X is a non-empty set definable in T_{∞}^{*} over a model $M=\bigcup_{r}^{a} N_{r}$. Let $f_{X, M,\left(N_{r}\right)_{r \in \omega}}: \omega \rightarrow \mathbb{Z}$ be given by $f_{X, M,\left(N_{r}\right)_{r \in \omega}}=$ $\mathrm{rk}_{N_{r}}\left(X \cap N_{r}\right)$ for each r. Put

$$
\operatorname{dim}(X):=\left[f_{X, M,\left(N_{r}\right)_{r \in \omega}}\right] \in S
$$

We also put $\operatorname{dim}(\emptyset)=-1$.

In the alternating case we define $\operatorname{dim}(X)$ to be the class of the function

$$
f_{X, M,\left(N_{r}\right)_{r \in\{2,4, \ldots\}}}:\{2,4, \ldots\} \rightarrow \mathbb{Z}
$$

with respect to being equal except finitely many points. However, we will see in Theorem 4.10 that the dimension of any definable set is given by a linear function (both in the symmetric and the alternating case), so, having Theorem 4.10 , we can naturally identify $\operatorname{dim}(X)$ with an element of $S_{l i n}$ also in the alternating case.

Remark 4.3. - By Remark 3.5, if X is also definable over $M^{\prime}=\bigcup_{r \in \omega}^{a} N_{r}^{\prime}$, then $\left[f_{X, M,\left(N_{r}\right)_{r \in \omega}}\right]=\left[f_{X, M^{\prime},\left(N_{r}^{\prime}\right)_{r \in \omega}}\right]$, so the definition of $\operatorname{dim}(X)$ is independent of the choice of the model M and the approximating sequence $\left(N_{r}\right)_{r \in \omega}$.

We now aim to prove that the dimension of any set definable in T_{∞}^{*} belongs to $S_{\text {lin }}$ (so in particular the dimensions of the definable sets are linearly ordered). This will be proved first for definable subsets of V^{k} by induction on k simultaneously with some other statements. In particular, we define below a family of finite sets $D_{k, l} \subseteq S_{l i n}$ which will turn out to contain the dimension of any subset of V^{k} definable over a set containing at most l vectors.

Definition 4.4. - For any $k, l \in \omega$ put

$$
D_{k, l}:=\left\{\begin{array}{l}
{\left[d_{0}+d_{1} n\right]: 0 \leqslant d_{1} \leqslant k} \\
\text { and }-d_{1}(2 l+1)-k(k-1) \leqslant d_{0} \leqslant\left(k-d_{1}\right) 2 l+k(k-1)
\end{array}\right\} \subseteq S_{\text {lin }}
$$

The following property of the sets $D_{k, l}$ will be used in the inductive proof of Theorem 4.10.

Remark 4.5. - $D_{k, l}+D_{1, k+l} \subseteq D_{k+1, l}$ for any $l, k \in \omega$.
Proof. - Suppose $\left[d_{0}+d_{1} n\right] \in D_{k, l}$ and $\left[d_{0}^{\prime}+d_{1}^{\prime} n\right] \in D_{1, k+l}$. Then clearly $d_{1}+d_{1}^{\prime} \leqslant k+1$ and

$$
-d_{1}(2 l+1)-k(k-1) \leqslant d_{0} \leqslant\left(k-d_{1}\right) 2 l+k(k-1)
$$

as well as

$$
-d_{1}^{\prime}(2 k+2 l+1) \leqslant d_{0}^{\prime} \leqslant\left(1-d_{1}^{\prime}\right)(2 k+2 l)
$$

so

$$
\begin{aligned}
-d_{1}(2 l+1)- & k(k-1)-d_{1}^{\prime}(2 k+2 l+1) \\
& \leqslant d_{0}+d_{0}^{\prime} \leqslant\left(k-d_{1}\right) 2 l+k(k-1)+\left(1-d_{1}^{\prime}\right)(2 k+2 l)
\end{aligned}
$$

which gives what we need, as

$$
\begin{aligned}
-d_{1}(2 l+1)-k(k-1)-d_{1}^{\prime} & (2 k+2 l+1) \\
& =-\left(d_{1}+d_{1}^{\prime}\right)(2 l+1)-2 d_{1}^{\prime} k-k(k-1) \\
& \geqslant-\left(d_{1}+d_{1}^{\prime}\right)(2 l+1)-2 k-k(k-1) \\
& =-\left(d_{1}+d_{1}^{\prime}\right)(2 l+1)-k(k+1)
\end{aligned}
$$

and, similarly, on the right-hand side:

$$
\begin{aligned}
\left(k-d_{1}\right) 2 l+k(k-1)+ & \left(1-d_{1}^{\prime}\right)(2 k+2 l) \\
& =\left(k+1-d_{1}-d_{1}^{\prime}\right) 2 l+k(k-1)+\left(1-d_{1}^{\prime}\right) 2 k \\
& \leqslant\left(k+1-d_{1}-d_{1}^{\prime}\right) 2 l+k(k+1) .
\end{aligned}
$$

Hence $\left[d_{0}+d_{1} n\right]+\left[d_{0}^{\prime}+d_{1}^{\prime} n\right]=\left[d_{0}+d_{0}^{\prime}+\left(d_{1}+d_{1}^{\prime}\right) n\right] \in D_{k+1, l}$.
Definition 4.6. - Let $\alpha: \omega^{2} \rightarrow \omega$ be any function such that:

- $\alpha(k, l) \geqslant 2 k l+2 l+2 k^{2}+1$ for any $k, l \in \omega$.
- $\alpha(k+m, l) \geqslant \alpha(k, l+m)$ and $\alpha(k+m, l) \geqslant \alpha(k, l)$ for any $k, l, m \in \omega$.

Clearly, such a function can be constructed recursively on k. We will say that a definable set $X \subseteq V^{k}$ is nice, if $X=\emptyset$ or for each a over which X is definable one has $\operatorname{dim}(X)=\left[d_{0}+d_{1} n\right] \in D_{k, l(a)}$, and whenever $M=$ $\bigcup_{r \in \omega}^{a} N_{r}, R \geqslant \alpha(k, l(a))$, and $a \subseteq N_{R}$, then we have

$$
\mathrm{rk}_{N_{R}}\left(X \cap N_{R}\right)=d_{0}+d_{1} R
$$

In the above situation, we know by the definition of dim that if $\operatorname{dim}(X)=$ [$\left.d_{0}+d_{1} n\right]$ then the equality $\mathrm{rk}_{N_{R}}\left(X \cap N_{R}\right)=d_{0}+d_{1} R$ holds for sufficiently large R, but the niceness property, saying that it holds for any R with $R \geqslant \alpha(k, l(a))$ and $a \subseteq N_{R}$, allows us to choose R uniformly when we work with a uniformly definable family, which will be crucial in the proof of Lemma 4.9(3) below.

Note that by Fact 3.13 we have that any definable $X=\phi(\mathfrak{C}, a) \subseteq V$ is nice: If $\operatorname{Dim}(X)=d_{0} \in \omega$, then $0 \leqslant d_{0} \leqslant 2 l(a)$ and $\operatorname{dim}(X)=\left[d_{0}\right]$, so the inequalities $-d_{1}(2 l(a)+1) \leqslant d_{0} \leqslant\left(k-d_{1}\right) 2 l(a)$ are satisfied as $d_{1}=0$ and $k=1$. If $\operatorname{Codim}(X) \in \omega$, then $\operatorname{dim}(X)=\left[d_{0}+n\right]$ for $d_{0}=-\operatorname{Codim}(X)$, so $d_{1}=1$ and $-2 l(a)-1 \leqslant d_{0} \leqslant 0$, so again the required inequalities hold. In both cases the equality $\operatorname{rk}_{N_{R}}\left(X \cap N_{R}\right)=d_{0}+d_{1} R$ holds for any $R \geqslant 4 l(a)+1$ with $a \subseteq N_{R}$, hence for any $R \geqslant \alpha(1, l(a))$, as $\alpha(1, l(a)) \geqslant 4 l(a)+1$.

We will eventually see in Theorem 4.10 that all sets definable in T_{∞}^{*} are nice.

Lemma 4.7. - If $\left[d_{0}+d_{1} n\right],\left[d_{0}^{\prime}+d_{1}^{\prime} n\right] \in D_{k, l}$ and $\left[d_{0}+d_{1} n\right]>\left[d_{0}^{\prime}+d_{1}^{\prime} n\right]$, then $d_{0}+d_{1} r>d_{0}^{\prime}+d_{1}^{\prime} r$ for any $r \geqslant \alpha(k, l)$.

Proof. - If $d_{1}=d_{1}^{\prime}$ then $d_{0}>d_{0}^{\prime}$, and the inequality is obvious, so assume $d_{1}>d_{1}^{\prime}$. Then, by the inequalities in the definition of niceness we get:

$$
\begin{aligned}
d_{0}+ & d_{1} r-\left(d_{0}^{\prime}+d_{1}^{\prime} r\right) \\
& =d_{0}-d_{0}^{\prime}+\left(d_{1}-d_{1}^{\prime}\right) r \\
& \geqslant-d_{1}(2 l+1)-k(k-1)-\left(\left(k-d_{1}^{\prime}\right) 2 l+k(k-1)\right)+\left(d_{1}-d_{1}^{\prime}\right) \alpha(k, l) \\
& =\left(d_{1}^{\prime}-d_{1}\right) 2 l-2 k l-d_{1}-2 k(k-1)+\left(d_{1}-d_{1}^{\prime}\right) \alpha(k, l) \\
& =\left(d_{1}-d_{1}^{\prime}\right)(\alpha(k, l)-2 l)-2 k l-2 k(k-1)-d_{1} \\
& \geqslant \alpha(k, l)-2 l-2 k l-2 k^{2}>0
\end{aligned}
$$

so $d_{0}+d_{1} r>d_{0}^{\prime}+d_{1}^{\prime} r$.
Lemma 4.8. - If $M=\bigcup_{r}^{a} N_{r}$ and $\emptyset \neq X=\phi(M, a)$ for some formula $\phi(x ; y)$, then $X \cap N_{r} \neq \emptyset$ for any $r \geqslant 2 l(x y)$ such that $a \subseteq N_{r}$.

Proof. - This is similar to the proof of Fact 2.10(1). Let $c \in X$ and put $l:=l(a)$. We can find $e_{1}, \ldots, e_{r}, e_{2 l+1}^{\prime}, \ldots, e_{r}^{\prime}$ such that $\left(e_{1}, \ldots, e_{r}\right)$ and $\left(e_{1}, \ldots, e_{2 l}, e_{2 l+1}^{\prime}, \ldots, e_{r}^{\prime}\right)$ are orthonormal sequences,

$$
\begin{aligned}
& V(a) \subseteq \operatorname{Lin}_{K(M)}\left(e_{1}, \ldots, e_{2 l}\right) \\
& V(c) \subseteq \operatorname{Lin}_{K(M)}\left(e_{1}, \ldots, e_{2 l}, e_{2 l+1}^{\prime}, \ldots, e_{r}^{\prime}\right)
\end{aligned}
$$

and

$$
V\left(N_{r}\right)=\operatorname{Lin}_{K(M)}\left(e_{1}, \ldots, e_{r}\right)
$$

Then letting $f=\operatorname{id}_{K(M)} \cup F$ where F is a $K(M)$-linear function sending $\left(e_{1}, \ldots, e_{2 l}, e_{2 l+1}^{\prime}, \ldots, e_{r}^{\prime}\right)$ to $\left(e_{1}, \ldots, e_{r}\right)$, we see by quantifier elimination that $\operatorname{tp}(f(c) / a)=\operatorname{tp}(c / a)$. In particular, $f(c) \in X \cap N_{r}$.

Lemma 4.9.
(1) If $X \subseteq Y$ then $\operatorname{dim}(X) \leqslant \operatorname{dim}(Y)$
(2) If $X_{1}, X_{2} \subseteq V^{k}$ are nice then

$$
\operatorname{dim}\left(X_{1} \cup X_{2}\right)=\max \left(\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right)
$$

If additionally X_{1} and X_{2} are definable over every tuple of parameters over which X is definable, then $X_{1} \cup X_{2}$ is also nice.
(3) Let $\pi: V^{k+m} \rightarrow V^{k}$ be the projection on the last k coordinates (where $m \geqslant 1$). Suppose $X \subseteq V^{k+m}$ is definable and non-empty, all sections $X_{y}=\left\{x \in V^{m}:(x, y) \in X\right\}$ with $y \in \pi[X]$ are
nice and they all have same dimension s, and $\pi[X]$ is nice. Then $\operatorname{dim}(X)=s+\operatorname{dim}(\pi[X])$.
If additionally $m=1$ then X is nice.

Proof.

(1). - Suppose $X=\phi(\mathfrak{C}, a), Y=\psi(\mathfrak{C}, b), M=\bigcup_{r \in \omega}^{a} N_{r}$ and $a, b \subseteq N_{R}$ for some $R \in \omega$. Then for any $r \geqslant R$ we have $X \cap N_{r} \subseteq Y \cap N_{r}$, so $\mathrm{rk}_{N_{r}}\left(X \cap N_{r}\right) \leqslant \mathrm{rk}_{N_{r}}\left(Y \cap N_{r}\right)$ by Fact 2.5(1). Hence $\operatorname{dim}(X) \leqslant \operatorname{dim}(Y)$.
(2). - Suppose $\left.X_{1}=\phi(\mathfrak{C}, a), X_{2}=\psi(\mathfrak{C}, b), \operatorname{dim}\left(X_{1}\right)\right]=\left[d_{0}+d_{1} n\right]$, $\operatorname{dim} X_{2}=\left[d_{0}^{\prime}+d_{1}^{\prime} n\right], M=\bigcup_{r \in \omega}^{a} N_{r}$, and $R \geqslant \alpha(k, \max (l(a), l(b)))$ is such that $a, b \subseteq N_{R}$. We may assume $\operatorname{dim}\left(X_{1}\right) \geqslant \operatorname{dim}\left(X_{2}\right)$. For any $r \geqslant R$ we have by Fact $2.5(2)$ that

$$
\begin{aligned}
\mathrm{rk}_{N_{r}}\left(\left(X_{1} \cup X_{2}\right) \cap N_{r}\right) & =\operatorname{rk}_{N_{r}}\left(\left(N_{r} \cap X_{1}\right) \cup\left(N_{r} \cap X_{2}\right)\right) \\
& =\max \left(\mathrm{rk}_{N_{r}}\left(X_{1} \cap N_{r}\right), \mathrm{rk}_{N_{r}}\left(X_{2} \cap N_{r}\right)\right)
\end{aligned}
$$

which equals $d_{0}+d_{1} r$ for almost all $r \in \omega$, and hence $\operatorname{dim}\left(X_{1} \cup X_{2}\right)=$ $\left[d_{0}+d_{1} n\right]=\max \left(\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right)$.

Suppose additionally that X_{1} and X_{2} are definable over any tuple of parameters over which $X_{1} \cup X_{2}$ is definable, and consider any c such that $X_{1} \cup X_{2}$ (so also X_{1} and X_{2}) is definable over c. Then the above remains true for any $r \geqslant \alpha(k, l(c))$ with $c \subseteq N_{r}$. For any such r, we know by niceness of X_{1} and X_{2} that $\mathrm{rk}_{N_{r}}\left(X_{1} \cap N_{r}\right)=d_{0}+d_{1} r$ and $\mathrm{rk}_{N_{r}}\left(X_{2} \cap N_{r}\right)=d_{0}^{\prime}+d_{1}^{\prime} r$. By Lemma 4.7 we have $d_{0}+d_{1} r \geqslant d_{0}^{\prime}+d_{1}^{\prime} r$, so $\mathrm{rk}_{N_{R}}\left(\left(X_{1} \cup X_{2}\right) \cap N_{r}\right)=$ $\max \left(d_{0}+d_{1} r, d_{0}^{\prime}+d_{1}^{\prime} r\right)=d_{0}+d_{1} r$, and hence $X_{1} \cup X_{2}$ is nice. Assume $X=\phi(\mathfrak{C}, a)$ and put $l=l(a)$. Let $d_{0}, d_{1} \in \omega$ be such that $s=\left[d_{0}+d_{1} n\right]$; as the sections of X are nice, we have that $\left[d_{0}+d_{1} n\right] \in D_{m, k+l}$. Consider any $M=\bigcup_{r \in \omega}^{a} N_{r}$, and $r \geqslant \alpha(k+m, l)$ with $a \subseteq N_{r}$. Put $Y=\pi[X]$.

