Annales de l'institut Fourier

Wolfgang Lusky
 A note on the paper "The Poulsen Simplex" of Lindenstrauss, OIsen and Sternfeld

Annales de l'institut Fourier, tome 28, no 2 (1978), p. 233-243
http://www.numdam.org/item?id=AIF_1978_28_2_233_0
© Annales de l'institut Fourier, 1978, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A NOTE ON THE PAPER
 « THE POULSEN SIMPLEX »
 OF LINDENSTRAUSS, OLSEN AND STERNFELD
 by Wolfgang LUSKY

It was shown in [5] that there is only one metrizable Poulsen simplex S (i.e. the extreme points ex S are dense in S) up to affine homeomorphism. Thus, S is universal in the following sense : Every metrizable simplex is affinely homeomorphic to a closed face of S ([5], [6]).

The Poulsen simplex can be regarded as the opposite simplex to the class of metrizable Bauer simplices ([5]). There is a certain analogy in the class of separable Lindenstrauss spaces (i.e. the preduals of L_{1}-spaces); the Gurarij space G is uniquely determined (up to isometric isomorphisms) by the following property: G is separable and for any finite dimensional Banach spaces $\mathrm{E} \subset \mathrm{F}$, linear isometry $\mathrm{T}: \mathrm{E} \rightarrow \mathrm{G}, \varepsilon>0$, there is a linear extension $\mathrm{T}: \mathrm{F} \rightarrow \mathrm{G}$ of T with $(1-\varepsilon)\|x\| \leqslant\|\tilde{\mathrm{T}}(x)\| \leqslant(1+\varepsilon)\|x\|$ for all $x \in \mathrm{~F}$. ([3], [7]).
G is universal : Any separable Lindenstrauss space X is isometrically isomorphic to a subspace $\mathrm{X} \subset \mathrm{G}$ with a contractive projection $\mathrm{P}: \mathrm{G} \rightarrow \mathrm{X}$ ([9], [6]).

Furthermore G is opposite to the class of separable $C(K)$ spaces. There is another interesting property of G :

For any smooth points $x, y \in \mathrm{G}$ there is a linear isometry T from G onto G with $\mathrm{T}(x)=y .(x \in \mathrm{G}$ is smooth point if $\|x\|=1$ and there is only one $x^{*} \in \mathrm{G}^{*}$ with

$$
\left.x^{*}(x)=1=\left\|x^{*}\right\|\right)
$$

In their last remark the authors of [5] point out that here the analogy between G and $\mathrm{A}(\mathrm{S})=\{f: \mathrm{S} \rightarrow \mathbf{R} \mid f$ affine continuous $\}$ seems to break down.

The purpose of this note is to show that under the aspect of rotation properties there is still some kind of analogy between G and $A(S)$.

Take $s_{0} \in \operatorname{ex} S$ and consider

$$
\mathrm{A}_{0}\left(\mathrm{~S} ; s_{0}\right)=\left\{f \in \mathrm{~A}(\mathrm{~S}) \mid f\left(s_{0}\right)=0\right\}
$$

for any normed space X let $\mathrm{B}(\mathrm{X})=\{x \in \mathrm{X} \mid\|x\| \leqslant 1\}$ and $\partial \mathrm{B}(\mathrm{X})=\{x \in \mathrm{X} \mid\|x\|=1\}$. In particular

$$
\partial \mathrm{B}(\mathrm{~A}(\mathrm{~S}))_{+}=\{f \in \partial \mathrm{~B}(\mathrm{~A}(\mathrm{~S})) \mid f \geqslant 0\}
$$

