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ON SYSTEMS OF IMPRIMITIVITY
ON LOCALLY COMPACT

ABELIAN GROUPS WITH DENSE ACTIONS
by J. MATHEW and M. G. NADKARNI

Introduction.

Let R be a second countable locally compact Abelian
group. Let F c R be a dense sub-group of R with another
topology under which it is a second countable locally compact
Abelian group and such that the injection map of r into R
is continuous. Let FQ c r c R be a closed sub-group in R ,
hence also closed in F . Then F/Fo <= R/Fo; F/FQ is dense
in R/FO and the injection map of F/Fg in R/FQ is conti-
nuous. Let B = P , S == ft and let K be the annihilator
of FQ in B . Then S is a dense sub-group of B and the
injection rnap of S into B is continuous. Further K n S
is a dense sub-group of K and the injection map of K n S
into K is continuous, where the topology on K n S is the
one which it receives as a closed sub-group of S . Thus we
have four pairs (F,R), (F/Fo.R/Fo), (K n S,K), (S,B). The
first coordinate of each is dense in the second coordinate
and the injection map is continuous. Hence the first coordinate
acts on the second coordinate through translation.

Let H be a complex separable Hilbert space. Let (V,E)
be a system of imprimitivity for K n S based on K and
acting in H . We call it (K n S,K) system of imprimitivity.
We show that every such system gives rise, in a natural
fashion, to an (S,B) system of imprimitivity (V,E) 5 and,
every (S,B) system of imprimitivity is equivalent to one
which arises in this fashion, (section 3).
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Let U, F be given by

U,=^(Y,!/)E(rfy) T e r/Fo
^s=f^(-^W{dx), s e K n S .

Then (U,F) is a (r/FoyR/ro) system of imprimitivity,
(section 1). We show in section 2 that (U,F) gives rise, in a
natural fashion, to a (F,R) system of imprimitivity (U,F)
and that every (F,R) system of imprimitivity is equivalent
to one which arises in this fashion. Finally let U, F be defined
by _ _

UT == JB (Y^)E {dx) Y e r
V,=^(-^)F(^) ^ e S .

Then (U,F) is a (r,R) system of imprimitivity. We thus
get two (F,R) systems of imprimitivity, (U,F) and (U,F),
starting with the same (K n S,K) system of imprimitivity
(V,E) . Under a mild assumption which is satisfied in many
cases, probably in all the cases, we show (U,F) and (U,F)
are equivalent systems of imprimitivity, (section 4). We thus
show that the two way arrows shown below between equi-
valence classes of systems of imprimitivity are valid and that
in many cases no matter which way we arrive at the lower
left hand corner starting from the upper right hand corner
we get the same system of imprimitivity, (up to equivalence).

( K n S , K ) ____ __(S,B)
(V,E) <————- (V,E)

W)^ - CT(r/Fo.R/ro) ^(U,F) (r,R)
Diagram 1

This paper is a generalization of our earlier joint paper
with Bagchi [I], where a special case was treated. The main
steps in the present paper are same as in the special case,
but, to carry out details one has to rely upon the advanced
theory of locally compact Abelian groups.
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For all unexplained terminology we refer to Varadarajan [3].
By a measure we mean a <7-finite non-negative measure. When
we have complex valued measures we are explicit about them.
We speak of cocycles relative to a mesure rather than with
respect to its measure class. If G is an Abelian group and H
a sub-group of G , then by a section of G with respect
to H we mean a set C which intersects each coset of H in
exactly one point. Every element g e G can be written
uniquely in the form g = c - { - h ^ c e C , h e ] r i . We denote c
and h by <g> and [g] respectively and observe that
for any two elements gi , gg e G ,

[81+82] = [81] + [<gi>+g2] and <gi+g2> == «gi>+g2>.

We shall use these facts in the sequel. If v is a measure on a
locally compact Abelian group G , Vg will mean the measure
A -> v(A + 8) ' F011 a locally compact (second countable)
Abelian group G , X^ will denote the Haar measure on G ,
unless stated otherwise.

We use A* to denote the ad joint of A if A is an operator,
and the complex conjugate of A if A is a complex number.

1. Dual systems.

By a pair (F,R) we mean a pair of locally compact second
countable Abelian groups F and R together with a one-one
continuous homomorphism <p of F into R such that
<p(r) is dense in R . Given a pair (F,R) there arises another
pair in a natural fashion. Consider the dual groups P and ft ,
and the map 9 : ft -> P defined by

(^<p(y)) - (?(^y), ^r , y e f t .
It can be shown that 9 is a one-one continuous homomor-
phism of ft into P and that $(ft) is dense in P . The pair
(ft,f1) is called the dual pair of (F,R). It is convenient to
identify F with <p(r), and thus regard r as a dense sub-
group of R . The topology on F need not be the one induced
from R ; but it is such that the injection map of F into R
is continuous.
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Let (U,P) be a (r,R) system of imprimitivity acting in
H , a complex separable Hilbert space. Apply Stone's theorem
to U to yield a spectral measure Q on t , and to P to
yield a representation V of R:

U,=Jp(-y,g)Q(dy) g ^ r
V, = J^ {x,h)P {dx) h e R .