For any $y \in Y \cap N_{r}$ we have $\left(X \cap N_{r}\right)_{y}=X_{y} \cap N_{r}$, so, as $r \geqslant \alpha(k+m, l) \geqslant$ $\alpha(m, l+k)=\alpha(m, l(a y))$ and $X_{y} \subseteq V^{m}$ is a nice set definable over ay, we get

$$
\operatorname{rk}_{N_{r}}\left(\left(X \cap N_{r}\right)_{y}\right)=d_{0}+d_{1} r .
$$

Note also that if $y \in Y=\pi[X]$ then X_{y} is a non-empty set definable over ay, so as, $r \geqslant \alpha(k+m, l)>2(k+m+l)$, it must meet N_{r} by Lemma 4.8. Thus, $Y \cap N_{r}=\pi\left[X \cap N_{r}\right]$. Hence, by Fact 2.5(4), we have $\operatorname{rk}_{N_{r}}\left(X \cap N_{r}\right)=\operatorname{rk}_{N_{r}}\left(Y \cap N_{r}\right)+d_{0}+d_{1} r$. As Y is nice and $r \geqslant \alpha(k+$ $m, l) \geqslant \alpha(k, l)$, we get that $\operatorname{rk}_{N_{r}}\left(Y \cap N_{r}\right)=d_{0}^{\prime}+d_{1}^{\prime} r$ for $d_{0}^{\prime}, d_{1}^{\prime}$ such that $\operatorname{dim}(Y)=\left[d_{0}^{\prime}+d_{1}^{\prime} n\right] \in D_{k, l}$. So $\mathrm{rk}_{N_{r}}\left(X \cap N_{r}\right)=d_{0}+d_{0}^{\prime}+\left(d_{1}+d_{1}^{\prime}\right) r$. Hence $\operatorname{dim}(X)=\left[d_{0}+d_{0}^{\prime}+\left(d_{1}+d_{1}^{\prime}\right) n\right]=s+\operatorname{dim}(Y)$.

If, additionally, $m=1$, then $\operatorname{dim}(X) \in D_{k, l}+D_{1, k+l} \subseteq D_{k+1, l}$ by Remark 4.5, so X is nice.

Theorem 4.10. - We work in T_{∞}^{*}.
(1) For any $k \in \omega$, every non-empty definable subset of V^{k} is nice. In particular, $\operatorname{dim}(X) \in D_{k, l(a)}$ for any $X \subseteq V^{k}$ definable over a finite tuple a.
(2) Suppose $k \in \omega, x=\left(x_{1}, \ldots, x_{k}\right)$ where each x_{i} is a variable of the sort V, and y is an arbitrary tuple of variables. Then for any formula $\phi(x ; y)$ over \emptyset and any $s \in D_{k, l(y)}$ the set

$$
D_{\phi(x ; y), s}:=\{a \in \mathfrak{C}: \operatorname{dim}(\phi(x ; a))=s\}
$$

is \emptyset-definable.
Proof. - We will prove (1) and (2) simultaneously by induction on k.
When $k=1$, we know that (1) and (2) both hold by Section 3.
Suppose now $k \geqslant 1$ and (1) and (2) are true for $1,2, \ldots, k$. Consider any formula $\phi(x ; y)$ over \emptyset with $x=\left(x_{1}, \ldots, x_{k+1}\right)$, where each x_{i} is a variable of the sort V.

Consider any $a \in \mathfrak{C}$ compatible with y, and write $X_{a}=\phi(\mathfrak{C} ; a) \subseteq V^{k+1}$. For $b \in V^{k}$ put

$$
X_{b, a}=\phi(\mathfrak{C} ; b, a) \subseteq V
$$

For any $s \in D_{1, k+l(y)}$ let $\chi_{s}\left(x_{2}, \ldots, x_{k+1} ; y\right)$ be a formula over \emptyset such that

$$
\begin{aligned}
& \vDash \chi_{s}\left(v_{2}, \ldots, v_{k+1} ; w\right) \\
& \quad \Longleftrightarrow \operatorname{dim}\left(\phi\left(\mathfrak{C} ; v_{2}, \ldots, v_{k+1}, w\right)\right)=s \text { for all } v_{2}, \ldots, v_{k+1}, w \in \mathfrak{C}
\end{aligned}
$$

(such a formula exists, as (2) holds for $k=1$). Put $X_{s, a}=\{b \in V$: $\left.\operatorname{dim}\left(X_{b, a}\right)=s\right\}=\chi(\mathfrak{C} ; a)$.

Then letting $\pi: V^{k+1} \rightarrow V^{k}$ be the projection on the last k coordinates, we have for each $s \in D_{1, k+l(y)}$ and each $b \in X_{s, a}$ that $\operatorname{dim}\left(\left(\left.\pi\right|_{X_{a}}\right)^{-1}(b)\right)=$ $\operatorname{dim}\left(X_{b, a}\right)=s$ and $X_{b, a}$ is nice by the inductive hypothesis, as is $X_{s, a}$. Thus, by Lemma 4.9(3), we get that $\left(\left.\pi\right|_{X_{a}}\right)^{-1}\left[X_{s, a}\right]$ is nice. Now

$$
X_{a}=\bigcup_{s \in D_{1, k+l(y)}}\left(\left.\pi\right|_{X_{a}}\right)^{-1}\left[X_{s, a}\right]
$$

and $\left(\left.\pi\right|_{X_{a}}\right)^{-1}\left[X_{s, a}\right]$ is nice for each $s \in D_{1, k+l(y)}$, so by Lemma 4.9(2) we conclude that X_{a} is nice, which proves part 1 of the theorem for $k+1$.

Lemma 4.9 gives us also that

$$
\operatorname{dim}\left(X_{a}\right)=\max _{s \in D_{1, k+l(y)}} \operatorname{dim}\left(\left(\left.\pi\right|_{X_{a}}\right)^{-1}\left[X_{s, a}\right]\right)
$$

and

$$
\operatorname{dim}\left(\left(\left.\pi\right|_{X_{a}}\right)^{-1}\left[X_{s, a}\right]\right)=s+\operatorname{dim}\left(X_{s, a}\right)
$$

Hence, putting

$$
I=D_{1, k+l(y)} \times D_{k, l(y)}
$$

we get that for any $a \in \mathfrak{C}$ compatible with y we have

$$
\operatorname{dim}\left(\phi\left(x_{1}, \ldots, x_{k+1} ; a\right)\right) \in\{s+t:(s, t) \in I\} .
$$

So fix any $\left(s_{0}, t_{0}\right) \in I$, and put $I_{=s_{0}+t_{0}}=\left\{(s, t) \in I: s+t=s_{0}+t_{0}\right\}$ and $I_{>s_{0}+t_{0}}=\left\{(s, t) \in I: s+t>s_{0}+t_{0}\right\}$. Then

$$
\begin{aligned}
& \operatorname{dim}\left(\phi\left(x_{1}, \ldots, x_{k+1} ; a\right)\right)=s_{0}+t_{0} \\
& \Longleftrightarrow\left(\bigvee_{(s, t) \in I_{=s_{0}+t_{0}}} \operatorname{dim}\left(\chi_{s}\left(x_{2}, \ldots, x_{k+1} ; a\right)\right)=t\right) \\
& \\
& \wedge\left(\bigwedge_{(s, t) \in I_{>s_{0}+t_{0}}} \neg \operatorname{dim}\left(\chi_{s}\left(x_{2}, \ldots, x_{k+1} ; a\right)\right)=t\right)
\end{aligned}
$$

By the inductive hypothesis, for any $(s, t) \in I$ the condition

$$
\operatorname{dim}\left(\chi_{s}\left(x_{2}, \ldots, x_{k+1} ; a\right)\right)=t
$$

is definable (in the variable a), so, by the above equivalence, the condition $\operatorname{dim}\left(\phi\left(x_{1}, \ldots, x_{k+1} ; a\right)\right)=s_{0}+t_{0}$ is definable as well. This proves that (2) holds for $k+1$.

Remark 4.11. - If there is a definable bijection f between $X \subseteq V^{k}$ and $Y \subseteq V^{k^{\prime}}$, then $\operatorname{dim}(X)=\operatorname{dim}(Y)$.

Proof. - If X, Y and f are all definable over N_{R}, where $M=\bigcup_{r}^{a} N_{r}$ and $R \in \omega$, then for any $r \geqslant R$ we have that $f\left[X \cap N_{r}\right] \subseteq Y \cap N_{r}$ as dcl $\left(N_{r}\right)=N_{r}$ by Fact 2.10 , so $X \cap N_{r} \subseteq f^{-1}\left[Y \cap N_{r}\right]$, and similarly $f^{-1}\left[Y \cap N_{r}\right] \subseteq X \cap N_{r}$. Hence

$$
\operatorname{rk}_{N_{r}}\left(X \cap N_{r}\right)=\operatorname{rk}_{N_{r}}\left(f^{-1}\left[Y \cap N_{r}\right]\right)=\operatorname{rk}_{N_{r}}\left(Y \cap N_{r}\right)
$$

by Fact $2.5(3)$, so $\operatorname{dim}(X)=\operatorname{dim}(Y)$.
We now extend the definition of dimension to all sets definable in T_{∞}.
Definition 4.12. - If X is any set definable in T_{∞}^{*}, so $X \subseteq V^{k} \times$ K^{m} for some $k, m \in \omega$, then we let $\operatorname{dim}(X)=\operatorname{dim}\left(X^{\prime}\right)$, where X^{\prime} is any definable subset of $V^{k^{\prime}}$ for some $k^{\prime} \in \omega$ for which there is a definable (with parameters) bijection between X and X^{\prime}. Such an X^{\prime} always exists, as we have a definable injection $f_{k,\left(e_{1}, \ldots, e_{m}\right)}: V^{k} \times K^{m} \rightarrow V^{k+1}$ given by
$f_{k,\left(e_{1}, \ldots, e_{m}\right)}\left(v, a_{1}, \ldots, a_{m}\right)=\left(v, a_{1} e_{1}+\cdots+a_{m} e_{m}\right)$, where $\left(e_{1}, \ldots, e_{m}\right)$ is any fixed linearly independent tuple of vectors from V.

Moreover, $\operatorname{dim}(X)$ is well defined by Remark 4.11 above.
Now we summarise the properties of dim following from what we have proved so far.

Corollary 4.13. - We work in T_{∞}^{*}
(1) dim is \emptyset definable.
(2) If $X \subseteq Y$ are definable then $\operatorname{dim}(X) \leqslant \operatorname{dim}(Y)$.
(3) $\operatorname{dim}\left(X_{1} \cup X_{2}\right)=\max \left(\operatorname{dim}\left(X_{1}\right), \operatorname{dim}\left(X_{2}\right)\right)$ for any definable X_{1} and X_{2}.
(4) If $f: X \rightarrow Y$ is a definable surjection such that $\operatorname{dim}\left(f^{-1}(y)\right)=s$ for each $y \in Y$, then $\operatorname{dim}(X)=\operatorname{dim}(Y)+s$ unless Y is empty.

Proof.

(1). - Consider any formula $\phi(x, y ; z)$ where x is a variable of the sort V^{k} and y is a variable of the sort K^{m}, and any $s \in S_{\text {lin }}$. Let x^{\prime} be a variable of the sort V^{k+1} and put

$$
\psi\left(x^{\prime} ; z, e_{1}, \ldots, e_{m}\right)=\left(x^{\prime} \in \operatorname{im}\left(f_{k,\left(e_{1}, \ldots, e_{m}\right)}\right) \wedge \phi\left(f_{k,\left(e_{1}, \ldots, e_{m}\right)}^{-1}\left(x^{\prime}\right) ; z\right)\right),
$$

where e_{1}, \ldots, e_{m} are some linearly independent vectors from V. By Theorem $4.10(2)$ there is a formula $\chi_{s}\left(z, e_{1}, \ldots, e_{m}\right)$ such that, for any z,

$$
\begin{aligned}
\models \chi_{s}\left(z, e_{1}, \ldots, e_{m}\right) & \Longleftrightarrow \operatorname{dim}\left(\psi\left(x^{\prime} ; z, e_{1}, \ldots, e_{m}\right)\right)=s \\
& \Longleftrightarrow \operatorname{dim}(\phi(x, y ; z))=s .
\end{aligned}
$$

As this holds for any linearly independent vectors e_{1}, \ldots, e_{m}, we may replace the formula $\chi_{s}\left(z, e_{1}, \ldots, e_{m}\right)$ by the $L(\emptyset)$-formula

$$
\exists_{v_{1}, \ldots, v_{m}}\left(\theta_{m}\left(v_{1}, \ldots, v_{m}\right) \wedge \chi_{s}\left(z, v_{1}, \ldots, v_{m}\right)\right)
$$

(2). - Suppose $X \subseteq Y \subseteq V^{k} \times K^{m}$. Then

$$
f_{k,\left(e_{1}, \ldots, e_{m}\right)}[X] \subseteq f_{k,\left(e_{1}, \ldots, e_{m}\right)}[Y],
$$

so

$$
\operatorname{dim}(X)=\operatorname{dim}\left(f_{k,\left(e_{1}, \ldots, e_{m}\right)}[X]\right) \leqslant \operatorname{dim}\left(f_{k,\left(e_{1}, \ldots, e_{m}\right)}[Y]\right)=\operatorname{dim}(Y)
$$

by Lemma 4.9(1).
(3). - This follows by Lemma 4.9(2) using the injection $f_{k,\left(e_{1}, \ldots, e_{m}\right)}$ again.
(4). - As any subset of $V^{k} \times K^{m}$ is in a definable bijection with a subset of $V^{k^{\prime}} \times K^{m^{\prime}}$ for any $k^{\prime} \geqslant k, m^{\prime} \geqslant m$, we may assume (by modifying X, Y and f) that there are k and m such that $X, Y \subseteq V^{k-1} \times K^{m}$. Then applying $f_{k-1,\left(e_{1}, \ldots, e_{m}\right)}$ we may assume $X, Y \subseteq V^{k}$. Put

$$
Z:=\{(x, y) \in X \times Y: y=f(x)\}
$$

and let $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ be the projections. Note that $\operatorname{dim}(X)=\operatorname{dim}(Z)$ as $\left.\pi_{1}\right|_{Z}: Z \rightarrow X$ is a definable bijection. Moreover, for any $y \in Y$ we have $X_{y}=f^{-1}(y)$ has dimension s. Thus, by Lemma 4.9(3) we have $\operatorname{dim}(X)=\operatorname{dim}(Z)=\operatorname{dim}\left(\pi_{2}[Z]\right)+s=\operatorname{dim}(Y)+s$.

Note the above properties correspond to the main properties of Morley rank in strongly minimal theories (and of the topological dimension in RCF) listed in Fact 2.5. However, a major difference is that the set of values of dim is not well ordered. Nevertheless, if we work with a fixed finite tuple of variables and a fixed finite tuple of parameters, the set of possible values of dim is finite.

Remark 4.14. - If $X \subseteq V^{k}$ is definable in T_{∞}^{*} then $\operatorname{dim}(X) \in \omega$ if and only if $X \subseteq\left(V_{0}\right)^{k}$ for some finite dimensional $K(\mathfrak{C})$-linear subspace V_{0} of V. Moreover, if these equivalent conditions hold and $*=\mathrm{ACF}_{p}$ then $\operatorname{dim}(X)=[\operatorname{RM}(X)]$.

Proof. - The implication from right to left follows from Remark 3.6.
Assume $\operatorname{dim}(X)=[d] \in \omega$. Then, for each $i \in\{1, \ldots, k\}$, the projection $\pi_{i}(X)$ of X on the i-th coordinate must have finite dimension (bounded by d), so, by Fact $3.14(3)$, there is some finite dimensional $V_{i} \leqslant V$ such that $\pi(X) \subseteq V_{i}$. This means that $X \subseteq\left(\Sigma_{i} V_{i}\right)^{k}$ so we can put $V_{0}:=\Sigma_{i} V_{i}$.

The "moreover" clause now follows by Remark 3.6 again.
Finally, we define the dimension of a type. As the set of values of dim in T_{∞}^{*} is not well ordered, in general we need to use its Dedekind completion $\overline{S_{\text {lin }}}$.