We show :
Theorem.
(a) Let $f, g \in \partial \mathrm{~B}(\mathrm{~A}(\mathrm{~S}))_{+}$so that $f, 1-f, g, 1-g$ are smooth points of $\mathrm{A}(\mathrm{S})$. Then there is an isometric isomorphism T from $\mathrm{A}(\mathrm{S})$ onto $\mathrm{A}(\mathrm{S})$ with
(i) $\mathrm{T}(f)=g$
(ii) $\mathrm{T}\left(\mathrm{A}_{0}\left(\mathrm{~S} ; s_{0}\right)\right)=\mathrm{A}_{0}\left(\mathrm{~S} ; s_{1}\right)$ where $f\left(s_{0}\right)=0=g\left(s_{1}\right)$
(iii) $\mathrm{T}(1)=1$
(b) Let $f \in \partial \mathrm{~B}\left(\mathrm{~A}_{0}\left(\mathrm{~S} ; s_{0}\right)\right)_{+}$and $g \in \partial \mathrm{~B}\left(\mathrm{~A}_{0}\left(\mathrm{~S} ; s_{1}\right)\right)$ so that neither $\mathrm{g} \leqslant 0$ nor $\mathrm{g} \geqslant 0$ hold. Then there is no isometric isomorphism T from $\mathrm{A}(\mathrm{S})$ onto $\mathrm{A}(\mathrm{S})$ spith $\mathrm{T}(f)=g$.
(c) The elements $f \in \mathrm{~A}_{0}\left(\mathrm{~S} ; s_{0}\right)$, so that $f, 1-f$ are smooth points of $\mathrm{A}(\mathrm{S})$, form a dense subset of $\mathrm{\partial} \mathrm{~B}\left(\mathrm{~A}_{0}\left(\mathrm{~S} ; s_{0}\right)\right)_{+}$.

The proof of the Theorem which is based on a method used in [5] and [7] is a consequence of the following lemmas and proposition 6. From now on let $s_{0} \in \operatorname{ex~} \mathrm{~S}$ be fixed and set $\mathrm{A}_{0}(\mathrm{~S})=\mathrm{A}_{0}\left(\mathrm{~S} ; s_{0}\right)$. We shall retain a notation of [5]:

By a peaked partition we mean positive elements $e_{1}, \ldots, e_{n} \in \mathrm{~A}_{0}(\mathrm{~S})$ so that $\left\|\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|=\max _{i \leqslant n}\left|\lambda_{i}\right| \quad$ for all $\lambda_{i} \in \mathbf{R} ; i \leqslant n$. Notice that this definition just means « peaked partition of unity in $\mathrm{A}(\mathrm{S})$) ([5]) if we add $e_{0}=1-\sum_{i=1}^{n} e_{i}$. Call a l_{∞}^{n}-subspace $\mathrm{E} \subset \mathrm{A}_{0}(\mathrm{~S})$ ([6]) positively generated if E is spanned by a peaked partition. If $l_{\infty}^{m+1} \cong \tilde{\mathrm{E}} \subset \mathrm{A}(\mathrm{S})$
is spanned by the peaked partition of unity $\left\{f_{0}, f_{1}, \ldots, f_{m}\right\}$ and contains $e_{0}, e_{1}, \ldots, e_{n}$ then we may arrange the indices $j=0,1, \ldots, m$ so that
(*) $\quad e_{i}=f_{i}+\sum_{j=1}^{m-n} k_{j} f_{j+n} ; \quad i=0,1, \ldots, n ;$
where $k_{j} \geqslant 0$ for all j and $\sum_{j=1}^{m-n} k_{j} \leqslant 1$ ([6] Lemma 1.3 (i)).
Lemma 1. - Let $\mathrm{E}, \mathrm{F} \subset \mathrm{A}_{0}(\mathrm{~S})$ be finite dimensional subspaces so that E is a positively generated l_{∞}^{n}-space. For any $\varepsilon>0$ there is a positively generated l_{∞}^{m}-space $\hat{\mathrm{E}} \subset \mathrm{A}_{0}(\mathrm{~S})$ so that $\mathrm{E} \subset \hat{\mathrm{E}}$ and $\inf \{\|x-y\| \mid y \in \hat{\mathrm{E}}\} \leqslant \varepsilon\|x\|$ for all $x \in \mathrm{~F}$.

Proof. - We may assume without loss of generality that F is spanned by positive elements. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the peaked partition which spans E. Add e_{0} as above. By [3] Theorem 3.1. there is $l_{\infty}^{m} \cong \tilde{\mathrm{E}} \subset \mathrm{A}(\mathrm{S})$ with $\mathrm{E} \subset \tilde{\mathrm{E}}$ and $\inf \{\|x-y\| \mid y \in \tilde{\mathrm{E}}\} \leqslant \varepsilon\|x\|$ for all $x \in \mathrm{~F}$. Hence $\tilde{\mathrm{E}}$ is positively generated by a peaked partition of unity $\left\{f_{0}, f_{1}, \ldots, f_{m}\right\}$ By (*) $f_{j}\left(s_{0}\right)=0 ; 1 \leqslant i \leqslant m$. Set $\hat{E}=$ linear span $\left\{f_{1}, \ldots, f_{m}\right\}$.