Some elementary computations [1, p. 291] show that

v^Dyv, = Q(D+ ?W)
for each Borel set D c p and for each h e ft . Hence
(V,Q) is a (R,f1) system of imprimitivity acting in H .
We call (V,Q) the dual system of (U,P). We observe that a
subspace of H reduces (U,P) if and only if it reduces
(V,Q).

2. Quotient systems.

Let (F,R) be a pair. Let Fg c F be a closed sub-group
of R . Then Fo is closed in F as well. Further (F/I^R/ro)
is a pair which we call the quotient pair. In this section we
show that:

Every (F/r^R/ro) system of imprimitivity (U,F) gives
rise, in a natural fashion, to a (F,R) system of imprimitivity
(U,F); moreover every (r,R) system of imprimitivity is
equivalent to one which arises in this fashion.

To this end we keep in view the well known representation
of a system of imprimitivity in terms of quasi-invariant
measures and unitary operator valued cocycles [3, Thm 9].
Lemmas 2.1 and 2.2 below then immediately establish the
desired statement.

Since I^ is a closed sub-group in R we can choose a
section of R with respect to Fo which is a Borel set [3,
Thm 8.11]. Let Q be a Borel section of R with respect to
FQ . One can define a group operation in Q by

Cl + ^2 == < l̂ + ^2>-

With this operation Q is a group isomorphic to R/Fg ,
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isomorphism being c ~> c where c denotes the coset of FQ
to which c belongs. This isomorphism is furthermore a Borel
isomorphism between Q and R/F() . Every element x e R
can be written uniquely in the form :

^== c + To , c e Q , YO ^ ro ,

and the map 8 : c + To -> (^?To)? ls a Borel isomorphism
between R and R/Fo X Fo . Let v be a measure on R/Fo
and let Xo(= Xp^) denote the Haar measure on FQ . By ^
we shall mean the measure on R defined by

7(A)=(v XX<.)(8(A)), A = R.

LEMMA 2.1. — J/* v i5 quasi-invariant under the action of
F/FQ on R/FQ (/ion ^ is quasi-invariant under the action of
F on R . Any measure on R , quasi-invariant under the
action of F , is equivalent to a measure of the form ^ for some
measure v on R/Fg , quasi-invariant under F/FQ .

Proof.—Let A be a Borel subset of R such that 7(A)==0 .
By Fubini theorem, then, for v almost every c e R/F^ ,
c e Q , , X o ( ( 8 ( A ) ) ^ = 0 , where (8(A))^ is the c section of
8(A) . Let Y belong to F . Then y == <(y) + [y]? where
<y> e Q and [y] 6 F() . For any c e Q

(8(A + T)), = {To ^ Fo : (c,yo) e 8(A + y)}
== {To e Fo: c + To e A + y}
--{To ^ Fo : <c - <Y» + To + [c - T] ^ A}
== {To - [^ - T] e Fo : <c -- <y» + To e A}
= (8(A))^> ̂  [c - y].

By invariance of XQ we have

Xo((8(A + Y)),) = Xo((8(A))^^)

Since Xo(8(A))^) == 0 a.e. v , by quasi-invariance of v we have
Xo((8(A));_^) == 0 a.e. v .. Hence

7(A'+ Y) == /K/ro ^((^^ + T)).)^(^) = 0

which shows that 7 is quasi-invariant under F . To prove
the second part of the lemma, let [L be a measure on R ,
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quasi-invariant under the action of F . Assume without loss
of generality that [L is finite. Let TC : R -> R/F() be the
natural homomorphism. Put v == (JL o n-1. Then v is a measure
on R/FQ , quasi-invariant under the action of F/Fo . It can
be verified that (A and ^ are equivalent, q.e.d.

The next lemma is on cocycles. Our cocycles will be taking
values in the group ^(H) of unitary operators on a complex
separable Hilbert space H . Let v be a measure on R/Fo ,
quasi-invariant under the action of F/Fg . Let A be a
(F/ro,R/Fo) cocycle relative to v . Define A on F X R
by A(Y,^) == A(Y,^).

LEMMA 2.2. — A is a (F,R) cocycle relative to ?. Two
(F/F^R/Fo) cocycles Ai and Ag are cohomologous if and only
if the corresponding (F,R) cocycles A.i, Ag are cohomologous^
Every (F,R) cocycle relative to ^ is cohomologous to a cocycle A
for some (F/F^R/Fo) cocycle A relative to v .

proof. — The first statement is easy to verify and a proof
of the second statement runs on natural lines. We prove the
third statement. Let B be a (F,R) cocycle relative to ^ .
For each y e F we can modify B(y, .) on a ^ null set in
such a way that the resulting function, which we denote by
BI , satisfies, for all Yi , Ya e r ?

Bi(Yi + Y2^) = Bi(Yi,n;)Bi(Y2^ + Yi) a.e. v .

