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ABSOLUTELY CONVEX SETS
IN BARRELLED SPACES (1)

by Manuel VALDIVIA

We present here some new theorems on increasing sequences
of absolutely convex sets in barrelled spaces. Some extensions
of well known theorems are given :

a) If F is a subspace, of finite codimension, of a barrelled
space E, then F is barrelled [J . Dieudonne, 3].

b) If F is a subspace, of finite numerable codimension,
of a metrizable barrelled space E, then F is barrelled. [J. Ame-
miya and Y. Komura, 1].

Our theorem 3 contains the proof that if F is a infinite
numerable codimensional subspace of a barrelled space E,
then F is barrelled.

c) If E is a metrizable barrelled space, then it is not the
union of an increasing sequence of closed, nowhere dense and
absolutely convex sets, [ I . Amemiya and Y. Komura, 1].

Our theorem 4 allows us to substitute in c) the condition
that E is a metrizable barrelled space by the condition that
E is barrelled and its completion E is a Baire space.

Finally we give a theorem on closed operators related with
some results obtained by G. Kothe, [5].

The vector spaces used here are defined on the field K of
the real or complex numbers.

The modification of a method used by G. Kothe to prove a

(1) Supported in part by the « Patronato para el Fomento de la Investigacion
en la Universidad ».
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4 MANUEL VALDIVIA

property of Cauchy filters in a numerable inductive limit space
[4, p. 162] allows us to give the following lemma.

LEMMA 1. — Let {A^}^ be an increasing sequence of
absolutely convex sets of the barrelled space E, such that

00

A == L J An is absorbing. Let 9 be a Cauchy filter in A and G
71=1

is the filter which basis is constituted by all sets of the form
M + U, where M varies in 9 and U in the filter of the
neighborhoods of the origin in E, then there exists a positive
integer n^ such that & induces a filter in 2A^.

Proof. — If the lemma is false there exists a decreasing
sequence {W^}^ of absolutely convex neighborhoods of the
origin and a sequence {M^}nLi of elements of S, such that
M, - M, c W, and (M^ + WJ n 2A^ = 0, n == 1, 2, 3, . . .

00

If V is the convex hull of LJ-o^^^n)? then v is

7l==l ^

absorbing, since for each x e E there exists a X e K, X + 0
1such that \x e -7- A, since A is an absorbing set. Therefore,

1 .there exists an integer n^ such that T^xe -T)-A^. Since there
2t

exists a real number (A in the open interval ]0, 1[ such that

^(^)e-J-W^ then ^e^- (W^nAJcV. If V, is the

convex hull of

y(Wi n Ai) u ^-(W^ n A^ u ... u y (W^ n A,.i) u y W,

then Vn is a neighborhood of the origin and, clearly, V c V^.
If V and V» are the closures of V and ¥„, respectively,

1 » 1 ~
then -T~ V c — V^ c V^. Since V is absorbing and absolutely

2i Z
convex, V is a barrel, and therefore, a neighborhood of the
origin. Hence there exists an element P e 3? such that

P-Pc^-V.

Let P^ e= 9 be an element such that P^ — P^ c V^, let us
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prove that (Pn + VJ n A^ = 0. If XQ e P, n M^ e 3? and
y e P^ then y — XQ e P^ — P^ c V^, which implies

n n

V = ^o + S ^p? witll a? ^ 0, p == 1, 2, . . ., M, ^ a? == 1
p=i p=i

^y(WpnAp), p = = l , 2 , . . . ,n- l , ^e^-W,.

If z e P^ + Vn we can write
n n

z-= XQ + 5 ^p + S bpVp,
p=l p=l

n

with bp ^ 0, p == 1, 2, . . ., n, S 6p == 1,
p=i

1 1t/? 6 y (^ n ̂  p = 1, 2, ..., M — 1, z/n e — W^.

Clearly
n—l /( n—1 ^

^ ^p^pe ~nr -A.n_^, ^ ^pype "o~ A^-i,
p==l '" p=l z

and hence
n-i n-i .1 ^
S ^p + S ^y?== ^€ s "̂ - ^^-"-1 + ̂  ̂ -i== -^^ic A"-p==i p=i ^ ^

i iFurthermore a^ e — W^, 6nZ/n e - - - W^ and therefore
2i 2i

OA + &Ae -J-W, + ̂ -W^cW,

Since XQ e Mn we obtain XQ + ^A + ^rayn e M^ + W^,
which not intersects 2A^, and therefore

(1) ^0 + ^n^n + &n2/n « 2A^,

If z e A^ then XQ + a^ + &^ = = = z — ^ e A , + A ^ = = 2A^
which contradicts (1). Hence (P^ + V^) n A^ == 0.