Lemma 2. - Let $l_{\infty}^{n} \cong \mathrm{E} \subset \mathrm{F} \cong l_{\infty}^{m}$ be positively generated subspaces of $\mathrm{A}_{0}(\mathrm{~S})$. Let $\Phi \in \mathrm{E}^{*}$ be positive. Then there is a positive extension $\tilde{\Phi} \in \mathrm{F}^{*}$ of Φ with $\|\tilde{\Phi}\|=\|\Phi\|$.

Proof. - Let $\left\{e_{i} \mid 1 \leqslant i \leqslant n\right\}$ and $\left\{f_{j} \mid 1 \leqslant j \leqslant m\right\}$ be peaked partitions spanning E and F respectively, so that (${ }^{*}$) holds. Define then $\tilde{\Phi}\left(f_{i}\right)=\Phi\left(e_{i}\right)$ for all $i=1, \ldots, n$ and $\tilde{\Phi}\left(f_{j}\right)=0$ for all $j=n+1, \ldots, m$.

Lemma 3. - Let $\left\{e_{i, n} \in \mathrm{~A}_{0}(\mathrm{~S}) \mid 1 \leqslant i \leqslant n\right\}$ be a peaked partition. Suppose that there is a positive $\Phi \in \operatorname{ex} \mathrm{B}\left(\mathrm{A}_{0}(\mathrm{~S})^{*}\right)$ so that $\sum_{i=1}^{n} \Phi\left(e_{i, n}\right)<1$. Then there is a peaked partition $\left\{e_{i, n+1} \in \mathrm{~A}_{0}^{i=1}(\mathrm{~S}) \mid 1 \leqslant i \leqslant n+1\right\}$ with

$$
e_{i, n}=e_{i, n+1}+\Phi\left(e_{i, n}\right) e_{n+1, n+1}
$$

for all $i=1, \ldots, n$.

Proof. - Let $\Phi_{0} \in \operatorname{ex} \mathrm{~B}\left(\mathrm{~A}(\mathrm{~S})^{*}\right)$ be an element satisfying $\Phi_{0}(y)=0$ for all $y \in \mathrm{~A}_{0}(\mathrm{~S})$. Consider furthermore

$$
\Phi_{i} \in \operatorname{ex} \mathrm{~B}\left(\mathrm{~A}(\mathrm{~S})^{*}\right) ; \quad i=1, \ldots, n ;
$$

with

$$
\Phi_{i}\left(e_{j, n}\right)=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} ; \quad j=1, \ldots, n .\right.
$$

Define the affine ς^{*}-continuous function $f: \mathrm{H} \rightarrow \mathbf{R}$ by $f\left(\pm \Phi_{i}\right)=0 ; i=0,1, \ldots, n ; f(\pm \Phi)= \pm 1$ where $\mathrm{H}=\operatorname{conv}\left(\left\{ \pm \Phi_{i} \mid i=0,1, \ldots, n\right\} \mathrm{U}\{ \pm \Phi\}\right)$. Set

$$
\begin{aligned}
& h_{1}\left(y^{*}\right)=\min \left\{\left.\frac{1-\sum_{i=1}^{n} \theta_{i} y^{*}\left(e_{i, n}\right)}{1-\sum_{i=1}^{n} \theta_{i} \Phi\left(e_{i, n}\right)} \right\rvert\, \theta_{i}= \pm 1 ; i=1, \ldots, n\right\} \\
& h_{2}\left(y^{*}\right)=\min \left\{\left.\frac{1-y^{*}\left(e-e_{i, n}\right)}{\Phi\left(e_{i, n}\right)} \right\rvert\, \Phi\left(e_{i, n}\right)>0 ; i=1, \ldots, n\right\}
\end{aligned}
$$

and consider $g\left(y^{*}\right)=\min \left(h_{1}\left(y^{*}\right), h_{2}\left(y^{*}\right), 1+y^{*}(e)\right)$.
Hence $g: B\left(A(S)^{*}\right) \rightarrow \mathbf{R}$ is ς^{*}-continuous, concave and nonnegative. In addition, $f\left(y^{*}\right) \leqslant g\left(y^{*}\right)$ holds for all $y^{*} \in \mathrm{H}$.