DEfinition 4.15. - Let $\pi(x)$ be a partial finitary type (i.e. x is a finite tuple of variables) in T_{∞}^{*} over a set A. We put

$$
\operatorname{dim}(\pi(x)):=\inf _{\pi(x) \vdash \phi(x) \in L(\mathfrak{C})} \operatorname{dim}(\phi(x))=\inf _{\pi(x) \vdash \phi(x) \in L(A)} \operatorname{dim}(\phi(x)) \in \overline{S_{\operatorname{lin}}}
$$

(the two infima are equal by Corollary 4.13(2), as any formula implied by $\pi(x)$ is implied by a conjuction of finitely many formulas from $\pi(x))$. Note that $\operatorname{dim}(\pi(x)) \in S_{\text {lin }}$ if A contains only finitely many vectors, as in this case the dimension of any formula in x over A belongs to the finite set $D_{l(x), l(A)}$.

Proposition 4.16. - Let $\pi(x)$ be a partial finitary type in T_{∞}^{*} over A. Then there exists $p(x) \in S(A)$ with $\operatorname{dim}(p(x))=\operatorname{dim}(\pi(x))$.

Proof. - Put

$$
p_{0}(x):=\pi(x) \cup\{\neg \phi(x) \in L(A): \operatorname{dim}(\phi(x))<\operatorname{dim}(\pi(x))\} .
$$

We claim that $p_{0}(x)$ is consistent. For if not, then there is a finite $\pi_{0}(x) \subseteq$ $\pi(x)$ and formulas $\phi_{1}(x), \ldots, \phi_{n}(x)$ such that $\operatorname{dim}\left(\phi_{i}(x)\right)<\operatorname{dim}(\pi(x))$ for every i and $\bigwedge \pi_{0}(x) \wedge\left(\bigwedge_{1 \leqslant i \leqslant n} \neg \phi_{i}(x)\right)$ is inconsistent. Then $\models \bigwedge \pi_{0}(x) \rightarrow$ $\bigvee_{1 \leqslant i \leqslant n} \phi_{i}(x)$. But, by Lemma 4.9(b),

$$
\begin{aligned}
\operatorname{dim}\left(\pi_{0}\right) & =\operatorname{dim}\left(\left(\bigwedge \pi_{0}\right) \wedge \bigvee_{1 \leqslant i \leqslant n} \phi_{i}(x)\right) \\
& =\max _{1 \leqslant i \leqslant n} \operatorname{dim}\left(\pi_{0} \wedge \phi_{i}(x)\right)<\operatorname{dim}(\pi(x))
\end{aligned}
$$

which is a contradiction.
Hence p_{0} is consistent, and we can take p to be any completion of p_{0}.
Notation 4.17. - For $s, s^{\prime} \in S_{\text {lin }}$ we will write:

- $s \sim s^{\prime}$ if $s-s^{\prime} \in\{[d]: d \in \mathbb{Z}\}$,
- $s \lesssim s^{\prime}$ if $s \sim s^{\prime}$ or $s \leqslant s^{\prime}$,
- $s \ll s^{\prime}$ if $s \leqslant s^{\prime}$ and $\neg\left(s \sim s^{\prime}\right)$.

Definition 4.18.
(1) We write $\operatorname{dim}(a / b)$ to mean $\operatorname{dim}(\operatorname{tp}(a / b))$. By the discussion in Definition 4.15, if a and b are finite, then $\operatorname{dim}(a / b) \in S_{\text {lin }}$.
(2) If X is a set (type)-definable over a and $b \supseteq a$, then we say that an element $c \in X$ is generic [quasi-generic] in X over b if $\operatorname{dim}(c / b)=$ $\operatorname{dim}(X)[\operatorname{dim}(c / b) \sim \operatorname{dim}(X)]$.
By Proposition 4.16, for any X definable over a and any $b \supseteq a$ there exists a generic in X over b (in some model of T_{∞}^{*} containing b). If b is finite, then such a generic can be found in \mathfrak{C}, as we are assuming that \mathfrak{C} is \aleph_{0}-saturated.

5. Lascar's equality and the connection between dim and $\operatorname{dim}_{\text {Lin }}$

The following additivity property is an analogue of Lascar's equality, which holds, for example, for Morley rank in strongly minimal theories (and more generally, for Lascar U-rank assuming the the ranks in the statement are finite).

Proposition 5.1 (Lascar's equality for dim). - If $a, b, c \in \mathfrak{C}$ are finite tuples, then $\operatorname{dim}(a b / c)=\operatorname{dim}(a / b c)+\operatorname{dim}(b / c)$.

Proof. - First, we will show that $\operatorname{dim}(a b / c) \geqslant \operatorname{dim}(a / b c)+\operatorname{dim}(b / c)$. Consider any formula $\phi(x, y) \in \operatorname{tp}(a b / c)$. Then $\phi(x ; b, c) \in \operatorname{tp}(a / b c)$, so $s:=\operatorname{dim}(\phi(x ; b, c)) \geqslant \operatorname{dim}(a / b c)$. Now, by Corollary 4.13(1) there is a formula $\chi(y ; c)$ over c such that

$$
\vDash \chi(d ; c) \Longleftrightarrow \operatorname{dim}(\phi(x ; d ; c))=s
$$

for any d compatible with y. Then $\chi(y ; c) \in t p(b / c)$, so $t:=\operatorname{dim}(\chi(y ; c)) \geqslant$ $\operatorname{dim}(t p(b / c))$. Now, by Corollary 4.13(4) applied to $\phi(x, y ; c) \wedge \chi(y ; c)$ and the projection on the y-coordinate, we get that
$\operatorname{dim}(\phi(x, y ; c)) \geqslant \operatorname{dim}(\phi(x, y ; c) \wedge \chi(y ; c))=s+t \geqslant \operatorname{dim}(a / b c)+\operatorname{dim}(b / c)$.
This shows that $\operatorname{dim}(a b / c) \geqslant \operatorname{dim}(a / b c)+\operatorname{dim}(b / c)$.
Now, choose a formula $\psi(x ; b, c) \in t p(a / b c)$ such that

$$
s^{\prime}:=\operatorname{dim}(\psi(x ; b, c))=\operatorname{dim}(a / b c)
$$

Again by Corollary 4.13(1), there is a formula $\chi(y ; c)$ over c such that

$$
\vDash \chi(d ; c) \Longleftrightarrow \operatorname{dim}(\psi(x ; d, c))=s^{\prime}
$$

for any d compatible with y. Clearly $\chi(y ; c) \in t p(b / c)$ so if we choose $\xi(y ; c) \in \operatorname{tp}(b / c)$ such that $t^{\prime}:=\operatorname{dim}(\xi(y ; c))=\operatorname{dim}(b / c)$, then we also have $\chi(y ; c) \wedge \xi(y ; c) \in t p(b / c)$, hence $\operatorname{dim}(\chi(y ; c) \wedge \xi(x ; c))=t^{\prime}$. Now applying Corollary $4.13(4)$ to the formula

$$
\delta(x, y ; c):=\psi(x, y ; c) \wedge \chi(y ; c) \wedge \xi(y ; c)
$$

and the projection on the y-coordinate, we get $\operatorname{dim}(\delta(x, y ; c))=s^{\prime}+t^{\prime}$. As $\delta(x, y ; c) \in \operatorname{tp}(a b / c)$, we conclude that $\operatorname{dim}(a b / c) \leqslant s^{\prime}+t^{\prime}=\operatorname{dim}(a / b c)+$ $\operatorname{dim}(b / c)$.

Proposition 5.2. - If a, b are finite tuples and $\operatorname{dim}(a / b)=\left[d_{0}+d_{1} n\right]$, then d_{1} is equal to the linear dimension $\operatorname{dim}_{\text {Lin }}(a / b)$ of $V(a)$ over $V(b)$, that is, the size of a maximal subset of $V(a)$ which is K-linearly independent over $\operatorname{Lin}_{K}(V(b))$.

Proof. - Put $l:=\operatorname{dim}_{\text {Lin }}(a / b)$ and let $\left(a_{1}, \ldots, a_{k}\right)$ be all vectors in a, and let $\left(c_{1}, \ldots, c_{m}\right)$ be all scalars in a. We may assume $\left(a_{1}, \ldots, a_{l}\right)$ is a maximal subtuple of a which is K-linearly independent over $\operatorname{Lin}_{K}(V(b))$. Write $V(b)=\left\{b_{1}, \ldots, b_{p}\right\}$. Let $\phi\left(x_{1}, \ldots, x_{k}\right)$ be a formula over b expressing that $x_{l+1}, \ldots, x_{k} \in \operatorname{Lin}_{K}\left(V(b), x_{1}, \ldots, x_{l}\right)$, and let $f: \phi(\mathfrak{C}) \times K^{m} \rightarrow$ $V^{l} \times K^{m} \times K^{(k-l)(l+p)}$ be a map sending a tuple $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}\right)$ to $\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{m}, A\right)$ where A is an $(l+p) \times(k-l)$-matrix such that
$A\left(x_{1}, \ldots, x_{l}, b_{1}, \ldots, b_{p}\right)^{T}=\left(x_{l+1}, \ldots, x_{k}\right)$. Then f is a b-definable injection of $\phi(\mathfrak{C}) \times K^{m}$ into $V^{l} \times K^{m+(k-l)(l+p)}$. As $\left(a_{1}, \ldots, a_{k}\right) \models \phi\left(x_{1}, \ldots, x_{k}\right)$, we get

$$
\begin{aligned}
\operatorname{dim}(a / b) & \leqslant \operatorname{dim}\left(\phi(\mathfrak{C}) \times K^{m}\right) \\
& \leqslant \operatorname{dim}\left(V^{l} \times K^{m+(k-l)(l+p)}\right)=[m+(k-l)(l+b)+l n] .
\end{aligned}
$$

This shows that $d_{1} \leqslant l=\operatorname{dim}_{\text {Lin }}(a / b)$.
It is left to prove that $d_{1} \geqslant \operatorname{dim}_{\text {Lin }}(a / b)$, which we do by induction on $\operatorname{dim}_{\text {Lin }}(a / b)$. If $\operatorname{dim}_{\text {Lin }}(a / b)=1$ then $\operatorname{dim}(a / b) \geqslant \operatorname{dim}\left(a_{1} / b\right)$ and $a_{1} \notin$ $\operatorname{Lin}_{K}(V(b))$ so $\operatorname{dim}\left(a_{1} / b\right)$ is infinite by Fact $3.14(3)$, i.e. $d_{1} \geqslant 1$. For the inductive step, assume $\operatorname{dim}_{\text {Lin }}(a / b)=l+1$ and (without loss of generality) that $\left(a_{1}, \ldots, a_{l+1}\right)$ is K-linearly independent over $\operatorname{Lin}_{K}(V(b))$. By the inductive hypothesis, $\operatorname{dim}\left(a_{1}, \ldots, a_{l} / b\right) \gtrsim[l n]$ and $\operatorname{dim}\left(a_{l+1} / b a_{1}, \ldots, a_{l}\right) \gtrsim$ $[n]$, so by Lascar's equality we get $\operatorname{dim}(a / b) \geqslant \operatorname{dim}\left(a_{1}, \ldots, a_{l+1} / b\right)=$ $\operatorname{dim}\left(a_{1}, \ldots, a_{l} / b\right)+\operatorname{dim}\left(a_{l+1} / b a_{1}, \ldots, a_{l}\right) \gtrsim[(l+1) n]$, as required.

Corollary 5.3. - For any finite tuples a, b, c we have $\operatorname{dim}(a / b) \sim$ $\operatorname{dim}(a / b c)$ if and only if $\operatorname{Lin}_{K}(V(a b)) \cap \operatorname{Lin}_{K}(V(b c))=\operatorname{Lin}_{K}(V(b))$.

Proof. - If $\operatorname{Lin}_{K}(V(a b)) \cap \operatorname{Lin}_{K}(V(b c))=\operatorname{Lin}_{K}(V(b))$ then any tuple $\left(a_{1}, \ldots, a_{d}\right)$ of elements of $V(a)$ which is K-linearly independent over $\operatorname{Lin}_{K}(V(b))$ is also linearly independent over $\operatorname{Lin}_{K}(V(b c))$, so $\operatorname{dim}(a / b) \sim$ $\operatorname{dim}(a / b c)$ by Proposition 5.2.

Conversely, assume $\operatorname{dim}(a / b) \sim \operatorname{dim}(a / b c)$ and let $\left(a_{1}, \ldots, a_{d}\right)$ be a maximal tuple of elements of $V(a)$ which is K-linearly independent over $V(b c)$. By Proposition 5.2 and the assumption, $\left(a_{1}, \ldots, a_{d}\right)$ is also maximal K linearly independent over $V(b)$. Hence, any element of $\operatorname{Lin}_{K}(V(a b)) \cap$ $\operatorname{Lin}_{K}(V(b c))$ is of the form

$$
\sum_{i \leqslant d} \alpha_{i} a_{i}+b_{1}=c_{1}
$$

for some $\alpha_{i} \in K, b_{1} \in \operatorname{Lin}_{K}(V(b))$, and $c_{1} \in \operatorname{Lin}_{K}(V(b c))$, so $\sum_{i \leqslant d} \alpha_{i} a_{i}=$ $c_{1}-b_{1} \in \operatorname{Lin}_{K}(V(b c))$. As $\left(a_{1}, \ldots, a_{d}\right)$ is linearly independent over $\operatorname{Lin}_{K} V(b c)$, we get that $\sum_{i \leqslant d} \alpha_{i} a_{i}=0$ and $\Sigma_{i \leqslant d} \alpha_{i} a_{i}+b_{1}=b_{1} \in \operatorname{Lin}_{K}(V(b))$. Thus,

$$
\operatorname{Lin}_{K}(V(a b)) \cap \operatorname{Lin}_{K}(V(b c))=\operatorname{Lin}_{K}(V(b))
$$

6. Finiteness of multiplicity and its consequences

In this section we will define multiplicity of a set definable in T_{∞} in analogy with Morley degree and we will prove that the multiplicity of any
set definable in T_{∞} is finite. We will deduce that any group interpretable in T_{∞} which has finite Morley rank is definable in T_{∞}, and hence is an algebraic group over K (we will also prove an analogous result for $T_{\infty}^{\mathrm{RCF}}$), as well as some other consequences of finiteness of multiplicity, including definability of generic types in T_{∞}.

Definition 6.1. - Let X be definable in T_{∞}. We let the multiplicity of X, written $\operatorname{Mlt}(X)$, be the maximal number $m \in \omega$ such that there are pairwise disjoint definable sets X_{1}, \ldots, X_{m} with $X_{i} \subseteq X$ and $\operatorname{dim}\left(X_{i}\right)=$ $\operatorname{dim}(X)$ for each $i \in\{1, \ldots, m\}$ if such a number m exists, and ∞ otherwise.

Proposition 6.2. - We work in T_{∞}.
(1) If $X \subseteq Y$ and $\operatorname{dim}(X)=\operatorname{dim}(Y)$ then $\operatorname{Mlt}(X) \leqslant \operatorname{Mlt}(Y)$.
(2) If $\operatorname{dim}\left(X_{1}\right)<\operatorname{dim}\left(X_{2}\right)$, then $\operatorname{Mlt}\left(X_{1} \cup X_{2}\right)=\operatorname{Mlt}\left(X_{2}\right)$.
(3) If $\operatorname{dim}\left(X_{1}\right)=\operatorname{dim}\left(X_{2}\right)=s$ then $\operatorname{Mtl}\left(X_{1} \cup X_{2}\right) \leqslant \operatorname{Mlt}\left(X_{1}\right)+$ $\operatorname{Mlt}\left(X_{2}\right)$, and equality holds when $\operatorname{dim}\left(X_{1} \cap X_{2}\right)<s$.
(4) If $f: X \rightarrow Y$ is a definable function such that $\operatorname{Mlt}(Y)=m \in \omega$ and there are $s \in S_{\text {lin }}$ and $m^{\prime} \in \omega$ such that $\operatorname{dim}\left(f^{-1}(y)\right)=s$ and $\operatorname{Mlt}\left(f^{-1}(y)\right) \leqslant m^{\prime}$ for every $y \in Y$, then $\operatorname{Mlt}(X) \leqslant m m^{\prime}$.
(5) If $\operatorname{dim}(X) \in \omega$ then $\operatorname{Mlt}(X)=\operatorname{DM}(X)$.

Proof. - (1), (2), and (3) follow easily from the definition of Mlt and the properties of dim (Corollary 4.13) and (5) follows from Proposition 4.14.