The new function Bi may not be F X R Borel measurable
but it is such that for any two ^, T] G H and for any Borel set
E c R of finite ^ measure, the function

Y ̂  ̂  (A(Y,^) ^ {dx)

is continuous. Moreover, since F() is closed in R , and acts
on R by translation, Bi may be so chosen that its restriction
to FO X R is FQ X R Borel measurable, and, indeed a
(FO,R) coboundary. We may thus assume that the restriction
of Bi to To X R is a strict cocycle. Define the Borel map T
on R by ^{x) = Bi([a;],<^» . Let Bg be defined by

B,(Y,^) = ̂ x)B,{^x)^{x + Y).
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If h, h' e FQ and y e F , we have a.e. 7 ,

B2(Y+^+^) = ^+hf)B^+h,x+hf)^{x+^+h+hf)
==Bi([a;]+^,<^»B,(Y+^+^)B?(^+Y]+A+^,<^+Y»
=B,(^],<a;»Bl(/l'^)B,(Y+A^+^)B56(A+A'^+Y)

B?([^+T],<^+Y»
=Bl([a;],<^»Bl(Y+A+A/^)B^(A+A'^+Y)

B^+Y],<^+Y»
= Bi(^],<a;»B,(Y^)B^(^+Y],<^+Y»
^T^B^Y^T^^+T)
= B^Y^) .

Now Bg satisfies all the properties of a (r,R) cocycle
except that it may not be a F X R Borel function. On the
other hand Bg satisfies the cocycle identity a.e. 7 for each
pair YI , Y2 e r , and the map y -> Je W^^W^ {dx) is
continuous for any two ^ , 73 e H and for any Borel set E
of finite 7 measure. A well known lemma [3, Lemma 8.5]
permits us to modify Bg , for each y e r 9 on a ^ null set
in such a way that the new function, which we call B3 , is
r X R Borel and for Xp almost every y? ^2^^) =Bs{^^x)
a.e. 7 . We then have for each pair h, h' e FQ

B^-f + h,x + A') = B3(y^) a.e. Xp X 7 .

One can now show that Xp X ^ almost every where, B3 is
equal to an A for a suitable (r/ro.R/Fo) cocycle A with
respect to v . Finally we note that a.e. Xp X 7 ,

A(y^) == B3(y^) = ^x)B(^,x)^{x + y).

Hence B is cohomologous to an A for a suitable (P/r^R/Po)
cocycle A relative to v . q.e.d.

Suppose (U,F) is a (r/r^R/ro) system of imprimitivity
which is homogeneous. Then there is a quasi-invariant mea-
sure v and a cocycle A (relative to v) associated with (U,F)
which together describe (U,F) (up to equivalence) according
to a well known formula [3, Thm 9.7]. The measure 7 and the
cocycle A then define a (F,R) system of imprimitivity
(tj,F1) according to the same formula. Second part of lemma 2.1
and the third part of lemma 2.2 show that every homogeneous
(F,R) system of imprimitivity is equivalent to the system of
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imprimitivity (U,F) for a suitable (F/F^R/Fo) system of
imprimitivity (U,F) . This proves the assertion made at the
beginning of the section for homogeneous systems. For a
general system of imprimitivity the result follows by decompo-
sing the given system into its homogeneous components.
We shall call the equivalence class of the system (U,F) the
quotient of the equivalence class of the system (U,F) .

3. Gamelin systems.

Now let us consider the dual pairs ((R/Fo)"^?/^)") and
(R,^) . Put R == S , t = B , (F/Fo)' = K , the annihilator
of FO in B . Then (R/Fo)" = K n S , the annihilator of
Fo in S. Thus the dual pair of (F/Fo.R/Fo) is (K n S,K)
and that of (F,R) is (S,B) . In this section we prove that:

Every (K n S,K) system of imprimitivity (V,E) gives
rise, in a natural fashion, to an (S,B) system of imprimitivity
(V,E); moreover every (S,B) system of imprimitivity is
equivalent to one such.

LEMMA 3.1. — A Borel section C of S with respect to
K n S is at the same time a Borel section of B with respect
to K .

Proof. — Let C be a Borel section of S with respect to
K n S . Since S is a Borel subset of B , C is a Borel subset
of B . Each coset of K can contain almost one element of
C , for if c + K = Ci + K then c — q e K n S whence
c = Ci . Now the relative topology of Fg in F is the same
as the relative topology of Fo in R . Therefore, B/K
and S/K n S are topologically i^omorphic, both being duals
of FQ . Hence, given a b e B , there is a c e C such that
(b + K,Yo) = (c + K n S,To) tor all YO e Fo , i.e.,

(^Yo) = (^Yo) tor all Yo ^ ^o •

Thus c— b annihilates F^ , i.e., c — b e K , or c e b 4- K .
Thus every coset of K contains an element of C . Therefore
C is a Borel section of B with respect to K . q.e.d.