By [3] Theorem 2.1. there is $e_{n+1, n+1} \in \mathrm{~A}(\mathrm{~S})$ with

$$
y^{*}\left(e_{n+1, n+1}\right) \leqslant g\left(y^{*}\right)
$$

for all $y^{*} \in \mathrm{~B}\left(\mathrm{~A}(\mathrm{~S})^{*}\right)$ and $y^{*}\left(e_{n+1, n+1}\right)=f\left(y^{*}\right)$ for all $y^{*} \in \mathrm{H}$.
Hence, $\left\|e-\left[e_{i, n}-\Phi\left(e_{i, n}\right) e_{n+1, n+1}\right]\right\| \leqslant 1$ and

$$
\left\|e-e_{n+1, n+1}\right\| \leqslant 1 .
$$

Thus $\quad 0 \leqslant e_{i, n}-\Phi\left(e_{i, n}\right) e_{n+1, n+1} \quad$ and $\quad 0 \leqslant e_{n+1, n+1} \quad$ for $i=1, \ldots, n$. Furthermore $\Phi_{0}\left(e_{n+1, n+1}\right)=0$, hence $e_{n+1, n+1} \in \mathrm{~A}_{0}(\mathrm{~S})$. That means, $e_{n+1, n+1}$ and $e_{i, n}-\Phi\left(e_{i, n}\right) e_{n+1, n+1}$ are the elements of a peaked partition in $\mathrm{A}_{0}(\mathrm{~S})$.

Lemma 4. - Let $r_{1}, \ldots, r_{n}>0$ with $\sum_{i=1}^{n} r_{i}<1$ and a peaked partition $\left\{e_{1, n}, \ldots, e_{n, n}\right\} \subset \mathrm{A}_{0}(\mathrm{~S})$ be given. Then there is a positive element $\Phi \in \operatorname{ex~} \mathrm{B}\left(\mathrm{A}_{0}(\mathrm{~S})^{*}\right)$ with $\Phi\left(e_{i, n}\right)=r_{i}$ for all $i \leqslant n$.

Proof. - Let $\left\{x_{n} \mid n \in \mathbf{N}\right\}$ be dense in $\mathrm{A}_{0}(\mathrm{~S})$. Set linear $\operatorname{span}\left\{e_{i, n} \mid i \leqslant n\right\}=\mathrm{E}$. Define $\left.\Phi\right|_{\mathrm{E}}$ by $\Phi\left(e_{i, n}\right)=r_{i}$ for all i. Assume that we have defined Φ already on a positively generated l_{∞}^{m}-subspace $\tilde{\mathrm{E}} \supset \mathrm{E}$ of $\mathrm{A}_{0}(\mathrm{~S})$ so that $\left\|\Phi_{\mid \tilde{\mathrm{E}}}\right\|<1$. Then there is a basis $\left\{e_{i, m} \mid i \leqslant m\right\}$ of $\tilde{E} \quad$ consisting of a peaked partition so that $\Phi\left(e_{i, m}\right)>0$ for all $i=1, \ldots, m$. Now, let $0<\varepsilon<1 / 2^{m+1}\left(1-\sum_{i=1}^{m} \Phi\left(e_{i, m}\right)\right)$. There is a positive linear extension $\Psi \in \operatorname{exB}\left(\mathrm{A}_{0}(\mathrm{~S})^{*}\right)$ of Φ by Lemma 1 and Lemma 2. We derive from $\overline{\operatorname{exS}}=\mathrm{S}$ that $\operatorname{ex~} \mathrm{B}\left(\mathrm{A}_{0}(\mathrm{~S})^{*}\right)_{+}$is κ^{*}-dense in $\mathrm{B}\left(\mathrm{A}_{0}(\mathrm{~S})^{*}\right)_{+}$. It follows that there is $\Omega \in \operatorname{ex~} \mathrm{B}\left(\mathrm{A}_{0}(\mathrm{~S})^{*}\right)_{+}$with $\Phi\left(e_{i, m}\right) \geqslant \Omega\left(e_{i, m}\right)$ for all $i=1, \ldots, m$ and with $\sum_{i=1}^{m}\left|\Omega\left(e_{i, m}\right)-\Phi\left(e_{i, m}\right)\right| \leqslant \varepsilon$. We infer from Lemma 3 that there is peaked partition

$$
\left\{e_{i, m+1} \in \mathrm{~A}_{0}(\mathrm{~S}) \mid i=1, \ldots, m+1\right\}
$$