Let us prove (4). Let Y_{1}, \ldots, Y_{m} be sets partitioning Y with $\operatorname{dim}\left(Y_{i}\right)=$ $\operatorname{dim}(Y)$. By (3) applied to the sets $f^{-1}\left[Y_{1}\right], \ldots, f^{-1}\left[Y_{m}\right]$ we may assume that $m=1$ and $Y_{1}=Y$. Suppose for a contradiction that there are pairwise disjoint $X_{1}, \ldots, X_{m^{\prime}+1} \subseteq X$ with $\operatorname{dim}\left(X_{i}\right)=\operatorname{dim}(X)$. For each $i \in\left\{1, \ldots, m^{\prime}+1\right\}$ put $Z_{i}:=\left\{y \in Y: \operatorname{dim}\left(f^{-1}(y) \cap X_{i}\right)=s\right\} \subseteq Y$. Then each Z_{i} is definable by Corollary $4.13(1)$ and $\operatorname{dim}\left(Z_{i}\right)=\operatorname{dim}(Y)$ by Corollary $4.13(4)$ applied to f and to $\left.f\right|_{X_{i}}$. As $\operatorname{Mlt}(Y)=1$, using induction and (2) we easily get that $\operatorname{dim}\left(\bigcap_{i \in\left\{1, \ldots, m^{\prime}+1\right\}} Z_{i}\right)=\operatorname{dim}(Y)$. In particular, there exists $y \in \bigcap_{i \in\left\{1, \ldots, m^{\prime}+1\right\}} Z_{i}$ and we have that $\left(f^{-1}[y] \cap\right.$ $\left.X_{i}\right)_{i \in\left\{1, \ldots, m^{\prime}+1\right\}}$ are pairwise disjoint subsets of $f^{-1}(y)$ of dimension s, a contradiction to $\operatorname{Mlt}\left(f^{-1}(y)\right)=m^{\prime}$.

Theorem 6.3. - We work in T_{∞}.
(1) For every formula $\phi(x ; y)$ over \emptyset there exists $m_{\phi(x ; y)} \in \omega$ such that for every $R \in \omega$ and every $N \models T_{R}$ containing a we have $\operatorname{DM}_{N}(\phi(\mathfrak{C}, a) \cap N) \leqslant m_{\phi(x ; y)}$.
(2) Every formula in T_{∞} has finite multiplicity.

Proof. - Using the functions $f_{k, e_{1}, \ldots, e_{m}}$ (see Definition 4.12), we may assume that x is a tuple of k vector variables for some $k \in \omega$. We will now prove the statement by induction on k.

For any fixed $R_{0} \in \omega$, by quantifier elimination in $T_{R_{0}}$ and Fact 2.5(6) we easily get a bound on $\operatorname{DM}_{N}(\phi(\mathfrak{C} ; a) \cap N)$ with $a \subseteq N \models T_{R_{0}}$ depending only on $\phi(x ; y)$ and on R_{0}. Also, we know by the proof of Proposition 3.10 that if $\operatorname{dim}(\phi(\mathfrak{C} ; a)) \in \omega$ then $\phi(M, a) \subseteq N_{2 l(a)}$ for some $M=\bigcup_{r}^{a} N_{r}$ with $a \subseteq N_{2 l(a)}$. Hence we may restrict ourselves to considering only $R \geqslant$ $\alpha(l(x), l(y))$ and a such that $\operatorname{dim}(\phi(\mathfrak{C} ; a)) \notin \omega$.

First, assume $k=1$ so x is a single vector variable. If $R \geqslant \alpha(1, l(y))$ (so $R \geqslant 4 l(a)+3), a \in N \models T_{R}$ and $\operatorname{Dim}(\phi(\mathfrak{C} ; a)) \notin \omega$, then by Proposition 3.10 (with R there equal to $4 l(a)+1$ here), $\operatorname{DM}_{N}(\phi(\mathfrak{C} ; a) \cap N)$ is equal to $\mathrm{DM}_{N^{\prime}}\left(\phi(\mathfrak{C} ; a) \cap N^{\prime}\right)$ for any $N^{\prime} \models T_{4 l(a)+3}$ containing a with $K(N)=K(M)$ and $N^{\prime} \subseteq N$. This, in turn, is bounded independently from a and N by quantifier elimination in $T_{4 l(a)+3}$ and Fact 2.5(6), which completes the proof when $k=1$.

Now, assume that $k \geqslant 1$ and we have numbers $m_{\psi\left(x_{1}, \ldots, x_{i} ; y\right)}$ satisfying the assertion for each $\phi\left(x_{1}, \ldots, x_{i} ; y\right)$ with x_{1}, \ldots, x_{i} being single variables of the sort V and $i \leqslant k$. Consider any $\phi(x ; y)$ with $x=\left(x_{1}, \ldots, x_{k+1}\right)$, where each x_{i} is a single variable of the sort V. As every definable set is nice, there are at most $D:=\left|D_{1, k+l(y)}\right|$ possibilities $s_{1}, \ldots, s_{D} \in D_{1, k+l(y)}$ on $\operatorname{rk}\left(\phi\left(x_{1} ; v_{2}, \ldots, v_{k+1}, w\right)\right)$ for $v_{2}, \ldots, v_{k+1}, w \in \mathfrak{C}$ with $\phi\left(x_{1} ; v_{2}, \ldots, v_{k+1}, w\right) \neq \emptyset$. For each $i \leqslant D$ let $\chi_{s_{i}}\left(x_{2}, \ldots, x_{k+1}, y\right)$ be a formula over \emptyset such that

$$
\models \chi_{s_{i}}\left(v_{2}, \ldots, v_{k+1}, w\right) \Longleftrightarrow \operatorname{dim}\left(\phi\left(x_{1} ; v_{2}, \ldots, v_{k+1}, w\right)\right)=s_{i} .
$$

Put

$$
m_{\phi\left(x_{1}, \ldots, x_{k+1} ; y\right)}:=\sum_{i \leqslant D}\left(m_{\phi\left(x_{1} ; x_{2}, \ldots, x_{k+1}, y\right)} m_{\chi_{s_{i}}\left(x_{2}, \ldots, x_{k+1} ; y\right)}\right)
$$

(the numbers on the right-hand side are already defined by the inductive hypothesis). Consider any $R \geqslant \alpha(k+1, l(y)), N \models T_{R}$, and $a \subseteq N$ compatible with y. As $\alpha(k+1, l(y)) \geqslant \alpha(1, k+l(y))$, for every $i \leqslant D$ there is $t_{i} \in \omega$ such that for every $v_{2}, \ldots, v_{k+1}, w \in N$, if $\models \chi_{s_{i}}\left(v_{2}, \ldots, v_{k+1}, w\right)$ then $\operatorname{RM}_{N}\left(\phi\left(\mathfrak{C} ; v_{2}, \ldots, v_{k+1}, w\right) \cap N\right)=t_{i}$.

Let $\pi: V^{k+1} \rightarrow V^{k}$ be the projection on the last k coordinates. Put $X=\phi(\mathfrak{C} ; a)$ and $X_{s_{i}}:=X \cap \pi^{-1}\left[\chi_{s_{i}}(\mathfrak{C} ; a)\right]$ for each $i \leqslant D$.

By Lemma 4.8 we get (as in the proof of Lemma 4.9(3)) that $\pi\left[X_{s_{i}} \cap N\right]=$ $\pi\left[X_{s_{i}}\right] \cap N=\chi_{s_{i}}(\mathfrak{C} ; a) \cap N$. Also, for any $v_{2}, \ldots, v_{k+1} \in \pi\left[\left(X_{s_{i}} \cap N\right)\right]$ we
know that

$$
\begin{aligned}
\operatorname{DM}\left(\left(\left.\pi\right|_{X_{s_{i}} \cap N}\right)^{-1}\right. & \left.\left(v_{2}, \ldots, v_{k+1}\right)\right) \\
& =\operatorname{DM}\left(\left.N \cap \pi\right|_{x_{i}}{ }^{-1}\left(v_{2}, \ldots, v_{k+1}\right)\right) \\
& =\operatorname{DM}\left(N \cap \phi\left(\mathfrak{C} ; v_{2}, \ldots, v_{k+1}, a\right)\right) \leqslant m_{\phi\left(x_{1} ; x_{2}, \ldots, x_{k+1}, y\right)} .
\end{aligned}
$$

Thus, by Fact 2.5(8) and by Fact 2.5(9) applied to the functions $\left.\pi\right|_{X_{s_{i}} \cap N}$ we have

$$
\begin{aligned}
\operatorname{DM}_{N}(X \cap N) & \leqslant \sum i \leqslant D \operatorname{DM}_{N}\left(X_{s_{i}} \cap N\right) \\
& \leqslant \sum_{i \leqslant D}\left(m_{\phi\left(x_{1} ; x_{2}, \ldots, x_{k+1}, y\right)} \mathrm{DM}_{N}\left(\chi_{s_{i}}(\mathfrak{C} ; a) \cap N\right)\right) \\
& \leqslant \sum_{i \leqslant D}\left(m_{\phi\left(x_{1} ; x_{2}, \ldots, x_{k+1}, y\right)} m_{\chi_{s_{i}}\left(x_{2}, \ldots, x_{k+1} ; y\right)}\right)
\end{aligned}
$$

as required. This completes the induction.
Let's now prove (2). Choose $M=\bigcup_{r}^{a} N_{r}$ containing a. Let $m:=m_{\phi(x, y)}$ be the number given by (1). We claim that $\operatorname{Mlt}(\phi(x, a)) \leqslant m$. If not, then there exist pairwise disjoint sets $X_{1}, \ldots, X_{m+1} \subseteq \phi(M, a)=: X$ definable in M over some finite $b \subseteq M$. Let $R \geqslant \alpha(l(x), l(a b))$ be such that each X_{i} is definable over N_{R} and $a b \subseteq N_{R}$. Then, as X and all X_{i} 's are nice, we have $\mathrm{RM}_{N_{R}}\left(X_{i} \cap N_{R}\right)=\mathrm{RM}_{N_{R}}\left(X \cap N_{R}\right)$ for every $i \leqslant m+1$, so $\mathrm{DM}_{N_{R}}\left(X \cap N_{R}\right)>m$, which contradicts the choice of m.

Corollary 6.4. - If G is a group definable in T_{∞}^{*} and $H \triangleleft G$ is a definable normal subgroup such that $\operatorname{dim}(G)-\operatorname{dim}(H) \in \omega$, then G / H is definably isomorphic to a group definable in T_{∞}^{*} of finite dimension.

Proof. - Put $d:=\operatorname{dim}(G)-\operatorname{dim}(H) \in \omega$. Let a be a finite tuple over which H and G are definable in a variable x, and choose $M=\bigcup_{r}^{a} N_{r}$ and $R \geqslant \alpha(l(x), l(a))$ such that $a \subseteq N_{R}$. Then, by niceness of H and G, we have $\operatorname{rk}_{N_{r}}\left(G \cap N_{r}\right)=\operatorname{rk}_{N_{r}}\left(H \cap N_{r}\right)+d$ so $\mathrm{rk}_{N_{r}}\left(\left(G \cap N_{r}\right) /\left(H \cap N_{r}\right)\right)=d$ for every $r \geqslant R$. Note that $H \cap N_{r} \triangleleft G \cap N_{r}$ for every $r \geqslant R$ as each N_{r} is dcl-closed.

Claim 1. - There is $r_{0} \geqslant R$ such that for every $r \geqslant r_{0}$ the definable embedding of groups

$$
h_{r_{0}, r}:\left(G \cap N_{r_{0}}\right) /\left(H \cap N_{r_{0}}\right) \rightarrow\left(G \cap N_{r}\right) /\left(H \cap N_{r}\right)
$$

given by $g\left(H \cap N_{r_{0}}\right) \mapsto g\left(H \cap N_{r}\right)$ is surjective.
Proof of the claim.

Case 1: $*=\mathrm{ACF}_{p}$. - By Theorem 6.3 we know there is m such that $\mathrm{DM}_{N_{r}}\left(G \cap N_{r}\right) \leqslant m$ for every $r \in \omega$, so also $\mathrm{DM}_{N_{r}}\left(\left(G \cap N_{r}\right) /\left(H \cap N_{r}\right)\right) \leqslant m$ for any $r \geqslant R$ by Fact 2.5(9). If $h_{r, r+1}$ is not surjective for some $r \geqslant R$, then $h_{r, r+1}\left[\left(G \cap N_{r}\right) /\left(H \cap N_{r}\right)\right]=\left(G \cap N_{r}\right) /\left(H \cap N_{r+1}\right)$ is a proper subgroup of the group $\left(G \cap N_{r+1}\right) /\left(H \cap N_{r+1}\right)$ of the same dimension d, so

$$
\begin{aligned}
\mathrm{DM}_{N_{r}}\left(\left(G \cap N_{r}\right) /\left(H \cap N_{r}\right)\right) & =\operatorname{DM}_{N_{r+1}}\left(\left(G \cap N_{r}\right) /\left(H \cap N_{r+1}\right)\right) \\
& <\operatorname{DM}_{N_{r+1}}\left(\left(G \cap N_{r+1}\right) /\left(H \cap N_{r+1}\right)\right),
\end{aligned}
$$

so, by boundedness of $\mathrm{DM}_{N_{r}}\left(\left(G \cap N_{r}\right) /\left(H \cap N_{r}\right)\right.$) (by m) there is $r_{0} \geqslant R$ such that for every $r \geqslant r_{0}$ the embedding $h_{r, r+1}$ is surjective, and so is $h_{r_{0}, r}=h_{r-1, r} h_{r-2, r-1} \ldots h_{r_{0}, r_{0}+1}$.

Case 2: $*=$ RCF. - We claim that $r_{0}:=R$ works. For any $r \geqslant r_{0}$ we have that $\operatorname{dim}_{t}\left(\left(G \cap N_{r}\right) /\left(H \cap N_{r}\right)\right)=d=\operatorname{dim}_{t}\left(\left(G \cap N_{R}\right) /\left(H \cap N_{R}\right)\right)=$ $\operatorname{dim}_{t}\left(\left(G \cap N_{R}\right) /\left(H \cap N_{r}\right)\right)$, so, by Fact 2.5(0) and (4), the index
$\left[\left(G \cap N_{r}\right) /\left(H \cap N_{r}\right):\left(G \cap N_{R}\right) /\left(H \cap N_{R}\right)\right]=\left[G \cap N_{r}:\left(G \cap N_{R}\right) \cdot\left(H \cap N_{r}\right)\right]$
is finite. Note that the group $G \cap N_{R}$ normalises $H \cap N_{r}$ so $G_{0}:=(G \cap$ $\left.N_{R}\right) \cdot\left(H \cap N_{r}\right)=\left\{x \cdot y: x \in G \cap N_{R}, y \in H \cap N_{r}\right\}$ is a definable subgroup of $G \cap N_{r}$. Now for any $g \in G \cap N_{r}$ the coset $g G_{0} \in\left(G \cap N_{r}\right) / G_{0}$ is algebraic in N_{r} over N_{R}. As RCF eliminates imaginaries and algebraic closure coincides with definable closure in RCF, this implies that the coset $g \cdot G_{0}$ is definable over N_{R}, hence also over $N_{r_{0}}$. Also, $g \cdot G_{0}$ is definable over a, g, so, as $r_{0} \geqslant 4 l(x)+2 l(a)$, we get by Lemma 4.8 that $g \cdot G_{0} \cap N_{r_{0}} \neq \emptyset$. This shows that $h_{r_{0}, r}$ is surjective, which completes the proof of the claim.

By the claim, for every $g \in G(M)$ there is $g^{\prime} \in G \cap N_{r_{0}}$ with $g H=g^{\prime} H$. As $M \prec \mathfrak{C}$, we must also have that for every $g \in G(\mathfrak{C})$ there is $g^{\prime} \in$ $G \cap \operatorname{Lin}_{K(\mathfrak{C})}\left(N_{r_{0}}\right)$ with $g / H=g^{\prime} / H$, so

$$
G / H=\left(G \cap \operatorname{Lin}_{K(\mathfrak{C})}\left(N_{r_{0}}\right)\right) /\left(H \cap \operatorname{Lin}_{K(\mathfrak{C})}\left(N_{r_{0}}\right)\right)
$$

is definable in $K(\mathfrak{C})$ (by elimination of imaginaries in K), and hence it is definable in \mathfrak{C} and has finite dimension.