Throughout the rest of this paper C will stand for a section
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of S with respect to K n S. The natural one-one corres-
pondence a : c ->- c between C and S/K n S is a Borel
map. A measure on S/K n S can be carried over to a mea-
sure on C and vice-versa. The Haar measure on S/K n S
is carried over to a measure on C which we denote by dc ,
i.e., dc is the measure on C defined by Xg/^goa-1. This
measure is invariant under the group operation on C defined
by ^1+^2 = <^i + ^> . Every element z in B can be
uniquely written in the form ^ = = c + y , c e C , y e K , and
the map 73 : c + y -> (c,y) is a Borel isomorphism between B
and C x K . Restriction of 73 to S is a Borel (isomorphism
between S and C X (K n S) .

LEMMA 3.2. — Let [L be a measure on K , quasi-invariant
under the action of K n S . Then

il: A^{dc X (i)(7)(A)), A c B ,

is quasi-invariant under the action of S and for any s e S ,

(3.1) d? (c + y) = d^ (y) a.e. dc x ^ .0(1 O[L

Every measure on B , quasi^invariant under the action of S ,
is equivalent to a measure p. for some measure (JL on K
quasi-invariant under K n S .

Proof. — We omit the proof of the first part of the lemma
as it is similar to the proof of lemma 4.3 on page 294 of [1].
We prove the second part. Let m be a measure on B ,
quasi-invariant under S . Assume, without any loss, that m
is finite. Let (i on K be defined by pi(A) = m(7)-l(C X A)),
A c K . Then pi is quasi-invariant under K n S and a
and m have the same null sets.

q.e.d.
Let A be a (K n S,K) cocycle relative to (A , a measure

on K quasi-invariant under K n S. Define A on S X B
^

(3.2)
A(5,c + y) = A.{[s + c],i/), s e S , c e C , y e K .
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Clearly A is a Borel function on S X B . Now the map
(s^s^c + y) ->• ([>i + c], [52 + <^i + c>],i/) maps Xg X Xg X IA
sets of positive measure onto Xg^g X Xg^g x (A sets of
positive measure. This, and the fact that

Ol + ^2 + C\ = [S^ + C] + [̂  + <5i + C>] ,

can be used to verify that A is an (S,B) cocycle relative to
(A . Further, one can verify that two (K n S,K) cocycles Ai
and Ag are cohomologous if and only if the corresponding
(S,B) cocycles Ai and Ag are cohomologous. Thus we have
shown that every (K n S,K) cocycle relative to (JL gives
rise, in a natural fashion, to an (S,B) cocycle relative to ^L .
Next we show that every (S,B) cocycle D relative to (A is
equivalent to a cocycle A for some (K n S,K) cocycle A
relative to pi . If D were a strict cocycle, one could simply
take A equal to the restriction of D to (K n S) X K and
observe that for ^ e S . c + ^ B ^ e C,y e K) we have

D(^+z/) = D*(c,y) A(5,c+y) D«5+c>,y+[5+c])
== ?(^+2/) A(5,c+2/)<p-l(c+y+5)

where we have put D*(c,y) = <p(c+y) • Unfortunately the
cocycle identity is valid only almost everywhere, and may
fail to hold on the possible null sets K n S and K . An
argument involving the Fubini theorem, therefore, becomes
imperative. Now

D(^i+^2?^) = D(^i^) D(^+^i) a.e. Xg X Xs X ^ .

Let ^ i ^ c + ^ ^ ^ C . s e K n S . Then

(3.3) D(c+^+^,z)
= D(c+5,z) D(52,z+c+6?), a.e. dc X X^g x Xg x [L .

By Fubini theorem, therefore, there exists an SQ e K n S
such that

D(c+5o+^)
= D(c+5o,z) D(5a,js+c+5o) a.e. dc X Xg X (JL .
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By shifting the section C to C + s^ , if necessary, we may
assume that

D(c+«2,z) = D(c,z) D(«2,z+c) a.e. dc x Xg x (I.

Now, with 8 e C , we have

(3.4) D(c+s+s2,z)
= D(-8+<c+^>+s+[c+^]+8,z)
= D([c+S2]+S,z) D(-8+<<;+^>+s,z+[c+,?»1+8)
= D([c+^]+8,z) D(-8,z+[c+^]+8)

I>«C+«2>+^+[C+52])

where the second^ equality is valid almost everywhere
dc X XKDS X Xg X (A X dc, because the map

(C,S,S2,8) -> (—8+<C+S2>+S,[C+S2]+8)

takes dc X XKOS X Xg X dc sets of positive measure onto
Xs X Xg sets of positive measure. This can be seen by breaking
the map as follows :

(0,̂ 2,8) -* «c+^>,<,[c+^],8)
^«C+«2>+.y,[c+,S2],8)

^ «c+«2>+<y+8,[c+.?2]-8)

and verifying the statement at each stage. Comparing the
right hand side of (3.3) with the last term of (3.4) we get

D(c+s,z) D(.?2,z+c+s)
= D([c+^]+8,z) D(-8,z+[c+^]+8)

D«C+«2>+5,Z+[C+S2])

where the equality holds a.e. dc X X^g X Xs X ix X dc .
Therefore, a.e. with respect to the same measure,

D(c+,?,z) D{s^,z+c+s) D*«c+52>+.?,z+[c+,?2])
= D([c+^]+8,z) D(-8,z+[c+^]+8).