If ^oe P? there exists a positive integer rig such that
ZQ e A^. If w is an arbitrary element of P^ then

A

ZQ « w 4- V^, i.e. j^o — w ^ V^. Since — V c V^ we obtain
^j
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1 - 1 -ZQ — w ^ -7- V. Furthermore, P — P c — V and ZQ e P and
2i 2i

hence we deduce that w ^ P, i.e. P n P^ == 0 which is
clearly non true and the lemma has been proved.

THEOREM 1. — If the barrelled space E has an increasing
sequence {Wn},^ of complete and absolutely convex sets, such

00

that W = I J W^ is absorbing, then E is complete.
n=l

Proof. — For each positive integer n, let A^ == M.Wn.
Then the sequence {A.^}^ is increasing and all elements are

oo

absolutely convex complete sets. Since L J A^ == E the condi-
n==l

tions of the above given Lemma are satisfied and therefore
if 9 is a Cauchy filter in E, there exists a positive integer no,
such that the filter & described in this Lemma, induces in
2A^ a filter Gf. Obviously ^ is a Cauchy filter and therefore
there exists a x e 2A^ such that (^' converges to x and also
9 converges to x.

THEOREM 2. — Let {W»}^i be an increasing sequence of
absolutely convex sets in the barrelled space E, such that

00

E = t J W^. If U is an absorbing absolutely convex set, such
n==l

that U n W^ is closed in W^, n == 1, 2, . . . , (/i<m U 1*5 a
neighborhood of the origin in E.

Proof. — Let us define A^ === U n W^, n == 1, 2, . . ., and let
00

x be an arbitrary element of LJ, closure of U = I J A^ in E.
n==l

Clearly the sequence {AJ^ satisfies the conditions of
Lemma 1. Hence if 3s is a Cauchy filter in U, converging
toward x, it is possible to find a positive integer UQ such
that the filter 6 described in Lemma 1, induces a filter ^'
in 2A^. It is immediate that UQ can be taken in such a way
that x e 2W^. Since A^ is closed in W^, then 2A^ is
closed in 2W0 ,̂ hence x e 2A^ c 2U, i.e. U c 2U. Since U
is a barrel in E, then 2U is a neighborhood of the origin
in E, and teh theorem is proved.
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COROLLARY 1.2. — Let {E^}^i fc^ an increasing sequence of
oo

subspaces of the barrelled space E, ^ucA that E == L J E^.
n=i

If U 15 a 5et 5McA tAat U n E^, n == 1, 2, . . ., is a barrel in E^,
then U i« a neighborhood of the origin in E.

Proof. — This is a special case of Theorem 2, taking E^ = Wn,
n = l , 2 , . . .

M. de Wilde has proved [2] the following result:
d) Let E be a locally convex Haussdorff space and F a

subspace of E with finite codimension. If T is a barrel in F,
there exists a barrel T' in E such that T' n F ===== T.

The proof given M. de Wilde of result d) is still true, with a
small modification, in the case that E is not a Hausdorff
space.

THEOREM 3. — If Ei is a subspace, with numerable infinite
codimension, of the barrelled space E, then Ei is barrelled.

Proof. — Let {x^ x^ . .., x^ . . . } be a numerable infinite
set of vectors, such that E^ u {x^, x^ . . ., x^ . .. } generates E.
Let us denote by En the space generated by

EI u {x^ x^ . . ., ̂ -i}, n = 2, 3, ...

Let Ui be a barrel in Ei. Since Ei has finite codimension
in Eg there exists (result d)) a barrel Ug in Eg, such that
Ug n Ei == U^. Following this method we can go on and if a
barrel U^ in En is constructed we can find a barrel Vn+i

00

in En+i such that Un+i n E^ == U^. If U == I J Un, then
/ oo \ / oo \ n==l

U n E n = ( U U p ) n E n = = ( U U p ) n E , = = U n , n==l , 2, . . . .
\ p=l / \ p=n /

Hence, using Corollary 1.2, Ui is a neighborhood of the
origin in Ei. q.e.d.

THEOREM 4. — Let E be a barrelled space such that it has a
completion E which is a Baire space. Let {V^}^ be an
increasing sequence of absolutely convex closed sets in E, such

00

that for any n, V^ has no inner point, then U == L J U^ is not
absorbing. n=l
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Proof. — If U is absorbing, then if we define A^ == nV^,
00

the increasing sequence {A^}^ is such that E = I J A^.
. n==l

Let x be an arbitrary element of E and 9 a filter in E
converging to x. Since 9 is a Cauchy filter there exists a
positive integer HQ, such that the filter G described in
Lemma 1, induces a Cauchy filter G' in 2A^, converging
to x, as can be proved easily. Hence if A^ is the closure of

00

A^ in fi, then rce2A^ and therefore fe = I J 2A*. Since
71=1

E is a Baire space, there exists a positive number n^ such
that 2A^ has an inner point in fi, hence 2A^ n E == 2^Vn
has an inner point in E, which contradicts our starting
hypothesis, q.e.d.