with $e_{i, m}=e_{i, m+1}+\Omega\left(e_{i, m}\right) e_{m+1, m+1} ; i=1, \ldots, m$. Set $\mathrm{E}_{m+1}=\operatorname{span}\left\{e_{i, m+1} \mid i \leqslant m+1\right\}$ and extend Φ linearly by defining $\Phi\left(e_{m+1, m+1}\right)=\left(1+2^{-m}\right)^{-1}$. Hence $\left\|\Phi_{\mid \mathrm{E}_{m+1}}\right\|<1$. Find a positively generated l_{∞}^{m+1+k} space $\mathrm{F} \subset \mathrm{A}_{0}(\mathrm{~S})$ with $\mathrm{E}_{m+1} \subset \mathrm{~F}$ and $\inf \left\{\left\|x_{k}-y\right\| \mid y \in \mathrm{~F}\right\} \leqslant(m+1)^{-1}\left\|x_{k}\right\|$ for all $k \leqslant m$. Continue this process with F instead of E. Finally we obtain an increasing sequence $\mathrm{E}_{m} \subset \mathrm{~A}_{0}(\mathrm{~S})$ of positively generated l_{∞}^{m}-spaces so that $\mathrm{A}_{0}(\mathrm{~S})=\overline{\mathrm{UE}_{m}}$ where m runs through a subsequence of \mathbf{N}. Furthermore there are peaked partitions $\left\{e_{i, m} \in \mathrm{E}_{m} \mid i \leqslant m\right\}$ so that $\lim \Phi\left(e_{m, m}\right)=1$. The latter condition implies that Φ is a positive extreme point of $B\left(A_{0}(S)^{*}\right)$.

Corollary. - Let $e_{i, n} \in \mathrm{~A}_{0}(\mathrm{~S})$ be a peaked partition and let $0<r_{i} ; i=1, \ldots, n ;$ be real numbers with $\sum_{i=1}^{n} r_{i}<1$. Then there is a peaked partition $\left\{e_{j, n+1} \in \mathrm{~A}_{0}(\mathrm{~S}) \mid j=1, \ldots, n+1\right\}$ with $e_{i, n}=e_{i, n+1}+r_{i} e_{n+1, n+1} ; i=1, \ldots, n$.

Remark. - If we omit $" \sum_{i=1}^{n} r_{i}<1 »$ then the above corollary is no longer true (see [7], remark after the corollary
of Lemma 2). The previous corollary does not hold either if we drop " $0<r_{i}$ for all i ". This follows from the next lemma.

Lemma 5. - Let $s_{0} \in \operatorname{exS}$ be fixed. Then the set

$$
\Lambda\left(\mathrm{S}, s_{0}\right)=\left\{f \in \mathrm{~B}\left(\mathrm{~A}_{0}\left(\mathrm{~S}, s_{0}\right)\right) \mid f\right.
$$

and $1-f$ are smooth points of $\mathrm{A}(\mathrm{S})\}$ is dense in $\partial \mathrm{B}\left(\mathrm{A}_{0}\left(\mathrm{~S}, s_{0}\right)\right)_{+}$.
Proof. - Let $g \in \partial \mathrm{~B}\left(\mathrm{~A}_{0}\left(\mathrm{~S}, s_{0}\right)\right)_{+}$and $s_{1} \in \operatorname{ex~} \mathrm{~S}$ so that $g\left(s_{1}\right)=1$. Set $\mathrm{F}=\operatorname{conv}\left(\left\{s_{0}, s_{1}\right\}\right)$. Let $\left\{x_{n} \mid n \in \mathbf{N}\right\}$ be dense in $\left\{x \in \mathrm{~A}_{0}\left(\mathrm{~S}, s_{0}\right)|\|x\| \leqslant 1 ; x|_{\mathrm{F}}=0\right\}$. Define the affine continuous function $h: \mathrm{F} \rightarrow \mathbf{R}$ by $h\left(s_{0}\right)=0, h\left(s_{1}\right)=1$. Furthermore let $f_{1}(s)=1-1 / 2 \sum_{n=1}^{\infty} 2^{-n}\left(x_{n}(s)\right)^{2}$ and

$$
f_{2}(s)=1 / 2 \sum_{n=1}^{\infty} 2^{-n}\left(x_{n}(s)\right)^{2}
$$

for all $s \in \mathrm{~S}$. Then f_{1} and f_{2} are continuous; f_{1} is concave, f_{2} is convex. Furthermore $f_{2}(s) \leqslant h(s) \leqslant f_{1}(s)$ for all $s \in \mathrm{~F}$. Hence there is an affine, continuous extension $\tilde{h}: S \rightarrow \mathbf{R}$ of h with $f_{2}(s) \leqslant \tilde{h}(s) \leqslant f_{1}(s)$ for all $s \in \mathrm{~S}$ ([1], [2]).