The left hand side of the above identity is independent
of 8 , hence outside a dc null set the right hand side is
independent of 8 , and it is a function only on (K n S) X B .
We denote this function by D^ . If we now put z = Ci + y ,
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°i e C , y 6 K , we get

D(c+5,Ci+y) D(52,z/+c+^i+5)
D*(<c+^>+^+y+H-^])

= Di([c+52],Ci+y), a.e. dc X X^g X Xg X dc X (A.

By Fubini theorem we can find suitable Ci , s , say Ci == Co
and 5 = SQ , such that a.e. dc X Xg X .̂ we have :

D(c+5,Co+y) D^y+c+Co+^o) .
D*«C+S2>+5o^o+2/+^+52]) = Di([c+52],Co+2/).

It we put <p(^+2/) = D(c+5o,Co+2/), we get

(p(c+y) D(52,z/+c+^+^o) 9ilt(^+2/+52)
= Di([c+52],Co+y), a.e. ĉ X Xg X [A .

Thus the function D2 on S X B defined by

D20?2^+y) = Di([52+c],Z/)

is a cocycle cohomologous to a shifted D , hence cohomo-
logous to D . Finally we show that Di is a (K 0 S,K)
cocycle relative to (JL :

Di([^+^+[^+<^4-^>]^)
= Di([>i + ^2 + c],y)
= D2(5i + s^c+y}
= D2(5i,c+?/) D2(52,c+i/+^i)? a.e. Xg X Xg X rfc X (A
=Di([^+c],y) Di([52+<c+^>],t/+[c+^i]).

We now observe that the map

(5i,52,C,2/) -> ([5i+c],[52+<5i+^>],2/)

takes Xg X Xg X dc X [A sets of full measure onto ^ris ̂  ^KOS ̂  ^
sets of full measure, and hence that Di is a (K n S,K)
cocycle relative to ^ . If we set Di == A , then clearly D
is cohomologous to A .

Remark. — For the special case when B is compact and
r(= 6) is a dense sub-group of the real line and the cocycles
are complex valued these results were proved by Gamelin
[2, p. 182]. For the special case Gamelin even establishes
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that the cocycles have a strict version [2, p. 187]. In our
context it may be mentioned that, if K n S is countable,
then every (S,B) cocycle has a strict version because every
(K n S,K) cocycle then has a strict version.

Notation. — Given a (K n S,K) cocycle A we shall call
cocycle A the Gamelin cocycle obtained from A .

Now let (V,E) be a homogeneous (K n S,K) system of
imprimitivity. Then there is a quasi-invariant measure [L on
K and a (K n S,K) cocycle A relative to (JL , which
together describe (V,E) (up to equivalence) according to a
well known formula (ct eqn. 4.3). The measure (JL and the
cocycle A then define a homogeneous (S,B) system of
imprimitivity (V,E) (cf eqn. 4.4). The second part of lemma
3.2 and the fact that every (S,B) cocycle is cohomologous
to the cocycle A for some (K n S,K) cocycle A , shows
that every homogeneous (S,B) system of imprimitivity is
equivalent to the system (V,E) for a suitable (K n S,K)
system (V,E) . This proves the statement made at the begin"
ning of the section for a homogeneous system of imprimitivity.
For a general system, the result follows by decomposing the
given system into its homogeneous components. We shall call
(V,E) the Gamelin system of imprimitivity obtained from
(V,E).

4. Gommutativity (under a mild assumption).

Let (V,E) be a homogeneous (K n S,K) system of
imprimitivity. Let (V,E) be the Gamelin system_of imprimi-
tivity obtained from (V,E) . Let (U,F) and (U,F) be the
duals of (V,E) and (V,E) respectively. Let (U,F) be the
(F,R) system of imprimitivity obtained from the r/r^R/ro)
system (U,F) according to the procedure of § 2. Thus we
have diagram 1 and we obtain two (F,R) systems of impri-
mitivity (U,F) and (tJ,F) starting from the same (K n S,K)
system of imprimitivity (V,E) . Under a mild assumption
we now prove that (U,F) and (LJ,F) are equivalent.

Recall that Q and C stand for a Borel section of R with
respect to Fo and a Borel section of S with respect to K n S