Remark 6.5. - If X is definable in T_{∞} and E is a definable equivalence relation on X such that $\operatorname{RM}(X / E)<\omega$ (in \mathfrak{C} expanded by the sort X / E and the quotient map $X \rightarrow X / E)$, then for every $s \in S_{\text {lin }}$ for which there is $x \in X$ with $\operatorname{dim}\left(x_{E}\right)=s$ we have $\operatorname{dim}\left(X_{s}\right)-s \in \omega$, where $X_{s}=\{x \in$ $\left.X: \operatorname{dim}\left(x_{E}\right)=s\right\}$.

Proof. - Put $l:=\operatorname{RM}(X / E)$, and let $M=\bigcup_{r \in \omega}^{a} N_{r}$ with X and E definable over some finite $b \subseteq N_{R}$ for some $R \geqslant \alpha(\nmid(x), l(x)+l(b))$, where x is a variable in which X is definable. If $\operatorname{dim}\left(X_{s}\right)=\left[d_{0}+d_{1} n\right]$ and $s=$
$\left[d_{0}^{\prime}+d_{1}^{\prime} n\right]$, then for every $r \geqslant R$ we have $\operatorname{dim}\left(x_{E}\right) \cap N_{r}=d_{0}^{\prime}+d_{1}^{\prime} r$ for each $x \in X \cap N_{r}$ by niceness of the $x b$-definable set x_{E}. But, as $\mathrm{RM}_{N_{r}}\left(X_{s} \cap\right.$ $\left.N_{r} / E\right) \leqslant \operatorname{RM}(X / E)=l$, we get by Fact 2.5(4) applied to the quotient map $X_{s} \cap N_{r} \rightarrow\left(X_{s} \cap N_{r}\right) / E$ that

$$
\mathrm{RM}_{N_{r}}\left(X_{s} \cap N_{r}\right)=d_{0}^{\prime}+d_{1}^{\prime} r+\mathrm{RM}_{N_{r}}\left(\left(X_{s} \cap N_{r}\right) / E\right) \leqslant l+d_{0}^{\prime}+d_{1} r
$$

(note $\left(X_{s} \cap N_{r}\right) / E$ is definable in N_{r} by elimination of imaginaries in ACF_{p}). This shows that $\operatorname{dim}\left(X_{s}\right) \leqslant\left[d_{0}^{\prime}+d_{1}^{\prime} n+l\right]=s+l$, so $\operatorname{dim} X_{s}-s \leqslant l$.

Corollary 6.6. - Let G be a group definable in T_{∞}^{*} and let $H \triangleleft G$ be a definable normal subgroup. Then, the following are equivalent:
(1) $\operatorname{dim}(G)-\operatorname{dim}(H) \in \omega$.
(2) G / H is definably isomorphic to a definable in T_{∞}^{*} group of finite dimension (hence to an algebraic group over K if $*=A C F_{p}$ and to a semialgebraic group over K if $*=\mathrm{RCF})$.

If $*=A C F_{p}$, then these conditions are also equivalent to:
(3) $\operatorname{RM}(G / H)<\omega$.

Proof. - (1) implies (2) by Corollary 6.4. (2) implies (3) by Remark 4.14 and it implies (1) as well by Corollary 4.13(4) applied to the quotient map $G \rightarrow G / H$ (where we identify G / H with a definable group definably isomorphic to it). (3) implies (1) by Remark 6.5 applied to the equivalence relation E on G given by: $E\left(g, g^{\prime}\right) \Longleftrightarrow g H=g^{\prime} H$.

From finiteness of multiplicity in T_{∞}, we also conclude definability of generic types.

Proposition 6.7.

(1) Let X be definable in T_{∞} over a model M. Put $m=\operatorname{Mlt}(X)$. Then there are exactly m complete generic types in X over M.
(2) Let $M \models T_{\infty}$ and let $p(x) \in S(M)$ be such that $\operatorname{dim}(p(x)) \in S_{\text {lin }}$. Then $p(x)$ is definable. Hence, each generic type in every definable set is definable.

Proof.

(1). - Suppose first that there are $m+1$ distinct generics $p_{1}, \ldots, p_{m+1} \in S(M)$ in X. Let $\phi(x)$ be a formula over M defining the set X. Choose pairwise inconsistent formulas $\phi_{i}(x) \in p_{i}$ for $i \leqslant m+1$. Then, as $\phi_{i}(x) \wedge \phi(x) \in p_{i}$ for each i, we must have $\operatorname{dim}\left(\phi_{i}(x) \wedge \phi(x)\right)=\operatorname{dim}(X)$ as each p_{i} is generic in X. This shows that $\operatorname{Mlt}(X) \geqslant m$, a contradiction.

On the other hand, by definability of dim (Corollary 4.13(1)) we can find pairwise disjoint $X_{1}, \ldots, X_{m} \subseteq X$ definable over M with $\operatorname{dim}\left(X_{i}\right)=X$ for
each i, and choose a generic $p_{i} \in X_{i}$ for each i. Then p_{i} 's are pairwise distinct generics in X.
(2). - As $\operatorname{dim}(p(x)) \in S_{\text {lin }}$, we can choose $\phi(x) \in p(x)$ such that

$$
\operatorname{dim}(\phi(x))=\operatorname{dim}(p(x))
$$

By definability of dim there are formulas $\phi_{1}(x), \ldots, \phi_{m}(x)$ over M of dimension $\operatorname{dim}(\phi(x))$ which partition $\phi(x)$, and one of them must belong to $p(x)$. So we may assume $\operatorname{Mlt}(\phi(x))=1$. Now consider any formula $\psi(x ; y)$. Then for any $a \subseteq M$ compatible with y we have that $\psi(x, a) \in p(x)$ iff $\operatorname{dim}(\psi(x ; a) \wedge \phi(x))=\operatorname{dim}(\phi(x))$: If $\psi(x, a) \in p(x)$ then $\psi(x ; a) \wedge \phi(x) \in p(x)$ so $\operatorname{dim}(\psi(x ; a) \wedge \phi(x))=\operatorname{dim}(\phi(x))$; conversely, if the latter holds, then the generic type in $\psi(x ; a) \wedge \phi(x)$ over M is also generic in $\phi(x)$, so is equal to $p(x)$ by (1), as $\operatorname{Mlt}(\phi(x))=1$. Thus $\psi(x ; a) \in p(x)$.

As the condition $\operatorname{dim}(\psi(x ; a) \wedge \phi(x))=\operatorname{dim}(\phi(x))$ is definable by Corollary $4.13(1)$, we get that $p(x)$ is a definable type.

7. Definable groups and fields

In this section we will prove our main results about groups and fields definable in T_{∞}^{*}. Let us start with some examples. Clearly, any algebraic group over the field of scalars K is definable in T_{∞} and any semialgebraic group over K is definable in $T_{\infty}^{\mathrm{RCF}}$. Another class of examples is obtained from the natural actions of linear algebraic groups over K on Cartesian powers of the (infinite-dimensional) vector space V :

Example 7.1. - Let $M=(V, K)$ be a model of T_{∞}^{*} and $k \in \omega$.
(1) Suppose $H \leqslant G L_{k}(K)$ is a linear algebraic group. Consider the semidirect product $G:=V^{k} \rtimes H$, where the action of H on V^{k} is induced by scalar multiplication. Then G is definable in M in a natural way, with its universe being a definable subset of $V^{k} \times K^{k^{2}}$ consisting of pairs (v, A) with $v \in V^{k}$ and $A \in H$.
(2) Let (G, \cdot) be the Heisenberg group of $[\cdot, \cdot]$, that is, $G=V \times V \times$ K and $(v, w, a) \cdot\left(v^{\prime}, w^{\prime}, a^{\prime}\right)=\left(v+v^{\prime}, w+w^{\prime}, a+a^{\prime}+\left[v, w^{\prime}\right]\right)$ for $(v, w, a),\left(v^{\prime}, w^{\prime}, a^{\prime}\right) \in G$. Then (G, \cdot) is definable in M (in an obvious way).

We say a definable group G is connected if it has no definable subgroup of finite index.

Remark 7.2. - Every group definable in T_{∞} has a connected component, that is, a definable connected subgroup of finite index.

Proof. - Let M be a model over which G is definable. By Proposition 6.7 there are only finitely many generic types in G in $S(M)$. Let p_{1}, \ldots, p_{m} be all of them. Then for any $i \leqslant m$ and $g \in G(M)$ we have that $g \cdot p_{i}(x):=$ $\left\{\phi\left(g^{-1} \cdot x\right): \phi(x) \in p_{i}(x)\right\} \in S(M)$ is also a generic in G, so G acts naturally on p_{1}, \ldots, p_{m}. Let G_{0} be the kernel of this action. Now, if we choose pairwise inconsistent $\phi_{i}(x) \in p_{i}(x)$ of dimension $\operatorname{dim}(G)$ and multiplicity 1 , then $G_{0}=\left\{g \in G: \bigwedge_{i} \operatorname{dim}\left(\phi_{i}(x) \wedge \phi_{i}\left(g^{-1} \cdot x\right)\right)=\operatorname{dim}(G)\right\}$ (cf. the proof of Proposition 6.7), so G_{0} is definable by Corollary 4.13. As $\left[G: G_{0}\right]<\omega$, we must have $\operatorname{dim}\left(G_{0}\right)=\operatorname{dim}(G)$. Now only one of the types p_{1}, \ldots, p_{m} contains the formula " $x \in G_{0}$ ", as otherwise we would have some $g_{i} \in$ $G_{0} \cap \phi_{i}(M)$ and $g_{j} \in G_{0} \cap \phi_{j}(M)$ for $i \neq j$, so $g_{i} g_{j}^{-1} \cdot p_{j}=p_{i}$, a contradiction, as $g_{i} g_{j}^{-1} \in G_{0}$. Hence G_{0} has only one generic type, and so $\operatorname{Mlt}\left(G_{0}\right)=1$ by Proposition 6.7. This clearly implies that G_{0} is connected.

By a [semi] algebraic group in our context we mean a group interpretable in T_{∞}^{*} which is definably isomorphic to a [semi] algebraic group over the field of scalars K. Thus, for example, although the group $(V,+)$ might be abstractly isomorphic to the group $(K,+)$ in a particular model $(K, V) \models$ T_{∞}, it is not an algebraic group in our sense, as there is no definable bijection between V and any set definable in K. Accordingly, we say that a definable group G is ([semi] algebraic-by-abelian)-by-[semi] algebraic, if there are definable $N \triangleleft G$ and $N_{0} \triangleleft N$ such that N_{0} and G / N are [semi] algebraic and N / N_{0} is abelian.

Let $g, h \in G$ where G is a group. We will usually write the product of g and h as $g h$ omitting the multiplication symbol. To avoid confusion with a pair, below we will use commas in tuples. By g^{h} we mean the conjugate $h g h^{-1}$ of g by h, and by $[g, h]$ we mean the commutator $g h g^{-1} h^{-1}$ of g and h. By G^{\prime} we denote the commutator subgroup of G, that is, the subgroup of G generated by the set $\{[x, y]: x, y \in G\}$.

Theorem 7.3. - Let G be a group definable in T_{∞}^{*}. Then G is (algebraic-by-abelian)-by-algebraic when $*=A C F_{p}$ and (semialgebraic-by-abelian)-by-semialgebraic when $*=R C F$.

Proof. - Let G be a group definable in T_{∞} [or in $\left.T_{\infty}^{\mathrm{RCF}}\right]$ over some finite tuple a. We may assume that $G \subseteq V^{k}$ for some $k \in \omega$ and that a is a subtuple of any element of G.

Put

$$
N:=\left\{x \in G: \operatorname{dim}\left(C_{G}(x)\right) \sim \operatorname{dim}(G)\right\} .
$$

Claim 1. - $N \triangleleft G$ and N is a-definable.

Proof of the claim. - First, we show that N is a subgroup of G. Take any $g_{1}, g_{2} \in G$. Let $M=\bigcup_{r \in \omega}^{a} N_{r}$ and $R \in \omega$ be such that $g_{1}, g_{2}, a \subseteq N_{R}$. Consider any $r \geqslant R$. Note that $C_{G}\left(g_{1}\right) \cap N_{r}=C_{G \cap N_{r}}\left(g_{1}\right)$ and $C_{G}\left(g_{2}\right) \cap$ $N_{r}=C_{G \cap N_{r}}\left(g_{2}\right)$ are both subgroups of the group $G \cap N_{r} \leqslant G$, as N_{r} is definably closed by Fact $2.10(2)$. Hence $\left(G \cap N_{r}\right) /\left(C_{G}\left(g_{1}\right) \cap C_{G}\left(g_{2}\right) \cap N_{r}\right)$ embeds N_{r}-definably into $\left(\left(G \cap N_{r}\right) /\left(C_{G}\left(g_{1}\right) \cap N_{r}\right)\right) \times\left(\left(G \cap N_{r}\right) /\left(C_{G}\left(g_{2}\right) \cap\right.\right.$ $\left.N_{r}\right)$) by

$$
g\left(C_{G}\left(g_{1}\right) \cap C_{G}\left(g_{2}\right) \cap N_{r}\right) \mapsto\left(g\left(C_{G}\left(g_{1}\right) \cap N_{r}\right), g\left(C_{G}\left(g_{2}\right) \cap N_{r}\right)\right) .
$$

So

$$
\begin{aligned}
& \operatorname{rk}_{N_{r}}\left(\left(G \cap N_{r}\right) /\left(C_{G}\left(g_{1}\right) \cap C_{G}\left(g_{2}\right) \cap N_{r}\right)\right) \\
& \quad \leqslant \operatorname{rk}_{N_{r}}\left(\left(G \cap N_{r}\right) /\left(C_{G}\left(g_{1}\right) \cap N_{r}\right)\right)+\mathrm{rk}_{N_{r}}\left(\left(G \cap N_{r}\right) /\left(C_{G}\left(g_{2}\right) \cap N_{r}\right)\right)
\end{aligned}
$$

By Fact 2.5(4) applied to the corresponding quotient maps, this means that

$$
\begin{aligned}
& \mathrm{rk}_{N_{r}}\left(G \cap N_{r}\right)-\mathrm{rk}_{N_{r}}\left(C_{G}\left(g_{1}\right) \cap C_{G}\left(g_{2}\right) \cap N_{r}\right) \\
& \leqslant \mathrm{rk}_{N_{r}}\left(G \cap N_{r}\right)-\mathrm{rk}_{N_{r}}\left(C_{G}\left(g_{1}\right) \cap N_{r}\right)+\mathrm{rk}_{N_{r}}\left(G \cap N_{r}\right)-\mathrm{rk}_{N_{r}}\left(C_{G}\left(g_{2}\right) \cap N_{r}\right) .
\end{aligned}
$$

As this holds for any $r \geqslant R$, we get that

$$
\begin{aligned}
& \operatorname{dim}(G)-\operatorname{dim}\left(C_{G}\left(g_{1}\right) \cap C_{G}\left(g_{2}\right)\right) \\
& \quad \leqslant \operatorname{dim}(G)-\operatorname{dim}\left(C_{G}\left(g_{1}\right)\right)+\operatorname{dim}(G)-\operatorname{dim}\left(C_{G}\left(g_{2}\right)\right) \in \omega
\end{aligned}
$$

As $C_{G}\left(g_{1} \cdot g_{2}\right) \supseteq C_{G}\left(g_{1}\right) \cap C_{G}\left(g_{2}\right)$, we conclude that $\operatorname{dim}\left(C_{G}\left(g_{1} \cdot g_{2}\right)\right) \sim$ $\operatorname{dim}(G)$, so $g_{1} \cdot g_{2} \in N$ and N is a subgroup of G. Also, for any $g \in G$ and $h \in N$ we have that $\operatorname{dim}\left(C_{G}\left(h^{g}\right)\right)=\operatorname{dim}\left(\left(C_{G}(h)\right)^{g}\right)=\operatorname{dim}\left(C_{G}(h)\right)$, as $\left(C_{G}(h)\right)^{g}$ and $C_{G}(h)$ are in a definable bijection. This shows that N is normal in G. Finally, N is a-definable by Corollary 4.13(1).

Let h be a generic in G over a and let g be a generic in G over a, h. Write $h=\left(w_{1}, \ldots, w_{k}\right)$ and $g=\left(w_{k+1}, \ldots, w_{2 k}\right)$ (where $w_{i} \in V$ for each $i \leqslant 2 k)$. Let $j_{1}, \ldots, j_{l} \in\{1, \ldots, 2 k\}$ be such that $w_{j_{1}}, \ldots, w_{j_{l}}$ is a basis of $W:=\operatorname{Lin}_{K}\left(w_{1}, \ldots, w_{2 k}\right)$ over K.

