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ANALYSIS ON SOME LINEAR SETS
by Robert KAUFMAN

0.

Let F be a compact subset of (— o, o) and for each
integer N > 1 let vy = v(N; F) be the number of intervals
[N, (k 4+ 1)N'] meeting F; F 1is called small provided
log v« = 0 (log N). The existence of small sets of « multipli-
city » (My-sets 1n [6], p. 344]) was proved in 1942 by Salem
and used by Rudin [4, VIII]; a program somewhat analogous
for locally compact abelian groups was completed by Varo-
poulos [5].

Does there exist a small set F with the property that both
F and (say) F, = {2®: zeF} are M;-sets? The construction
of these sets doesn’t seem accessible by the method of Rudin
and Salem [4], nor by the Brownian motion [3]. In this note an
affirmative answer is given to a more general problem.

Tueorem 1. — Let (h,) be a sequence of real functions of
class Cl(— oo, o) with derivatives h, > 0. Then there is a
small set F with the property that each h,(F) is an M,-set.

Small sets occur naturally in the construction of independent
sets [3, 4, b]; after the metrical theory of Diophantine ap-
proximation a set F is called metrically independent if to each
integer N > 1 and each ¢ in (0, 1) thereisa U, so that
the simultaneous inequalities

N

jgl ux; — ¢

< U™, U =max (lul, ..., [ul) > U

|z, — x| > ¢ for 1<i<j<N
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have no solution in integers u;, ..., uy, ¥ and members
Zy, ...,2x of F. Compare [1, VII].

Uncountable metrically independent subsets could perhaps
be constructed by classical arguments, for example that of
Perron [1, p. 79] or Davenport [2].

TaeoreM 2. — The set F determined in Theorem 1 can be

required to have the property that each h,(F) be metrically
independent.

Treorewms 1a, 2a. — Theorems 1 and 2 remain true provided
each h, s monotone-continuous and h, > 0 almost every-
where.

1.

In the proof of Theorem 1 we require two arrays of indepen-
dent random variables (Y, ,) and (§,,) defined on a space
(Q,P) for 1 <k < 0,1 <m < k% Each Y, is uniformly
distributed upon [0, 1] while

Pln=1} =m, =k =1—P{,, =0}

Suppose that [ is a measurable function on (— o, ©)
and —1<f<1, and let p=m=nE({f(Y)); elementary
calculations show that

E(e%/Me~) < exp % 82 exp O(m, %)
with an ‘0’ wuniform for —1<f<1, —1<t<1,
0 <m, <1 Henceforany z>0 and 1 >¢t>0

P{l‘ D Eem — K°|>2k%) <2 exp — zk% exP% Kot exp O(m, k).

Choosing z=1t=Fk? and using =, =k we obtain

Pg Y Een— K| = k3; < 0(1) exp — —;-k,

Thus
ke

Lemma 1. — 3 E, .= k* + O(K®) almost surely in Q.

A sequence of random measures A, 1s now determined as
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follows : for any function g on (— oo, @)
[ gdr, =k 2g(0) + k= 3 Eyngle™ Y, ).

Thus in every instance A, > 0 and |A,[| > k2; moreover
Inf = 1 + O0(k™2) almost surely. Because Ze *""¥ < oo the
convolution A = = x %, converges, and F 1s defined to be
its closed support. F 1is contained in at most

jI-iIx [7° + 0(%)] = e s ®

intervals of length e '¢" ¥,

Because (k 4 1)log? (k -+ 1)/klog? k — 1, this is sufficient
to obtain

Lemma 2. — F is almost surely a small set.

Lemma 3. — Let heC{— o, ) and A > 0; let (c,),

(Un), (vm) be sequences of real numbers such that

el + 10l =0(1)  and  |upsnl > .
Then '
. 1 .
}"1')12 ‘/ov exp tuzh(c, + v,t) dt = 0.
Proof. — Let g denote the C! function inverse to h,

and let ¢, > 0. The integral is transformed to
— [Bm ; ~1
J= fa,,, g (y) exp tu,y. vt dy,

where «, = h(c,), Pn = h(¢n + ¢,). A further substitution
Yy =1y + wu,' yields

— 1 [k, ) ' —1
T=5 ), € expiny.ont dy
71'11;1 :
- é’ . g'(y + muz') exp iuyy. o5 dy.

This tends to 0 because B, — a, = 0(v,) and ¢;lu* = o(1).

Proof of Theorem 1. — We show that for each function &,
lim f exp tuh,(s)\ (ds) = 0, almost surely. Then A, (F) 1s an
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M,-set; because h,(F) is compact it is enough to prove
1
lim [ expir®h(s) (ds) =0, r=1,2,3, ...

To each integer r > 3 we attach the integer k(r) defined
1
by k(r) < log®r < k(r) +1 and write A, = |] *3,. Then

1 1 J#k
[ expirthys)n (ds) = [ exp irthy(s + w, (ds) A} (dw).
For each real number & in the support of A, let m(w) be

the expected value of f exp zrzh (s + w)A, (ds). Then

‘f exp ir”hn(s)l (ds)l < /‘f exp irah,,(s + w)r, (ds)
— m(w)| i (dw) + |\ max [m(w)].