Thus $\tilde{h}\left(s_{0}\right)=0, \tilde{h}\left(s_{1}\right)=1,0<\tilde{h}(s)<1$ for $s \neq s_{0}, s_{1}$. Then $\lim _{\varepsilon \rightarrow 0} \frac{(1-\varepsilon) g+\varepsilon \tilde{h}}{\|(1-\varepsilon) g+\varepsilon \tilde{h}\|}=g$.

Now, if we take $e_{1,1} \in \Lambda\left(\mathrm{~S}, s_{0}\right)$ and suppose that there is $\Phi \in \operatorname{ex} \mathrm{B}\left(\mathrm{A}_{0}\left(\mathrm{~S}, s_{0}\right)^{*}\right)$ with $\Phi\left(e_{1,1}\right)=0$ then there must be $s_{1} \in \operatorname{exS}$ with $s_{1} \neq s_{0}$ so that $e_{1,1}\left(s_{1}\right)=0$, which is a contradiction. This concludes our above remark.

Proposition 6. - Let S be the Poulsen simplex and s, $\tilde{s} \in \operatorname{ex~S}$. Consider $x \in \Lambda(\mathrm{~S}, s)$ and $y \in \Lambda(\mathrm{~S}, \tilde{s})$. Then there is an isometric (linear and order-) isomorphism T :

$$
\mathrm{A}_{0}(\mathrm{~S}, s) \rightarrow \mathrm{A}_{0}(\mathrm{~S}, \tilde{s}) \quad \text { (onto) } \text { with } \quad \mathrm{T}(x)=y .
$$

Proof. - In the following we set $\mathrm{X}=\mathrm{A}_{0}(\mathrm{~S}, s)$ and $\mathrm{Y}=\mathrm{A}_{0}(\mathrm{~S}, \tilde{s})$. We claim that there are peaked partitions

$$
\left\{e_{i, n} \mid i \leqslant n\right\} \subset \mathbf{X}, \quad\left\{f_{i, n} \mid i \leqslant n\right\} \subset \mathbf{Y} ; n \in \mathbf{N} ;
$$

and real numbers $a_{i, n} ; i \leqslant n ; n \in \mathbf{N}$; with

$$
\begin{align*}
& e_{i, n}=e_{i, n+1}+a_{i, n} e_{n+1, n+1} \\
& f_{i, n}=f_{i, n+1}+a_{i, n} f_{n+1, n+1} \tag{1}
\end{align*}
$$

For this purpose we construct peaked partitions

$$
\left\{e_{i, n}^{(j)} \mid i \leqslant n\right\} \subset \mathrm{X}
$$

$\left\{f_{i, n}^{(j)} \mid i \leqslant n\right\} \subset \mathrm{Y} ; n \in \mathbf{N} ; j \leqslant n ;$ such that

$$
\begin{gather*}
e_{i, n}^{(j)}=e_{i, n+1}^{(j)}+a_{i, n} e_{n+1, n+1}^{(j)} \tag{2}\\
f_{i, n}^{(j)}=f_{i, n+1}^{(j)}+a_{i, n} f_{n+1, n+1}^{(j)} \\
\left\|e_{i, n}^{(j)}-e_{i, n}^{(j+1)}\right\| \leqslant 2^{-j} \tag{3}\\
\left\|f_{i, n}^{(j)}-f_{i, n}^{(j+1)}\right\| \leqslant 2^{-j} .
\end{gather*}
$$

We proceed by induction :
Let $\left\{x_{n} \mid n \in \mathbf{N}\right\}$ be dense in X and let $\left\{y_{n} \mid n \in \mathbf{N}\right\}$ be dense in Y. Assume that

$$
\left\{e_{i, k}^{(p)} \mid i \leqslant k\right\}, \quad\left\{f_{i, k}^{(p)} \mid i \leqslant k\right\}
$$