14 J. MATHEW AND M. G. NADKARNI

respectively. It is clear that the map g -> g o a~1 is an
isometry between L^C^c) and L^S/K o S, Haar mea-
sure), where g e L^C^c), and a is the natural map from C
to S/K n S . For h e L^C.dc) we first define h on Fo by
A(yo) === h o a^Yo) ? where on the right hand side we have
the Fourier-Plancherel transform of A o oc~1. h is thus defined
a.e. AQ . We extend this definition of h to the whole of R
by defining A(r) = ((^.^(.^(Yo) where y ^ y + y o ^ ^ Q ?
Yo e T'0 . If h e l^^Cydc) n L^C^c) then indeed we have

h^ = /c ̂ h^ dc = fc (To^)(?^)^) ̂  •

Suppose h e L2(C,rfc) is such that A|p,, i.e. , the restriction
of h to FO , is non-vanishing Xg almost every where. Then
by Wiener's theorem (by passing to S/K n S and back)
the collection {A« . +^)) : c e C} spans 1^(0,rfc) . Hence the
collection {/i«.+^» : 5 e S} spans 1^(0,dc) . Let v be a
finite measure on R/FQ . We regard v as a measure on Q
as well, although in fact we mean the measure v o a', where a'
is the natural map from Q to R/Io . Suppose h e L^C^dc)
is such that the function h on R is 7 a.e. non-vanishing,
where, as in § 2 , 7 == (v X Xo) o 8 . By Fubini theorem,
then, for v almost every y e Q, ( (y?- )A( . ) )^ |p^ is non-
vanishing XQ a.e. on FQ . Hence for v almost every y e Q ,
{(y,< . +^))/i(<(. +5)): 5 e S} spans L^C^c). Thus we have :

PROPOSITION 4.1 : Suppose h e L^C,^) is such that h is
non'wnishing ^ a.e. Then for v almost every y e Q, the
collection {(y,< . +5»A« . +^)) : 5 e S} spans 1^(0,dc) .

Let /i e L^C.dc) and put A* == complex conjugate of A ,

/^+ To) = ^T(^+ To), ^ e Q , To e Fo ,
F^+Yo) = /^+To)r^+Yo-g), g ^ F ,

where * again stands for the complex conjugate.
Let v be a finite complex valued measure on R/Fo and

let 7 denote the complex valued countably additive function
on the class of Borel subsets of R with compact closure,
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defined by

(4.1) 7(A)= C ^ l n r ) ^ \ { d r )
t/A61!'!

where |v| denotes the total variation measure of v . The
symbol Fg (K will denote the complex valued measure on B ,
defined by

A-> tW^^l^r).
o'A "'I1'!

It we consider the measure on Q given by A -> v(oc'(A)),
A c Q ^ which we continue to denote by v , then the measure
¥g (K is also given by

A -> f fF^+Yo) iL (^^(^Yo)l^l W.
J\J ^l^l

We shall use this form of the measure ¥g (K to calculate
its Fourier-Stieltjes transform.

LEMMA 4.1. — For each t e S ,

(4.2)
(F,^n()=J^([(+c]) (g,<t+c» W+c» /i*(c)Jc.

Proof. — We use the Plancherel theorem (transferred to C)
in the third equation below. Now

(F,^)^)

- f f ^+To,0^+To)/'*(^+Yo-g)iv,^)^(^Yo)|v|?)JoJr. "H
= f(^) f/•^+Yo)(Yo,<t»/•*^+To-g)A-(^^(^Yo)|v|W

JQ Jr. "l^
= JQ (^,<)/C (^^

/^l»(c)(a;,-<(+c»(g,«+c»/^«t+c» -̂ - {x)dc\^dx)
I ^1

= fS r(^[t+c])-^-(a;)|v|(^))(g,«+c»A(«+<-»^(c)<Ic
Jc(.JQ alvl )

= Jc v([(+c])(g,<t+c»^«(+c»/l*(c) rfc .
q.e.d.
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Let (V,E) be a homogeneous (K n S,K) system of
imprimitivity. Let H be a Hilbert space of dimension same
as the multiplicity of E . Let (JL be a measure on K , quasi-
invariant under K n S . Let A be a (K n S,K,^(H))
cocycle relative to (JL such that (A and A together describe
a system equivalent to (V,E). There is no loss if we assume
that (V,E) acts in L^K.H,^) as follows : For 9 e L^K,!^),

(4.3) (V,9)(.)=A(^.)t/^(.)^(.+^, s e K nS

E((r)9 = 1^9 , a c K,

where iy is thejunction equal to one on a and zero outside.
The system (V^E) then acts on L^B,!!,̂ ) as follows :
If 9 eL^B.H^), then

(4.4) (V,9)(.)=A(.,.)\/^(.)9(.+,), , eS
— " d[L
E((T)9 = 1<,9 , cr c B .

Let ( . , . ) denote the inner product in L^K,!!,^) which
will cause no confusion with the same symbol used to denote
characters. Let ^( . , . ) ) denote the inner product in L^B,!!,̂ ).
If 9 e L^B,!^) and c e C , then 9, will denote the
function in L^K^H,^) defined by 9,(y) = 9(c+y), y e K .
A routine calculation using (3.1)_and (3.2) shows that, for any
two elements 9 , ^ in L^ByH,^) ,

(^S) ((V,9,S)) = /,(V^9^c> ,Sc) rfc.

Assume now that (U,F) is a homogeneous system of
imprimitivity of multiplicity n. In case (U,F) is not
homogeneous, the arguments below can be carried out for
each homogeneous component. Let I denote the set of
first n natural numbers if n is finite, and the set of all
natural numbers if n == ^o • Since F is homogeneous of
multiplicity n there are n functions A , , I G I , in L^K,!^)
such that for all s e S

(i) (VA^-) = 0 if i ^ f ,
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: (lii) the measures v;(.) == (F(.)/^,/I() are all equal. (We
denote the common measure by v .)