For any $x=\left(v_{1}, \ldots, v_{k}\right) \in G$ there are $i_{1}, \ldots, i_{m} \in\{1, \ldots, k\}$ such that $\left(v_{i_{1}}, \ldots, v_{i_{m}}, w_{j_{1}}, \ldots, w_{j_{l}}\right)$ is a basis of $\operatorname{Lin}\left(W, v_{1}, \ldots, v_{k}\right)$. As this is expressible by a formula $\phi(x)$ with parameters h, g and there are only finitely many possibilities on the tuple $\left(i_{1}, \ldots, i_{m}\right) \in\{1, \ldots, k\}^{m}$ (with $m \leqslant$ k), by Corollary $4.13(3)$ there must be some such tuple for which the set

$$
X:=\left\{\begin{array}{l}
x=\left(v_{1}, \ldots, v_{k}\right) \in G:\left(v_{i_{1}}, \ldots, v_{i_{m}}, w_{j_{1}}, \ldots, w_{j_{l}}\right) \\
\text { is a basis of } \operatorname{Lin}_{K}\left(W, v_{1}, \ldots, v_{k}\right)
\end{array}\right\}
$$

is generic in G. We may assume $\left(i_{1}, \ldots, i_{m}\right)=(1, \ldots, m)$. Notice that for any $x=\left(v_{1}, \ldots, v_{k}\right) \in X$ we have

$$
g x^{h} \in \operatorname{dcl}(x, g, h) \subseteq \operatorname{Lin}_{K}\left(w_{i_{1}}, \ldots, w_{i_{l}}, v_{1}, \ldots, v_{m}\right)
$$

so we can define a function let $f: X \rightarrow K^{k(l+m)}$ such that for every $x=\left(v_{1}, \ldots, v_{k}\right) \in X$

$$
\begin{aligned}
& \text { if } f(x)=Y=\left(Y_{1}, Y_{2}\right) \text { with } Y_{1} \in M_{l \times k}(K), Y_{2} \in M_{m \times k}(K) \\
& \text { then } g x^{h}=Y_{1} \cdot\left(w_{i_{1}}, \ldots, w_{i_{l}}\right)^{T}+Y_{2} \cdot\left(v_{1}, \ldots, v_{m}\right)^{T} .
\end{aligned}
$$

As f is a definable function and $\operatorname{dim}(\operatorname{im}(f)) \leqslant[k(l+m)]$, by Corollary $4.13(4)$ there must be some $C=\left(C_{1}, C_{2}\right) \in K^{k(l+m)}$ such that

$$
\operatorname{dim}\left(f^{-1}(C)\right) \sim \operatorname{dim}(G)
$$

Then for $x=\left(v_{1}, \ldots, v_{k}\right) \in f^{-1}(C)$ we have

$$
g x^{h}=C_{1} \cdot\left(w_{i_{1}}, \ldots, w_{i_{l}}\right)+C_{2} \cdot\left(v_{1}, \ldots, v_{m}\right)
$$

By Lemma 4.16 we can choose $g_{1} \in f^{-1}(C)$ such that $\operatorname{dim}\left(g_{1} / C, h, g, a\right)=$ $\operatorname{dim}\left(f^{-1}(C)\right) \sim \operatorname{dim}(G)$, and $g_{2} \in f^{-1}(C)$ such that $\operatorname{dim}\left(g_{2} / C, h, g, g_{1}, a\right) \sim$ $\operatorname{dim}(G)$. Write $g_{1}=\left(v_{1}, \ldots, v_{k}\right)$ and $g_{2}=\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)$. So

$$
g g_{1}^{h}=C_{1} \cdot\left(w_{i_{1}}, \ldots, w_{i_{l}}\right)^{T}+C_{2} \cdot\left(v_{1}, \ldots, v_{m}\right)^{T}
$$

and

$$
g g_{2}^{h}=C_{1} \cdot\left(w_{i_{1}}, \ldots, w_{i_{l}}\right)^{T}+C_{2} \cdot\left(v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right)^{T} .
$$

So $t:=C_{1} \cdot\left(w_{i_{1}}, \ldots, w_{i_{l}}\right)^{T}=g g_{1}^{h}-C_{2} \cdot\left(v_{1}, \ldots, v_{m}\right)^{T} \in d c l\left(g_{1}, g g_{1}^{h}, C, a\right)$, hence

$$
g g_{2}^{h}=t+C_{2} \cdot\left(v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right)^{T} \in \operatorname{dcl}\left(g_{1}, g g_{1}^{h}, g_{2}, C, a\right) .
$$

Thus,

$$
\left(g_{1}^{-1} g_{2}\right)^{h}=\left(g g_{1}^{h}\right)^{-1} g g_{2}^{h} \in \operatorname{dcl}\left(g_{1}, g g_{1}^{h}, g_{2}, C, a\right)
$$

So, choosing h_{1} to be a generic in $\operatorname{tp}\left(h / g_{1}, g g_{1}^{h}, g_{2}, C, a\right)$ over $h, g_{1}, g g_{1}^{h}, g_{2}, C, a$, we get

$$
\left(g_{1}^{-1} g_{2}\right)^{h}=\left(g_{1}^{-1} g_{2}\right)^{h_{1}}
$$

hence

$$
g_{1}^{-1} g_{2} \in C_{G}\left(h_{1}^{-1} h\right)
$$

CLAim 2. $-\operatorname{dim}\left(h_{1}^{-1} h / g_{1}^{-1} g_{2}, a\right) \sim \operatorname{dim}(G)$.

Proof of the claim. - By Lascar's equality (Proposition 5.1) we have

$$
\begin{align*}
\operatorname{dim}(h / C, a) & =\operatorname{dim}(h, C / a)-\operatorname{dim}(C / a) \tag{7.1}\\
& \geqslant \operatorname{dim}(h / a)-\operatorname{dim}(C / a) \sim \operatorname{dim}(G)
\end{align*}
$$

as h is generic in G over a and $\operatorname{dim}(C / a) \in \omega$. Also

$$
\begin{equation*}
\operatorname{dim}\left(g_{1} / h, C, a\right) \sim \operatorname{dim}(G) \tag{7.2}
\end{equation*}
$$

by the choice of g_{1}. Now, as g_{1} is quasi-generic over g, h, a we have that

$$
\operatorname{dim}\left(g_{1}, g, h / a\right)=\operatorname{dim}\left(g_{1} / g, h, a\right)+\operatorname{dim}(g / h, a)+\operatorname{dim}(h / a) \sim 3 \operatorname{dim}(G)
$$

by Lascar's equality, but also

$$
\operatorname{dim}\left(g_{1}, g, h / a\right)=\operatorname{dim}\left(g / g_{1}, h, a\right)+\operatorname{dim}\left(g_{1}, h / a\right)
$$

so $\operatorname{dim}\left(g / g_{1}, h, a\right) \sim \operatorname{dim}(G)$ as $\operatorname{dim}\left(g_{1}, h / a\right) \leqslant 2 \operatorname{dim}(G)$. Hence

$$
\begin{align*}
\operatorname{dim}\left(g g_{1}^{h} / g_{1}, h, C, a\right) & \tag{7.3}\\
& \sim \operatorname{dim}\left(g g_{1}^{h} / g_{1}, h, a\right)=\operatorname{dim}\left(g / g_{1}, h, a\right) \sim \operatorname{dim}(G)
\end{align*}
$$

where the equality follows by invariance of dim under definable bijections. We also have

$$
\begin{equation*}
\operatorname{dim}\left(g_{2} / g g_{1}^{h}, g_{1}, h, C, a\right) \sim \operatorname{dim}(G) \tag{7.4}
\end{equation*}
$$

by the choice of g_{2}. Now, by (1), (2), (3), (4), and Lascar's equality we have $\operatorname{dim}\left(g_{2}, g g_{1}^{h}, g_{1}, h / C, a\right) \sim 4 \operatorname{dim}(G)$. But

$$
\operatorname{dim}\left(g_{2}, g g_{1}^{h}, g_{1}, h / C, a\right)=\operatorname{dim}\left(h / g_{2}, g g_{1}^{h}, g_{1}, C, a\right)+\operatorname{dim}\left(g_{2}, g g_{1}^{h}, g_{1}, C, a\right)
$$

so

$$
\operatorname{dim}\left(h / g_{2}, g g_{1}^{h}, g_{1}, C, a\right) \sim \operatorname{dim}(G)
$$

as $\operatorname{dim}\left(g_{2}, g g_{1}^{h}, g_{1}, C, a\right) \lesssim 3 \operatorname{dim}(G)$. As h_{1} is generic in $\operatorname{tp}\left(h / g_{1}, g g_{1}^{h}, g_{2}, C, a\right)$ over $\left(h, g_{1}, g g_{1}^{h}, g_{2}, C, a\right)$, it follows that
$\operatorname{dim}\left(h_{1}^{-1} h / h, g_{1}, g g_{1}^{h}, g_{2}, C, a\right)=\operatorname{dim}\left(h_{1} / h, g_{1}, g g_{1}^{h}, g_{2}, C, a\right) \sim \operatorname{dim}(G)$,
so also $\operatorname{dim}\left(h_{1}^{-1} h / g_{1}^{-1} g_{2}, a\right) \sim \operatorname{dim}(G)$ which completes the proof of the claim.

As $h_{1}^{-1} h \in \mathfrak{C}_{G}\left(g_{1}^{-1} g_{2}\right)$ and $\operatorname{dim}\left(h_{1}^{-1} h / g_{1}^{-1} g_{2}, a\right) \sim \operatorname{dim}(G)$ by Claim 2, we get $\operatorname{dim} C_{G}\left(g_{1}^{-1} g_{2}\right) \sim \operatorname{dim}(G)$. This shows that $g_{1}^{-1} g_{2} \in N$, so, as $\operatorname{dim}\left(g_{1}^{-1} g_{2} / a\right) \sim \operatorname{dim}(G)$ and N is definable over a, we conclude that $\operatorname{dim}(N) \sim \operatorname{dim}(G)$, so G / N is an algebraic [semialgebraic] group by Corollary 6.6.

It is left to show that N is algebraic-by-abelian [semialgebraic-by-abelian]. For any $x \in N$ we have that all fibers of the map $G \rightarrow[x, G]:=\{[x, y]: y \in$ $G\}$ given by $y \mapsto[x, y]$ are cosets of $C_{G}(x)$ and hence they have dimension
$\operatorname{dim}\left(G_{G}(x)\right) \sim \operatorname{dim}(G)$. So, by Corollary 4.13(4) we get that $\operatorname{dim}([x, G]) \in$ ω. Thus, for $x_{1}, x_{2} \in N$ the commutator $\left[x_{1}, x_{2}\right]$ has finite dimension over a, x_{1} and over a, x_{2}, so by Proposition $5.2\left[x_{1}, x_{2}\right] \in\left(\operatorname{Lin}_{K}\left(V\left(a, x_{1}\right)\right) \cap\right.$ $\left.\operatorname{Lin}_{K}\left(V\left(a, x_{2}\right)\right)\right)^{k}$. If additionally $\operatorname{dim}\left(x_{1} / x_{2}, a\right) \sim \operatorname{dim}\left(x_{1} / a\right)$ then, by Corollary 5.3 we get that

$$
\operatorname{Lin}_{K}\left(V\left(a, x_{1}\right)\right) \cap \operatorname{Lin}_{K}\left(V\left(a, x_{2}\right)\right)=\operatorname{Lin}_{K}(V(a))=: A,
$$

so $\left[x_{1}, x_{2}\right] \in A$.
Now, for arbitrary $y_{1}, y_{2} \in N$, as $\operatorname{dim}\left(y_{2} \cdot C_{G}\left(y_{1}\right)\right)=\operatorname{dim}\left(C_{G}\left(y_{1}\right)\right) \sim$ $\operatorname{dim}(G)$, we can find $y_{2}^{\prime} \in y_{2} \cdot C_{G}\left(y_{1}\right)$ with $\operatorname{dim}\left(y_{2}^{\prime} / y_{1}, a\right) \sim \operatorname{dim}(G)$, so $\left[y_{1}, y_{2}\right]=\left[y_{1}, y_{2}^{\prime}\right] \in A$ by the above paragraph. This shows that $N_{0}:=$ $\left\{\left[y_{1}, y_{2}\right]: y_{1}, y_{2} \in N\right\} \subseteq A$. Put $N_{1}:=N \cap A$. As A is definably closed by Fact 2.10(2), we get that N_{1} is a definable subgroup of N. So, as $N_{1} \supseteq N_{0}$, we conclude that $N_{1} \supseteq N^{\prime}$. Finally, put

$$
N_{2}:=\bigcap_{g \in N}\left(N_{1}\right)^{g}
$$

and note that N_{2} is a definable normal subgroup of N and $N^{\prime} \leqslant N_{2}$, so N / N_{2} is abelian. Also, $N_{2} \leqslant N_{1} \subseteq A$. But, as a is finite, we have that A is finite-dimensional, so N_{2} is algebraic [semialgebraic] over $K(\mathfrak{C})$ by Corollary 6.6. Hence N is [semi]algebraic-by-abelian, and G is ([semi]algebraic-by-abelian)-by-[semi]algebraic.

Remark 7.4. - Examples 7.1(1) and (2) show that the conclusion in Theorem 7.3 cannot be strengthened to " G is [semi] algebraic-by-abelian", nor to " G is abelian-by-[semi] algebraic". Indeed, in Example 7.1(1), taking $H:=K^{*}$ acting naturally on $(V,+)$, we get that the commutator group $[G, G]=V \times\{1\}$ is infinite-dimensional, so G is not [semi] algebraic-byabelian. On the other hand, the Heisenberg group $(G, \cdot)=(V \times V \times K, \cdot)$ in Example 7.1(2) is not abelian-by-[semi] algebraic. Indeed, working for example in ${ }_{S} T_{\infty}^{\mathrm{ACF}_{p}}$, if $N \triangleleft G$ is a normal definable subgroup such that G / N is [semi] algebraic, then, by Corollary 6.6 we get that $\operatorname{dim}(N) \sim$ $\operatorname{dim}(G)=[2 n+1]$. Hence, if $M=\bigcup_{r}^{a} N_{r}$ and $R \in \omega$ are such that G and N are definable over N_{R}, then we can find $(v, w, a) \in N(M)$ with $v \notin N_{R}$ and $w \notin \operatorname{Lin}_{K(M)}\left(N_{R}, v\right)$. Let $v_{0}, v_{1}, w_{0}, w_{1} \in V(M)$ be such that $v=v_{0}+v_{1}, w=w_{0}+w_{1}, v_{0}, w_{0} \in V\left(N_{R}\right)$ and $v_{1}, w_{1} \perp$ $V\left(N_{R}\right)$. As $[\cdot, \cdot]$ is nondegenerate and $v_{1} \notin V\left(N_{R}\right)$, there is $z \in V(M)$ with $\left[v_{1}, z\right] \neq 0$ and $z \perp V\left(N_{R}\right)$. Now we can choose $v^{\prime}, w^{\prime \prime} \in V(M)$ with $v^{\prime}, w^{\prime \prime} \perp v_{1}, w_{1}, z, V\left(N_{R}\right),\left[v^{\prime}, v^{\prime}\right]=\left[v_{1}, v_{1}\right]$, and $\left[v^{\prime}, w^{\prime \prime}\right]=\left[v_{1}, w_{1}\right]$. Take any $e_{0} \in V(M)$ with $e_{0} \perp v_{1}, w_{1}, z, v^{\prime}, w^{\prime \prime}, V\left(N_{R}\right)$ and $\left[e_{0}, e_{0}\right]=1$. Let $\alpha \in K(M)$ be such that $\left[\alpha e_{0}+w^{\prime \prime}+z, \alpha e_{0}+w^{\prime \prime}+z\right]=\left[w_{1}, w_{1}\right]$.