The second integral, say I, can be handled by Jensen’s
inequality and the estimates at the beginning of 1. Let
—1 <t<1 and @®(z) =e*. Then

E(®(] A ~k*Rel)) < 2 exp—%— JS80 (exp k8).

(Ll

Choosing ¢t =k * we observe

_1
P3|Re Il > [adk 2% = P{®(| ;] k°Re I) > exp k*}

< 2exp —%— k* exp O(k"2) exp — k*.

This is the general term of a convergent series, inasmuch as
1

k=k(r) > — 1+ log®r. Thus, almost surely in Q, for

r>r,
[Re [ exp ir*hy(s)a (ds) < k" =1n1 + [l max | m(w)

and of course a similar statement holds for the imaginary part
of the integral. Now

1 1
Im(w) < k2 + ’/; exp tr2h, (e "¢ ¥ + w) di
with w = 0(1) and k = k(r). To apply Lemma 3 we must
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1 R
verify r2e*'""* > oo but this is plain from k(r) < log? r.
Because max 7] < o almost surely, the proof of Theorem 1
k

1s complete.
2.

Theorem 2 requires the construction of a random function ¢
in C®(— oo, ©). Let ¢ be a functionin C*(— oo, o) with
the properties

(1) ¢=0 on [— o, —2], =3 on [2, o],
(11) ¢’ > 0, and ¢">1 on (—1, 1)

Let (a,) be a sequence of real numbers such that every real
number belongs to infinitely many of the intervals (a, — p7,
a, + p7'). Finally, let (Z,) be a sequence of independent
random variables on (Q, P), uniformly distributed upon

[0, 1]. We define

® i
o(0) = 3 UL, + Pz — a) + o
p=
To each compact set F and number 8 > 0 there are num-
bers ¢, and ¢, so that

9s

1
@ >4 q33 > 5, U(ap_P—l, a, + p*)2F.

p=q,

Teeorem 3. — Let F be a small set and h e C(— 0, ),
k' > 0; then ho(F) is almost surely metrically independent.
For each integer U > 1 we can choose a subset S(N, U)
of RY so that every point in F¥ has distance < U~ from
some point in S(N, U), while card S(N, U) < v¥NU*; F).
Beginning with an inequality

3 wholy) — | < U lhely) — hel)l > = G # 1)

we conclude first that |y, — y;| > # for some fixed % > 0.
Let (z, ..., z,) be the member of S(N, U) associated to
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(y17 ey y,.)- Then

N
1) |3 wholz) — o] < U= 4 0(U.U-),
= % — 5| > n — 2U-N.

For large U we can find 8 < y — 2U=* and corresponding
numbers ¢, ¢. Let ¢ < p < @, |73 — a)| < p7™.

1 1
l{)_lzp + pz(zi —1 a’p)l < p-l + ];—2 < 11
|p™Z, + p*(Z; — a,)] > p?8 —p™ — p=2 > 4, whenj+#i.

N
Therefore - Y who(Z) = w — ho(Z) exceeds afu] in
dZ, 2, dZ, :
modulus, with an « > 0 independent of u,, ..., u,. Hence
the probability of the inequality (1) is O(U~1.U~™) for each
(25, ..., zx). The requirement U = max (||, ..., |us|)
determines O(UM') N-tuples and plainly ¢ = O(U). Because
F 1s a small set v¥(NU3Y; F) = Uo® as U — . Theorem 3

follows from this and ZU1—*U® < oo.

Proof of Theorem 2. — Here we use the fact that F and ¢
depend on independent o-fields. F 1s almost surely small,
whence each h,9(F) 1s almost surely metrically independent,
by Theorem 3. By Theorem 1, each h,(F) is almost surely an
M,-set and Theorem 2 is proved.

3.

Proof of Theorems 1a and 2a. — According to a theorem of
Marcinkiewicz [611, pp. 73-77], to each & > 0 there exist
functions g, in C(— o0, ) so that

m(h, # g) < Sn?, n=1,2,3,....

At almost all points of density of the set (h, = g,), g.=h, > 0.
Passing to a perfect subset of the set (g, > 0, g, = h,, g, = h,),
we can find a g, in C!(— oo, ) such that

m(h, # g,) < 28n72, n=1,2,3, ...,

g, > 0 everywhere.
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We observe next that to each ¢ > 0 there is a constant
B(e) so that for all Borel sets S

JoMS8) dP < & + B(e)m(S).

Thus to each ¢ > 0 we can choose functions ¢, by Marcin-
kiewicz’ theorem, so that

P{\(z: g.0(x) # h,p(x) for some n) > ¢} < .

In proving this implication it must be observed that ¢ and A
are stochastically independent and ¢’ > 1. Writing G for
the inner set in the last inequality, we know that
ho(G'nF) = g,9(G'nF) 1is almost surely metrically inde-
pendent and that h,e(G"nF) 1s almost surely an M,-set, if
only A(G'nF) > 0; and this holds for |A] > ¢ excepting an
event of probability < e. Thus Theorems 1a and 2a are
derived from Theorems 1 and 2.
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