(iii) the closed linear span of {V^ : i e I , 5 e K n S } is
L^K.H^).

Let A e L2(C,dc) .
Let /i.(c+n;) = hi{x)h(c), c e C , x e K .
Then h, e L^B.H,^) . An easy computation using (4.5)

shows that for all s e S \
(l) ((VA^-O ^f i +],__
(2) the measures ^(.) = ((F(.)/i,,/^)) are all equal. (We

denote the common measure by v .)
We now state the assumption under which we prove the

equivalence of (U,F) and (U,F) .

Assumption A. — There is a function h in L^C^c)
such that for all y e Q , { ( . , y ) ^ ( . ) } " is non-vanishing \oa.e.
on FQ .

This assumption is satisfied in many cases but we do not
know if it is always satisfied. Next lemma is the only place
where it is used. Note that if h is as in assumption A then h
satisfies the condition of proposition 4.1.

LEMMA 4.2. — If h is as in assumption A then the collection
{V^ : i e 1,5 e S} spans L^ByH,^) , (i.e., under assumption
A, (U,F) is also homogeneous of multiplicity n).

Proof. — Let <p e L2(B,H,^) be such that for all i e I and
s e S , ((V^,<p)) = 0 . We show that 9 is the null function.
Now, by (4.5),

0=((VA,9))_
= Jc (v[^]^9cW<^+^» dc
= fc (JQ (^-[^])B.(y,c)v {dy))h{(s+cy) dc ,

where B^( . , . ) is a jointly Borel function such that for dc
almost every c , B^(. ,c) is the Radon-Nikodym derivative
of the measure (F(.)/^,<pc) with respect to v . By Fubini
theorem we have

0 = JQ (2/,-M)(Jc (2/,-[<^>+c])B.(i/,c)/i(«<>+c» (fc)v (dy).
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If we fix <5> and let [s] run over K n S we see that
for v almost every y e Q ,

0 = fc ̂ [<s>+CWy^h{«s>+c» dc-
Or, since «5> 4- c> = <^ + ^>?

(4.6) 0 == ̂  (y,-<^»(y,-c)B,(z/,c)(t/,<^+c»A«^+c» dc ,

which now holds for all s e S and v almost every y e Q .
Since A is as in assumption A , it satisfies the condition of
proposition 4.1. Therefore, by (4.6), for v almost every y,
Bi(y,.) is a null function. Hence dc a.e., B,(.,c) is a null
function. Since this holds for every i , in view of the choice
of the functions A( , we see that dc a.e. 9<; is a null function
in L^K.H,^). Whence 9 is null in L^B.H,^) .

q.e.d.
From now on h will always be according to assumption A .
Let g e F , g = <g> + [g], <g> e Q n F , [g] e F, . Put

<g> == u , [g] = YO • Define complex valued measures ^j

on R/FO and v^7 on R as follows:

^•(.) = (F(.)U»V,) = (F(.)xA^),
v^'(.) = ((F( • )U^,^)) = ((F(. )x^,^)) ,

where /n and ^ are the characters on K and B respec-
tively, defined by u and g . (Here u is the natural element
in r/r'0 corresponding to u = <g>.) .

Remark. — The complex valued measures v^ and v^
are not the translates of the complex valued measures

<(= v1^) and ^(== v^).

LEMMA 4.3. — v^ is absolutely continuous with respect to
^ and

ft rj\ ^ T7(^•7) ^ = F,

on compact subsets of R .
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Proof. — For ( e S we have by (4.5)

^) = ((v^W
= Jc (v[^]Xu-^,^)x,«^+^»A«^+c»^(c) ^c
=(F,^H().

Thus the measures ^ and F^ c?^ are the same because
their Fourier-Stieltjes transforms are the same. Further on
compact subsets of R we have

d^l
^y

F, . q.e.d.

Remark. — We have to say that (4.7) is valid only for
compact subsets of R because ^ is not a complex valued
measure on Borel subsets of whole of R but only on Borel
subsets of a compact set. But now we define the left hand side
of (4.7) on the whole of R to be equal to the right hand side.

If we take i = ] ' , and g = 0 e F we get,

COROLLARY. — The measures v and ^ are equivalent and

(4.8) ^=|^.