Then putting $w^{\prime}:=\alpha e_{0}+w^{\prime \prime}+z$ we have $\left[w^{\prime}, w^{\prime}\right]=\left[w_{1}, w_{1}\right],\left[v^{\prime}, v^{\prime}\right]=$ $\left[v_{1}, v_{1}\right],\left[v^{\prime}, w^{\prime}\right]=\alpha\left[v^{\prime}, e_{0}\right]+\left[v^{\prime}, w^{\prime \prime}\right]+\left[v^{\prime}, z\right]=\left[v^{\prime}, w^{\prime \prime}\right]=\left[v_{1}, w_{1}\right]$, and $v_{1}, w_{1}, v^{\prime}, w^{\prime} \perp V\left(N_{R}\right)$. Thus $\operatorname{tp}\left(v^{\prime}, w^{\prime} / N_{R}\right)=\operatorname{tp}\left(v_{1}, w_{1} / N_{R}\right)$ and hence $\operatorname{tp}\left(v_{0}+v^{\prime}, w_{1}+w^{\prime} / N_{R}\right)=\operatorname{tp}\left(v, w / N_{R}\right)$ so we can choose $b \in K$ with $\operatorname{tp}\left(v_{0}+v^{\prime}, w_{1}+w^{\prime}, b / N_{R}\right)=\operatorname{tp}\left(v, w, a / N_{R}\right)$. As N is definable over N_{R} and $(v, w, a) \in N$, we must have $\left(v_{0}+v^{\prime}, w_{0}+w^{\prime}, b\right) \in N$ as well. Now, the commutator $\left[(v, w, a),\left(v_{0}+v^{\prime}, w_{0}+w^{\prime}, b\right)\right]$ equals $\left(0,0,\left[v, w_{0}+w^{\prime}\right]-\left[v_{0}+v^{\prime}, w\right]\right)=$ $\left(0,0,\left[v_{0}, w_{0}\right]+\left[v_{1}, w^{\prime}\right]-\left(\left[v_{0}, w_{0}\right]+\left[v^{\prime}, w_{1}\right]\right)\right)=\left(0,0,\left[v_{0}, w_{0}\right]+\left[v_{1}, \alpha e_{0}\right]+\right.$ $\left.\left[v_{1}, w^{\prime \prime}\right]+\left[v_{1}, z\right]-\left[v_{0}, w_{0}\right]\right)=\left(0,0,\left[v_{1}, z\right]\right) \neq(0,0,0)$. Hence N is not abelian, and G is not abelian-by-[semi] algebraic.

Now we conclude from (the proof of) Theorem 7.3 that all fields definable in T_{∞}^{*} have finite dimension.

Theorem 7.5. - Every field definable in T_{∞}^{*} is finite-dimensional, and hence definable in the field of scalars K. In particular, there is no definable field structure on V^{k} for any $k<\omega$.

Proof. - Suppose F is an infinite-dimensional field definable in T_{∞}^{*}. Put $s:=\operatorname{dim}(F)$.

Let $G=\left(F^{*}, \cdot\right) \ltimes(F,+)$ be the affine group of F, that is, G consists of pairs (a, b) where $a \in F^{*}$ and $b \in F$ with multiplication given by:

$$
(a, b)(c, d)=(a c, b+a d)
$$

Notice that for any $(a, b)(c, d) \in G$ the commutator

$$
[(a, b),(c, d)]=(a, b)(c, d)(a, b)^{-1}(c, d)^{-1}
$$

is equal to $(1,(a-1) d+(1-c) b)$. Hence, if $a \neq 1$ and $(c, d) \in C_{G}((a, b))$ then $d=\frac{c-1}{a-1} b$, so $\operatorname{dim}\left(C_{G}((a, b))\right) \leqslant s$, whereas $\operatorname{dim}(G)=2 s$ by Corollary 4.13(4) applied to projection on either of the coordinates of the Cartesian product $F^{*} \times F$. Hence, if we put $N:=\left\{g \in G: \operatorname{dim}(G)-\operatorname{dim}\left(C_{G}(g)\right) \in\right.$ $\omega\}$, we get that $N \subseteq\{1\} \times F$. This implies that the set $\left\{(a, 0): a \in F^{*}\right\}$ embeds definably in G / N, so $\operatorname{dim}(N) \ll \operatorname{dim}(G)$ which contradicts the proof of Theorem 7.3.

By Fact 1.1(2) we conclude:
Corollary 7.6. - Every infinite field definable in T_{∞} is definably isomorphic to the field of scalars K.

By Fact 1.2 we also get:
Corollary 7.7. - Every infinite field definable in $T_{\infty}^{\mathrm{RCF}}$ is either algebraically closed or real closed.

8. Independence relations and generics

In this section we relate our notion of dimension in T_{∞} to two independence relations, \downarrow^{Γ} introduced in [11, Definition 12.2.1] for T_{∞}, and Kim-independence (denoted \downarrow^{K}) defined for any theory in [14], and having good properties over models in NSOP_{1} theories, and over arbitrary sets in NSOP_{1} theories satisfying existence.

We will work in a monster model $\mathfrak{C} \models T_{\infty}$, that is, a $\bar{\kappa}$-saturated, $\bar{\kappa}$ strongly homogeneous model of T_{∞} for some sufficiently large $\bar{\kappa}$. All parameter sets considered will be small, that is, of size less than $\bar{\kappa}$.

We say that a set A is an extension base if no formula (or equivalently, type) over A forks over A. We say that a theory T satisfies the existence axiom (or simply existence) if every set of parameters is an extension base. It was asked in [5, Question 6.6] whether any NSOP_{1} theory satisfies existence, and a list of positive examples was given in [5, Fact 2.14]. Here we show that T_{∞} also satisfies it:

Proposition 8.1. - T_{∞} satisfies existence.
Proof. - Let $\phi(x, a)$ be a formula over A. Let $p(x)$ be a global generic type in $\phi(x, a)$. As any conjugate of $p(x)$ over A is also a generic type in $\phi(x, a)$, we get by Proposition $6.7(1)$ that there are only finitely many conjugates of $p(x)$ over A. As $p(x)$ is definable by Proposition 6.7(2), this implies that it is definable over $\operatorname{acl}^{e q}(A)$; in particular, $p(x)$ does not fork over $\operatorname{acl}^{e q}(A)$, so it does not fork over A, so $\phi(x, a)$ does not fork over A.

FACT 8.2 ([11, Theorem 12.2.2]). - Let $M \models T_{\infty}$. Then the relation \downarrow^{Γ} on subsets of M given by Γ-forking is automorphism invariant, symmetric, transitive, satisfies the finite character and extension axioms, and types over models are stationary.

Below, if $p(x) \in S(B)$ is a complete type in T_{∞} and $B \subseteq N_{R} \models T_{R}$, then we say that $p(x)$ forks in N_{R} over some $A \subseteq B$ if its quantifier-free part in the language L_{θ}^{F} (which is equivalent to $p(x)$ in T_{∞}) forks in N_{R} over A. Likewise, $\mathrm{RM}_{N_{R}}(p(x))$ means Morley rank of the quantifier-free part of $p(x)$ in the sense of N_{R}.

FACT 8.3 ([11, Proposition 12.2.3]). - Let $M \models T_{\infty}$, let $A \subseteq B \subseteq M$ and let $p(x) \in S(B)$. Let $\left(N_{r}: r \in \omega\right)$ be some approximating sequence for M. Then the following are equivalent:
(1) $p(x)$ does not Γ-fork over A;
(2) Given any formula $\phi=\phi(x, b) \in p(x)$ there is $R_{\phi} \in \omega$ such that $\phi(x, b)$ does not fork over $A \cap N_{r}$ in the structure N_{r} for all $r \geqslant R_{\phi}$;
(3) For each finite $b \subseteq B$ there is $R_{b} \in \omega$ such that $\left.p(x)\right|_{N_{r} \cap A b}$ does not fork over $A \cap N_{r}$ in N_{r} for all $r \geqslant R_{b}$.

Corollary 8.4. - Let $M \models T_{\infty}$, let $A \subseteq B \subseteq M$ with A finite, and let $p(x) \in S_{<\omega}(B)$. Then $p(x)$ does not Γ-fork over A if and only if $\operatorname{dim}(p(x))=\operatorname{dim}\left(\left.p\right|_{A}(x)\right)$.

Proof. - Assume $\operatorname{dim}(p(x))=\operatorname{dim}\left(\left.p\right|_{A}(x)\right)$. We will verify that the condition (3) in Fact 8.3 holds for $p(x)$ and A. Consider any finite $b \subseteq B$ and $M=\bigcup_{r}^{a} N_{r}$ containing $A b$. Let $R \geqslant \alpha(l(x), l(A b))$ be such that $A b \subseteq N_{R}$. Consider any $r>R$. Note that $\operatorname{dim}(\phi(x)) \in D_{l(x), l(A b)}$ for any formula $\phi(x)$ with parameters in $A b$. Hence, as $\operatorname{dim}(p(x))=\operatorname{dim}\left(\left.p\right|_{A}(x)\right)$, we have by Lemma 4.7 that

$$
\operatorname{RM}_{N_{r}}\left(\left.p\right|_{A b}(x)\right)=\operatorname{RM}_{N_{r}}\left(\left.p\right|_{A}(x)\right),
$$

so $\left.p\right|_{A b}(x)$ does not fork over A in N_{r}, and by Fact 8.3 we get that $\left.p\right|_{A b}(x)$ does not Γ-fork over A, as required.

Similarly, if $\operatorname{dim}(p(x))<\operatorname{dim}\left(\left.p\right|_{A}(x)\right)$ then there is a finite b such that $\operatorname{dim}\left(\left.p\right|_{A b}(x)\right)<\operatorname{dim}\left(\left.p\right|_{A}(x)\right)$, and if $M=\bigcup_{r}^{a} N_{r}$ and $R \geqslant \alpha(l(x), l(A b))$ are such that $A b \subseteq N_{R}$, then we have by Lemma 4.7 that $\operatorname{RM}_{N_{r}}\left(\left.p\right|_{A b}(x)\right)<$ $\mathrm{RM}_{N_{r}}\left(\left.p\right|_{A}(x)\right)$, so, by Fact $8.3,\left.p\right|_{A b}(x) \Gamma$-forks over A.

Definition 8.5 ([9, Definition 1.11]). - Let $A \subseteq B \subseteq \mathfrak{C} \models T$ for some theory T, and let G be a group definable in \mathfrak{C} over parameters A. Suppose \downarrow^{*} is an invariant ternary relation between small subsets of \mathfrak{C}. We call an element $g \in G$ a (left) generic over B, if

$$
\text { for every } h \in G \text { such that } g \underset{B}{\stackrel{*}{\downarrow}} h \text { we have } h \cdot g \underset{A}{\stackrel{*}{\downarrow}} B, h \text {. }
$$

We call a type $p(x) \in S_{G}(B)$ (left) generic in G if every (equivalently, some) its realisation is a generic in G over B.

This notion of a generic was first studied in groups definable in stable (e.g. [20]), and more generally, simple theories (e.g. [19]), with \downarrow^{*} being the forking independence. In [9] it was studied in rosy theories mainly with \downarrow^{*} being thorn-independence. In the (non-first order) setting of Polish group structures a useful notion of a generic is obtained by taking \downarrow^{*} to be the non-meagre independence ([15]). Below we examine this notion in T_{∞} for $\downarrow^{*}=\downarrow^{\Gamma}$ and for $\downarrow^{*}=\downarrow^{K}$.

To avoid confusion, we will say "dim-generic" to mean generic in the sense of Definition 4.18.

Proposition 8.6. - Suppose $A \subseteq B \subseteq \mathfrak{C} \models T_{\infty}$, where A is finite, and G is a group definable over A. Then for any $p(x) \in S(B)$ we have that $p(x)$ is \downarrow^{Γ}-generic in G if and only if $p(x)$ is dim-generic in G.

Proof. - Suppose first $p(x)$ is dim-generic in G (i.e. $\operatorname{dim}(p(x))=\operatorname{dim}(G))$ and fix any $g \models p$ and $h \in G$ such that $g \downarrow_{B}^{\Gamma} h$. Then by Corollary 8.4 $\operatorname{dim}(\operatorname{tp}(g / B, h))=\operatorname{dim}(\operatorname{tp}(g / B))=\operatorname{dim}(p(x))=\operatorname{dim}(G)$. As dim is preserved by definable bijections and every formula in $q:=\operatorname{tp}(h \cdot g / B, h)$ is a translate of a formula in $\operatorname{tp}(g / B, h)$, we conclude that $\operatorname{dim}(q(x))=\operatorname{dim}(G)$. On the other hand, $\left.q\right|_{A} \vdash G(x)$, so $\operatorname{dim}\left(\left.q\right|_{A}(x)\right) \leqslant \operatorname{dim}(G)$, so we must have $\operatorname{dim}(q(x))=\operatorname{dim}\left(\left.q\right|_{A}(x)\right)$. By Corollary 8.4 again, this gives that $q(x)$ does not Γ-fork over A, i.e. $h \cdot g \downarrow_{A}^{\Gamma} B, h$.

Now suppose $p=\operatorname{tp}(g / B)$ is a \downarrow^{Γ}-generic in G. By Proposition 4.16 we can find $h \in G$ with $\operatorname{dim}(h / B, g)=\operatorname{dim}(G)$. In particular, $g \downarrow_{B}^{\Gamma} h$. As g is generic in G over B, we have $h \cdot g \downarrow_{A}^{\Gamma} B, h$ so $h \cdot g \downarrow_{B}^{\Gamma} h$. Using this together with Corollary 8.4 in the second equality below, we get:

$$
\begin{aligned}
\operatorname{dim}(g / B) & \geqslant \operatorname{dim}(g / B, h)=\operatorname{dim}(h \cdot g / B, h)=\operatorname{dim}(h \cdot g / B) \\
& \geqslant \operatorname{dim}(h \cdot g / B, g)=\operatorname{dim}(h / B, g)=\operatorname{dim}(h / B)=\operatorname{dim}(G)
\end{aligned}
$$

Clearly $\operatorname{dim}(g / B) \geqslant \operatorname{dim}(G)$ implies that

$$
\operatorname{dim}(g / B)=\operatorname{dim}(G)
$$

as $\operatorname{tp}(g / B) \vdash G(x)$.
Corollary 8.7. - For any group G definable in T_{∞} over a finite set A and any $B \supseteq A$ there exists a \downarrow^{Γ}-generic over B element in G, and being \downarrow^{Γ}-generic does not depend on the choice of the finite set A over which G is definable.

Kim-independence was introduced and studied extensively in [14] over models in NSOP_{1} theories. It was proved there, among other results, that \downarrow^{K} is symmetric and satisfies the independence theorem over models, which was later extended in [5] to arbitrary sets in NSOP_{1} theories satisfying existence.

Definition 8.8 ([5, Definition 2.10]).
(1) We say a formula $\varphi\left(x, a_{0}\right)$ Kim-divides over A if for some Morley sequence $\left\langle a_{i}: i<\omega\right\rangle$ in $\operatorname{tp}\left(a_{0} / A\right),\left\{\varphi\left(x, a_{i}\right) \mid i<\omega\right\}$ is inconsistent.
(2) A formula $\varphi(x ; a)$ Kim-forks over A if $\varphi(x ; a) \vdash \bigvee_{i<k} \psi_{i}\left(x ; b_{i}\right)$ where $\psi_{i}\left(x ; b_{i}\right)$ Kim-divides over A for all $i<k$.
(3) Likewise we say a type $p(x)$ Kim-forks or Kim-divides over A if it implies a formula that Kim-forks or Kim-divides over A, respectively.
(4) We write $a \downarrow_{A}^{K} b$ to denote the assertion that $\operatorname{tp}(a / A b)$ does not Kim-fork over A.

FACT 8.9 ([5]). - Suppose T is NSOP_{1} and satisfies existence. Then:
(1) Kim's Lemma holds for \downarrow^{K}, that is, if a formula $\phi\left(x, a_{0}\right)$ Kimdivides over A then for every Morley sequence $\left\langle a_{i}: i<\omega\right\rangle$ in $\operatorname{tp}\left(a_{0} / A\right),\left\{\varphi\left(x, a_{i}\right) \mid i<\omega\right\}$ is inconsistent
(2) A formula Kim-forks over A if and only if it Kim-divides over A
(3) \downarrow^{K} is symmetric
(4) The independence theorem for Lascar types for \downarrow^{K} holds over any set.

The following folklore fact follows as in [14, Corollary 5.17], using the fact that, for any set C, a sequence is Morley over C iff it is a Morley sequence over $\operatorname{acl}(C)$.

Fact 8.10. - Suppose T is an NSOP_{1} theory satisfying existence, and let A, B, and C be any sets. Then $A \downarrow_{C}^{K} B \Longleftrightarrow \operatorname{acl}(A) \downarrow_{\operatorname{acl}(C)}^{K} \operatorname{acl}(B)$. Also, it follows from the definition of \downarrow^{K} that $A \downarrow_{C}^{K} B$ implies $A \downarrow_{C}^{K} B C$.