COROLLARY 1.4. '— Let E be a barrelled space with a com-
pletion fi which is a Baire space. Let us assume that there exists
a numerable sequence {B^}^ of bounded sets, such that

00

L J B^ = E, then E is a seminormed space.
n=l

Proof. — Let us denote by A^ the absolutely convex and
closed hull in E of B^ u Bg u . • . u Bn, n == 1, 2, . . . The
increasing sequence of bounded sets {A^}^i is such that

00

I J An==E. Using Theorem 4, there exists a positive integer n^
n=l
such that A^ has an inner point, hence E is seminormed.

COROLLARY 2.4. — Let E be a barrelled Hausdorff space,
which completion E is a Baire space. If Ei is a closed subspace
of E with codimension at most numerable, then this codimension
is finite.

Proof. — If the codimension of Ei is infinite there exists a
sequence {x^}^ of linearly independent vectors such that
the space generated by them is the algebraic complementary
of Ei. Let E^ be the space generated by

Ei u {x^, x^ . . ., ̂ -i}, n = 2, 3, ...
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Since E^ is closed, Eg is also closed and in general E^,
n = 1, 2, . . . are closed subspaces. Each of the sets of the
sequence {E^}^ is closed, absolutely convex and without

00

inner point. Theorem 4 contradicts the fact that L J E^ == E.
ra==l

THEOREM 5. — Let {V^}^=i be an increasing sequence of
absolutely convex sets in the barrelled space E, such that

00

E = L J U .̂ If V is an absolutely convex set such that, for
n==i

each positive integer n, V n U^ is a neighborhood of 0 in U^,
wit/i (/ie topology induced by E, t/ien V is a neighborhood of
the origin in E.

Proof. — Given a positive n it is possible to find a neigh-
borhood of the origin in E, W^, absolutely convex, such that
W . n U . c V n U , .

If (V n UJ* denote the closure of V n U^ in U^ and x
is an arbitrary element of (V n UJ*, then

0 ^ [(a;+W,)nUJn(VnUJ.

Hence an element 2 exists in the last set. Since x e U, and
z e U,, then z — x e 2U,. Furthermore z e a; 4- Wn, hence
z — a; e Wn c 2Wn and therefore

, _ ^ e (2W,.) n (2UJ = 2(W, n UJ c 2(V n UJ.

Since z e V n U, then a; e 3(V n U»), i.e. (V n UJ* c 3(V n UJ,

(2)-If u is an arbitrary element of E there exists a positive
integer HI, such that u e U^. Furthermore there exists a
real number X e ]0, 1[, such that XueW^, hence
\u e W^ n U^ c V n Ui c V, i.e. V is absorbing. If

1 I °° I 1An == -^- (V n UJ, then f J A^ == -^- V and, therefore, the
n==l .sequence {A^}^ satisfies the conditions of Lemma 1. If v
1 » 1

is arbitrary element of -^- V, closure of — V, there exists
1 .a filter 9 in — V converging to ^, and therefore, there
2i

exists a positive integer HQ such that the filter fi described
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in Lemma 1, induces a filter 6' in 2A^ converging to p.
It is deal* that UQ can be taken in such a way that p e U^.
Then, taking into account relation (2), we obtain

^e(2AJ*=(VnUJ*=3(VnUJ,
00

hence 1 V c [J 3(V n UJ = 3V. Since 1 V is a barrel,
-" n==i °

V is a neighborhood of the origin in E. q.e.d.
The two next corollaries are immediate consequences of

Theorem 5.

COROLLARY 1.5. — Let {E^}^^ be an increasing sequence of
00

subspaces of the barrelled space E = I J E^ then E is the strict
n=l

inductive limit of this sequence.

COROLLARY 2.5. — Let {W^}^i be an increasing sequence of
absolutely convex sets of the barrelled space E, such that

00

t_j W^ == E. If g is a linear mapping of E in the locally
n=i

convex space F, then g is continuous if and only if its restric-
tion to W^, n == 1, 2, . . . is continuous.

THEOREM 6. — Let {Un}n^i be an increasing sequence of
closed absolutely convex sets in the barrelled space E, such that

00

I J V^ = E. Let {\n}^=i ^ sequence of non-zero real numbers,

such that lim X^ == oo. Then, if B is an arbitrarely given

bounded set, there exists a positive integer n^ such that B c X^ IL.