This corollary and lemma 4.2 together show that F and F
are equivalent spectral measures. It remains to show that the
cocycles associated with U and U are cohomologous.
To this end let H^ denote the space of complex n-tuples or P
according as n is finite or equal to fc<o • Let < .,. > denote
the inner product in H^ . Let T denote the isometric
isomorphism between L^K,]:!,^) and L^R/r^H^v) defined
by

TF(X)/i.=(...,0,...,lx,...,0,...), i 6 I , X s R / F o
(where lx appears at Ith place, and zeros elsewhere) .
(TUT-^TFT-1) is a (r/Fo,R/ro) system of imprimitivity act-
ing in L^R/ro.H^v) as follows : there is a (r/ro,R/ro,^(HJ)
cocycle D relative to v such that

(THT-^Ky) = D(- u^^/^y^ - u),

TF(X)T-^ = l^y ,
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where 9 e L^R/r^H^v). D is a matrix valued function
whose entries dy may be computed as follows :

v^X) = (F(X)xA^) = (F(X)xA,F(X)^)
= ̂ (̂ -̂ -̂̂ .̂ (X)!'-1'!̂ )

= ̂  (D(- u,y) ̂ /̂  (y)(TA.)(y - u), (TA,)(y)\v (dy)

=fd,{--u,y)^d^a{y).{dy).

Thus
, ,— v dv1— /d^ / x .
^^-^•V^)-

Similarly let T denote the isometric isomorphism between
L^B,^) and L^R,^,^) defined by:

TF(X)%,=( . , . ,O, . . . , IX, . . . ,O, . . . ) , i e l , X c R .

Then (TUT-^TFTj1) is a (F,R) system of imprimitivity
acting in L^R,!:!,,,̂ ) as follows: there is a (r,R,^(HJ)
cocycle D such that for 9 e L^R,!!,,,̂ ),

(TUj-i9)(z) == D(- g,z) J^-s (,)y(^ _ g),v dv
TF(X)T-19 = 1x9 .

Exactly as above D is a matrix valued cocycle whose entries
are

J,^)=^(z)\/^-(.).. W v ,dv " dv,,/*.M ' n \t

Now

Jy(g,.) ̂ d^,d^^/^^
d^iji d^ dv v ^ d^dv.
^y d^ dV . / dv ^ .̂

u^'g

•^-u^^d.is:.}.d^!_g dV I d» d^ . , .
-^u'-^V-T-'T"^'-)'av'-.n dv v dv dv,,
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where

^(g,.)=^\/^=^u,.(.))

are the entries of the cocycle D obtained from D as in
lemma 2.2, (TC being the natural homomorphism of R onto
R/Fo) . By (4.7) and (4.8) we get

/^

'w—^ r{-^ to-)-
/ . / 6?V , , ^v^-+^

Or,
dy(g,a;) = H(aQ J./g^H-^g+aQ, a; e R

where

V^^_v/i7(^Hw - r^) - r(^)
a function of modulus one on R . Hence D and D are
cohomologous. Thus we have proved the following theorem
for a homogeneous system (V,E) .

THEOREM 4.1. — Let (V,E) be a (K_n S,K) system of
imprimitwity and (U,F) its dual. Let (V,E) be the Gamelin
system of imprimitwity obtained from (V,E) and let (U,F)
be its dual. Let (U,F) be the (F,R) system of imprimitwity
of which (U,F) is a quotient. Then, under assumption A. ,
(U,F) and (U,F) are equivalent systems of imprimitivity.

The case of general (V,E) follows on decomposing it into
its homogeneous components and applying theorem 4.1 to
each component.

5. On assumption « A ».

Assumption A would be redundant if we knew that given a
non-zero finite measure v on a second countable locally
compact Abelian group B , there exists a Borel function f



22 J. MATHEW AND M. G. NADKARNI

on B such that (/* d^Y never vanishes. We do not know the
truth or falsity of this. For compact B it is true. For non
compact group one can find an f such that the set of zeros
of [f d^Y has Haar measure zero. We prove this statement
here. There is no loss if we assume that B = R/1 X L where
R/1 is the Euclidean n space and L is compact with a coun-
table discrete dual D = {d^dgA. . . } . Then B = R" X D .
Assume without loss that v is a finite non-zero measure with
compact support. By using disintegration of measure we can
get, for each r e R/1, a measure v,. on L such that for each
Borel A c L , Vr(A-) ls a Borel function of r and for any
Borel A c B

v(A)=/^(A,)^r)

where A^ is the r-section of A and (JL is the measure on R/1
given by (JL(<T) == v (c rXL) , a c R\ Let

Q==[0, l ] X [0,1/2] x [0,1/4] . . . ,

and, let q == (<j^)^i represent an element in Q . For each
( °°integer k , let M^ •== ^q : ^ q^^ (rf^+ dk) is a pi null function
( 71=1

of r}. Then M^ is closed nowhere dense in Q . (Q is given
the product topology.) Hence, by Baire category theorem,

00

we can find a q = (^n)^i such that ^ v^ (^ + d^) is, for
71=1

each k , a non-null function (with respect to [A). Define f

on R" X L by f{r,l) = ^ ^(^) ; then
i==l

{fd.Y^d}=f^^r^{d^{dr}.

Now for each J e D , (y1^)^^) is the Fourier-Stieltjes
transform of a measure on R" with compact support, hence
it is analytic in ( . Hence for each d e D the set of t for
which (fd^Y{t,d) == 0 has Haar measure zero in R\ Hence
the set of zeros of (fd^Y has Haar measure zero in B .

It is a pleasure to acknowledge our discussions with B. V. Rao
in arriving at this result.
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