We will now give a description of Kim-independence in T_{∞} over arbitrary sets. The proof of it will be essentially the same as in the description of Kimindependence over models given in [14, Proposition 9.37], but the statement there requires two corrections (even when working over a model), which we now explain. If $A \subseteq \mathfrak{C} \models T_{\infty}$, put $\langle A\rangle:=\operatorname{Lin}_{K(\mathfrak{C})}(V(A))$ and let $A_{K}:=$ $A \cap K(\mathfrak{C}) . \operatorname{By} \operatorname{acl}(A)_{K}$ we mean $(\operatorname{acl}(A))_{K}$, where acl is the model-theoretic algebraic closure.

By quantifier elimination the structure on the sort K induced from T_{∞} is just the pure field structure, so the relation \downarrow^{K} restricted to the sort K coincides with forking independence $\downarrow^{\text {ACF }}$ in the algebraically closed field K, that is, with algebraic independence in the sense of field theory. As for algebraically closed $A, B \supseteq M \models T_{\infty}$ the condition $A \cap B=M$ does not imply that $K(A) \downarrow_{K(M)}^{\mathrm{ACF}} K(B)$, the latter is a missing condition in [14, Proposition 9.37].

Also, the following example shows that the condition $A \cap B=M$ for algebraically closed sets A, B and a model M, does not imply that $\langle A\rangle \cap$ $\langle B\rangle=\langle M\rangle$ (even if $K_{A}=K_{B}=K_{M}$), which is also implicitly used in
the proof of [14, Proposition 9.37], and which clearly follows from $A \downarrow_{M}^{K} B$ (see the proof of Proposition 8.12 below).

Example 8.11. - Let $M=\left(V_{0}, K_{0}\right) \models{ }_{s} T_{\infty}$ and choose an orthonormal pair $\left(e_{0}, e_{1}\right)$ with $e_{0}, e_{1} \in M^{\perp}$. Put $A:=\left(\operatorname{Lin}_{K_{0}}\left(M, e_{0}, e_{1}\right), K_{0}\right)$. Clearly $A=\operatorname{acl}(A)$. Let $t \in K(\mathfrak{C}) \backslash K_{0}$ and let t^{\prime} be such that $t^{2}+t^{\prime 2}=1$. Put $f:=t e_{0}+t^{\prime} e_{1}$ and $B:=\left(\operatorname{Lin}_{K_{0}}(M, f), K_{0}\right)$. As $[f, f]=1$ and $f \in M^{\perp}$, we have $B=\operatorname{acl}(B)$. Clearly $\langle A\rangle \cap\langle B\rangle=\langle B\rangle \neq M$, but $A \cap B=M$: any element of $A \cap B$ is of the form $a e_{0}+b e_{1}+m_{0}=c f+m_{1}$ for some $a, b, c \in K_{0}$ and $m_{0}, m_{1} \in V(M)$. Then, as $\left\langle e_{0}, e_{1}, f\right\rangle \subseteq M^{\perp}$, we have

$$
a e_{0}+b e_{1}=c f=c t e_{0}+c t^{\prime} e_{1}
$$

so $a=c t$ and $b=c t^{\prime}$. As $t, t^{\prime} \notin K_{0}$, this implies that $a=b=0$, so $a e_{0}+b e_{1}+m_{0}=m_{0} \in M$. Hence $A \cap B=M$.

Proposition 8.12. - Let $A, B, E \subseteq \mathfrak{C} \models T_{\infty}$ be small algebraically closed sets with $E \subseteq A, B$. Then $A \downarrow_{E}^{K} B$ if and only if $\langle A\rangle \cap\langle B\rangle=\langle E\rangle$ and $K(A) \downarrow_{K(E)}^{\mathrm{ACF}} K(B)$.

Proof. - Suppose first that $A \downarrow_{E}^{K} B$. As already pointed out above, this implies that $K(A) \downarrow_{K(E)}^{\text {ACF }} K(B)$ and it is left to show that $\langle A\rangle \cap\langle B\rangle=\langle E\rangle$. Suppose this is not the case, so there are vectors $a_{1}, \ldots, a_{m} \in A$ and $b_{1}, \ldots, b_{k} \in B$ such that $\left\langle a_{1}, \ldots, a_{m}\right\rangle \cap\left\langle b_{1}, \ldots, b_{k}\right\rangle$ is not contained in $\langle E\rangle$. By the assumption and [5, Proposition 4.5] there is an A-indiscernible Morley sequence $\left(\overline{d_{i}}\right)_{i \in \omega}$ in $\operatorname{tp}\left(b_{1}, \ldots, b_{k} / E\right)$. In particular, the subspaces $\left\langle\overline{d_{i}}\right\rangle, i<\omega$ are linearly independent over $\langle E\rangle$, so $\left\langle a_{1}, \ldots, a_{m}\right\rangle$ can intersect at most m-many of them outside of $\langle E\rangle$, which contradicts indiscernibility. Hence the implication from left to right is proved.

Let us now assume that $\langle A\rangle \cap\langle B\rangle=\langle E\rangle$ and $K(A) \downarrow_{K(E)}^{\mathrm{ACF}} K(B)$. There are only two problems with the proof of Proposition 9.37 in [14] (with $E=M$ a model). First, as shown by Example 8.11, the assumptions there do not imply that $\langle A\rangle \cap\langle B\rangle=\langle M\rangle$, which is used in the construction of the structure N in that proof. This is, however, assumed here. Secondly, in the last paragraph of the proof in [14], the map $\sigma^{i}: B_{0} \rightarrow B_{i}$ need not be elementary over $K\left(A^{\prime}\right)=K(A)$ on the sort K. However, assuming that $K(A) \downarrow_{K(M)}^{\mathrm{ACF}} K(B)$ we have that $K\left(B_{i}\right) \downarrow_{K(M)}^{\mathrm{ACF}} K\left(A^{\prime}\right)$ and $K\left(B_{0}\right) \downarrow_{K(M)}^{\mathrm{ACF}} K\left(A^{\prime}\right)$, so the map $\left.\operatorname{id}_{K\left(A^{\prime}\right)} \cup \sigma^{i}\right|_{K\left(B_{0}\right)}: K\left(A^{\prime}\right) \cup K\left(B_{0}\right) \rightarrow$ $K\left(A^{\prime}\right) \cup K\left(B_{i}\right)$ is elementary by stationarity of $\operatorname{tp}\left(K\left(B_{0}\right) / K(M)\right)$. Thus $\left.\operatorname{id}_{K\left(A^{\prime}\right)} \cup \sigma^{i}\right|_{K\left(B_{0}\right)}$ extends to an isomorphism $\rho: \tilde{K} \rightarrow L$ onto some algebraically closed field L, hence, by the construction of A^{\prime}, the map $\operatorname{id}_{A^{\prime}} \cup \sigma^{i}$
extends to an isomorphism between $\operatorname{Lin}_{\tilde{K}}\left(A^{\prime} \cup B_{0}\right)$ and $\operatorname{Lin}_{L}\left(A^{\prime} \cup B_{i}\right)$. By quantifier elimination this isomorphism is an elementary map, so in particular $A^{\prime} B_{0} \equiv A^{\prime} B_{i}$, and hence $\operatorname{tp}(A / B)$ does not Kim-divide over M.

When E is an arbitrary algebraically closed set (not necessarily a model), the only difference is that the vector spaces we obtain may be finitedimensional, which does not cause any problems, as an isomorphism of finite-dimensional vector subspaces of \mathfrak{C} is still elementary in T_{∞} by quantifier elimination. Hence the implication from right to left holds.

By [11, Proposition 9.5.1] $\operatorname{acl}(A C)_{K}$ is the field-theoretic algebraic closure of $\operatorname{dcl}(A C)_{K}$ and $\langle\operatorname{acl}(A C)\rangle=\langle A C\rangle$ for any sets A and C, so by Fact 8.10 we conclude:

Corollary 8.13. - Let $A, B, C \subseteq \mathfrak{C} \models T_{\infty}$ be any small sets. Then $A \downarrow{ }_{C}^{K} B$ if and only if

$$
\langle A C\rangle \cap\langle B C\rangle=\langle C\rangle \text { and } \operatorname{dcl}(A C)_{K} \underset{\operatorname{dcl}(C)_{K}}{\stackrel{\mathrm{ACF}}{\downarrow}} \operatorname{dcl}(B C)_{K} .
$$

As \downarrow^{K} does not satisfy base monotonicity, it is not obvious whether in the definition of \downarrow^{K}-genericity over B of an element $g \in G$ with G definable over A it is more reasonable to require that $h \cdot g \downarrow_{A}^{K} B, h$ (as is done in Definition 8.5) or that $h \cdot g \downarrow_{B}^{K} h$, provided that $g \downarrow_{B}^{K} h$. In either case, it turns out that $(V,+)$ does not have any \downarrow^{K}-generics over any set of parameters. Below we prove it for \downarrow^{K}-genericity in the sense of Definition 8.5 , and exactly the same argument works for the other sense.

Proposition 8.14. - The \emptyset-definable in T_{∞} group $(V,+)$ does not have any \downarrow^{K}-generic type over any set B.

Proof. - As usually we consider the symmetric case, the alternating case being very similar. By Fact 8.10 being \downarrow^{K}-generic over B is the same as being \downarrow^{K}-generic over $\operatorname{acl}(B)$, so we may assume that $B=\operatorname{acl}(B)=$ $\left(V_{0}, K_{0}\right)$; in particular, K_{0} is an algebraically closed field. Consider any $v \in V$ and put $\left(V_{1}, K_{1}\right)=\operatorname{acl}(B, v)$ and $a=[v, v]$. We will show that v is not a \downarrow^{K}-generic in $(V,+)$ over B. If $v \in\left\langle V_{0}\right\rangle$ then for any $w \neq v$ with $v \downarrow_{B}^{K} w$ we have that $0 \neq w+v \in\langle w+v\rangle \cap\left\langle V_{0}, w\right\rangle$, so $w+v \not \bigotimes^{K} B, w$ hence v is not a \downarrow^{K}-generic in $(V,+)$ over B. So let us assume that $v \notin\left\langle V_{0}\right\rangle$. Let $t \in K(\mathfrak{C}) \backslash K_{0}$ be such that $K_{1} \downarrow_{K_{0}}^{\mathrm{ACF}} t$.

Claim 1. - We may assume there exists $w \in V$ such that $w \perp V_{0}$, $[w, w]=t,[w, v]=-\frac{1}{2} a$ and $\left\langle V_{0}, v\right\rangle \cap\left\langle V_{0}, w\right\rangle=\left\langle V_{0}\right\rangle$.

Proof of the claim. - As $v \notin\left\langle V_{0}\right\rangle$, by compactness and the GramSchmidt process we can easily find some $f \in V$ with $f \perp V_{0}$ and $[f, v]=$ $-\frac{1}{2} a$. Let $e_{1} \in V$ be orthogonal to $\left\langle V_{1}, f\right\rangle$ with $\left[e_{1}, e_{1}\right]=1$. Now we can find $\beta \in K(\mathfrak{C})$ such that $[f, f]+\beta^{2}=t$. Then putting $w:=f+\beta e_{1}$ we get $[w, w]=[f, f]+\beta^{2}=t$ and $[w, v]=[f, v]=-\frac{1}{2} a$. By possibly modifying t we may assume that $\beta \neq 0$, so $\left\langle V_{0}, v\right\rangle \cap\left\langle V_{0}, w\right\rangle=\left\langle V_{0}\right\rangle$.

Let w be as in the claim. Then $[w+v, w+v]=[w, w]+[v, v]+2[w, v]=$ $t+a-a=t=[w, w]$, so $w+v \not\left\lfloor^{K} B, w\right.$. On the other hand, as $w \perp V_{0}$, we have by [11, Proposition 9.5.1] that $\operatorname{dcl}(B, w)_{K}=\operatorname{dcl}_{\mathrm{ACF}}\left(K_{0}, t\right)$. As $K_{1}=$ $\operatorname{acl}(B, v)_{K}$, this gives us that $\operatorname{dcl}(B, v)_{K} \downarrow_{K_{0}}^{\mathrm{ACF}} \operatorname{dcl}(B, w)_{K}$ by the choice of t. As we also know by the choice of w that $\left\langle V_{0}, v\right\rangle \cap\left\langle V_{0}, w\right\rangle=\left\langle V_{0}\right\rangle$, we conclude that $v \downarrow_{B}^{K} w$. Hence v is not a \downarrow^{K}-generic in $(V,+)$ over B.

Question 8.15. - Is there a useful notion of a generic element in a group definable in an NSOP_{1} theory with existence?

BIBLIOGRAPHY

[1] E. Bouscaren, "Model theoretic versions of Weil's theorem on pregroups", in The model theory of groups (Notre Dame, IN, 1985-1987), Notre Dame Math. Lectures, vol. 11, Univ. Notre Dame Press, Notre Dame, IN, 1989, p. 177-185.
[2] A. D. Byron \& R. Sklinos, "Fields definable in the free group", Trans. Amer. Math. Soc. Ser. B 6 (2019), p. 297-345.
[3] A. Chernikov \& N. Hempel, "On n-dependent groups and fields II", Forum Math. Sigma 9 (2021), article no. e38 (51 pages).
[4] A. Chernikov \& N. Ramsey, "On model-theoretic tree properties", J. Math. Log. 16 (2016), no. 2, article no. 1650009 (41 pages).
[5] J. Dobrowolski, B. Kim \& N. Ramsey, "Independence over arbitrary sets in NSOP $_{1}$ theories", Ann. Pure Appl. Logic 173 (2022), no. 2, article no. 103058 (20 pages).
[6] L. P. D. van den Dries, "Definable groups in characteristic 0 are algebraic groups", Abstracts Amer. Math. Soc. (1982), no. 3, p. 142.
[7] - "Weil's group chunk theorem: a topological setting", Illinois J. Math. 34 (1990), no. 1, p. 127-139.
[8] - Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998, $\mathrm{x}+180$ pages.
[9] C. Ealy, K. Krupiński \& A. Pillay, "Superrosy dependent groups having finitely satisfiable generics", Ann. Pure Appl. Logic 151 (2008), no. 1, p. 1-21.
[10] P. E. Eleftheriou \& S. Starchenko, "Groups definable in ordered vector spaces over ordered division rings", J. Symbolic Logic 72 (2007), no. 4, p. 1108-1140.
[11] N. Granger, "Stability, simplicity, and the model theory of bilinear forms", PhD Thesis, University of Manchester, 1999.
[12] H. Gross, Quadratic forms in infinite-dimensional vector spaces, Progress in Mathematics, vol. 1, Birkhäuser, Boston, Mass., 1979, xii+419 pages.
[13] E. Hrushovski, "Strongly minimal expansions of algebraically closed fields", Israel J. Math. 79 (1992), no. 2-3, p. 129-151.
[14] I. Kaplan \& N. Ramsey, "On Kim-independence", J. Eur. Math. Soc. (JEMS) 22 (2020), no. 5, p. 1423-1474.
[15] K. Krupiśski, "Some model theory of Polish structures", Trans. Amer. Math. Soc. 362 (2010), no. 7, p. 3499-3533.
[16] A. Macintyre, "On ω_{1}-categorical theories of fields", Fund. Math. 71 (1971), no. 1, p. 1-25. (errata insert).
[17] M. Messmer, "Groups and fields interpretable in separably closed fields", Trans. Amer. Math. Soc. 344 (1994), no. 1, p. 361-377.
[18] A. Pillay, "On groups and fields definable in o-minimal structures", J. Pure Appl. Algebra 53 (1988), no. 3, p. 239-255.
[19] , "Definability and definable groups in simple theories", J. Symbolic Logic 63 (1998), no. 3, p. 788-796.
[20] B. Poizat, Stable groups, Mathematical Surveys and Monographs, vol. 87, American Mathematical Society, Providence, RI, 2001, Translated from the 1987 French original by Moses Gabriel Klein, xiv+129 pages.
[21] K. Tent \& M. Ziegler, A course in model theory, Lecture Notes in Logic, vol. 40, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012, x+248 pages.
[22] A. Weil, "On algebraic groups of transformations", Amer. J. Math. 77 (1955), p. 355-391.

Manuscrit reçu le 3 août 2020,
révisé le 8 novembre 2021, accepté le $1^{\text {er }}$ décembre 2021.

Jan DOBROWOLSKI
Instytut Matematyczny
Uniwersytetu Wrocławskiego
pl. Grunwaldzki 2/4, 50-383 Wrocław (poland)
School of Mathematics
University of Leeds
Leeds LS2 9JT (United Kingdom)
dobrowol@math.uni.wroc.pl