Proof. — For each positive integer n, if B is not contained
in XjJ^, it will be possible to find a x^ e B such that x^ $ X^U^

1and hence </n == — x^ ^ U^. Since U^ is closed it is possible
^n

to find and absolutely convex neighborhood of the origin such
that (y^ + Vre) n Hi == 0? hence

(./.+yV.)n(u.+tv.)=a,
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which implies y,«U, + 1 V,. The set U, + 1 V, is an
JU

absolutely convex neighborhood of the origin and therefore

^ == f_1 ̂ n + y ̂ j is absolutely convex. The sequence
{yn}^=i converges to 0 and all their terms are not contained
in U. If we prove that U is a neighborhood of the origin we
have a contradiction and the theorem is proved. Let p be an
arbitrary positive integer, then

U.""=U.n[U(u.+^-)v.]=U.n[n(u.+tv.)}
P=l

Since ( | ( U » + — V , ) is a neighborhood of the origin, then
n=i \ z /

U ? n U is a neighborhood of 0 in Vp and applying Theorem 5
we can prove that U is a neighborhood of the origin in E.

q.e.d.

COROLLARY 1.6. - Let {U^l, be an increasing sequence of
closed absolutely convex sets in the barrelled space E, such that

U ^n = E, and let E^ be the subspace generated by U»,
n = 1, 2, ... Then, if B is an arbitrary bounded set, there
exists a positive integer rie, such that B c E^.

Proof. — In the proof of the Theorem 6 consider X, = n,
then is enough to notice that nU, c E,, n == 1, 2, ... to prove
this corollary.

COROLLARY 2.6. - If the barrelled space E has a numerable
do

family {BJ,,̂  of bounded sets, such that E = [ } B,, then E
is a (DF) -space. n=i

Proof. — It is enough to prove that E has a fundamental
numerable system of bounded sets. Up to this let us take an
arbitrary positive integer n and let U, be the closed absolu-
tely convex hull of B^ u B, u • . . u B,. Using Theorem 6
with X, == n, n == 1, 2, . . ., we can prove that given a bounded
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set B there exists a positive integer HQ such that B c HoV^.
This implies that the increasing sequence {nUJ^ of bounded
sets is fundamental.

G. Kothe, [5], has proved the two following results :
e) Let E a B-complete space, F a barrelled space of Haus-

dorff and T a closed lineal operator of a part of E into F,
such that TE is of finite codimension. Then T is an open
operator and TE is closed.

f) Let E be a B-complete space, F a metrizable barrelled
space and T a closed operator of a part of E into F, such
that TE is of codimension at most numerable. Then T is an
open operator and TE is closed and of finite codimension.

The result e) is still true if we substitute the condition that
TE has finite codimension by the condition that TE has at
most numerable codimension. The same proof of G. Kothe
can be used taking into account not only the result a) of
Dieudonne but also our Theorem 4.

The result f ) is still true if the condition that F is a barrelled
metrizable space is substituted by the condition that is a
barrelled Hausdorff space which completion is a Baire space.
The G. Kothe's proof must be changed since our Theorem 4
is needed in substitution of the results c) of I. Amemiya and
Y. Komura.

An extension of result e) is the following.

THEOREM 7. — Let E be the inductile limit of an increasing
sequence {E^}^i ofB-complete spaces and F a barrelled space
of Hausdorff. Let u be a linear mapping of a subspace L of E
into F, with closed graph in E X F, and u(L n Ei) a subspace
of F with codimension at most numerable, then u is open and
u(L) is closed in F.

Proof. — For all n positive integer u(E^ n L) is of codi-
mension in F at most numerable and therefore is a barrelled
space. The same is true for u(L).

If u^ is the restriction of u to E^ n L, its graph is closed
in E^ X u^(E^ n L) and since E^ is B-complete then u^
is open.

The u mapping is open since u(L) is the strict inductive
limit of the sequence {u(E^nL)}^, (Corollary 1.5).
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The graph of ^ is closed in E^ X F. Using the same type
of arguments given by G. Kothe, [5], it is possible to prove
that u(E^n L) == u^ n L) is closed in F.

Let us prove, now, that u(L) is closed in F. Let 9 be a
basis of filter in u(L) converging toward an element x <= F.
Such basis of filter is of Cauchy and therefore there exists,
[4, p. 162], a positive integer n, such that if G is the basis of
filter constructed with all sets M + V, where M varies
on 3? and V in the filter of the neighborhoods of the origin
in u{L),(^ induces a basis of filter 3€ in u(E^ n L). Obviously
§ converges to x and 3g converges to x. Hence
xeu{E^n L) cu(L), i.e. u(L) is closed in F. q.e.d.
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