and $0<a_{i, j} ; j=1, \ldots, n-1 ; k \leqslant p ; k, p=1, \ldots, n$; have been introduced already such that $e_{1,1}^{(n)}=x$ and $f_{1,1}^{(n)}=y$. Set $\mathrm{E}_{n}=\operatorname{Span}\left\{e_{i, n}^{(n)} \mid i \leqslant n\right\} ; \mathrm{F}_{n}=\operatorname{Span}\left\{f_{i, n}^{(n)} \mid i \leqslant n\right\}$
(*) There are positively generated l_{∞}^{k}-subspaces $\mathrm{E}_{k} \subset \mathrm{X}$ with $\mathrm{E}_{k-1} \subset \mathrm{E}_{k} ; k=n+1, \ldots, m$; so that
(4) inf $\left\{\left\|x_{j}-x\right\| \mid x \in \mathrm{E}_{m}\right\} \leqslant 2^{-n}\left\|x_{j}\right\| ; j=1, \ldots, n$.

Consider a system of peaked partitions $\left\{e_{i, k}^{(k)} \mid i \leqslant k\right\}$ spanning E_{k} and real numbers $0 \leqslant b_{i, k}$ with

$$
\begin{equation*}
e_{i, k-1}^{(k-1)}=e_{i, k}^{(k)}+b_{i, k-1} e_{k, k}^{(k)} ; \quad \sum_{i=1}^{k-1} b_{i, k-1} \leqslant 1 ; \tag{5}
\end{equation*}
$$

Notice that (6) $0<\sum_{i=1}^{k-1} b_{i, k-1}$ for all k.
Since otherwise there is $\Phi \in \operatorname{ex~} B\left(\mathrm{X}^{*}\right)$ with $\left.\Phi\right|_{\mathrm{E}_{k-1}}=0$ and $\Phi\left(e_{k, k}^{(k)}\right)=1$. As $x \in \mathrm{E}_{k-1}$, there are two different s, $s_{1} \in \operatorname{exS}$ with $x(s)=x\left(s_{1}\right)=0$, a contradiction.

We first perturb $\left\{e_{i, n}^{(n)} \mid i \leqslant n\right\}:$
$\operatorname{stEp}(n+1)$:
Consider

$$
\begin{align*}
x=e_{1,1}^{(n)}=e_{1, n}^{(n)}+\sum_{j=2}^{n} k_{j} e_{j, n}^{(n)} & =e_{1, n+1}^{(n+1)}+\sum_{j=2}^{n} k_{j} e_{j, n+1}^{(n+1)} \tag{7}\\
& +\left(b_{1, n}+\sum_{j=2}^{n} k_{j} b_{j, n}\right) e_{n+1, n+1}^{(n+1)}
\end{align*}
$$

where $0 \leqslant k_{j} \leqslant 1 ; 2 \leqslant j \leqslant n$. Even $k_{j}<1$ holds properly for all $j=2, \ldots, n$; since otherwise there would be two different $s_{1}, s_{2} \in \operatorname{ex~S}$ with $x\left(s_{1}\right)=x\left(s_{2}\right)=1$; which can be infered from (7) similarly as the proof of (6). Using the same kind of argument shows $0<k_{j}$ for all $j=2, \ldots, n$. In view of (6) there is some $b_{i, n} \neq 0$.
(a) Let $\sum_{i=1}^{n} b_{i, n}<1$:

Let i_{0} be an index with $b_{i_{0}, n} \neq 0$. Set $k_{1}=1$ and

$$
\rho=\min \left(\left(1-\sum_{i=1}^{n} b_{i, n}\right)\left|k_{i_{0}}(n-1)-\sum_{\substack{j=1 \\ j \neq i_{0}}}^{n} k_{j}\right|^{-1} ; 1 / n\right) .
$$

Define

$$
\begin{aligned}
& a_{i_{0}, n}=\left(1-2^{-2 n} \rho \sum_{\substack{j=1 \\
j \neq i_{0}}}^{n} k_{j}\right) b_{i_{0}, n} \\
& a_{i, n}=b_{i, n}+2^{-2 n} \rho k_{i_{0}} b_{i_{0}, n} ; \quad i \neq i_{0} .
\end{aligned}
$$

(b) Assume now $\sum_{i=1}^{n} b_{i, n}=1$.

From our assumption $x \in \Lambda(\mathrm{~S}, s)$ together with (7) it follows similarly as above that there is $i \geqslant 2$ with $b_{i, n}>0$. Assume without loss of generality that $b_{n, n}>0$.

Let $\rho=\min \left(\frac{1}{2}\left(1-k_{n}\right)\left|k_{n}(n-1)-\sum_{j=1}^{n-1} k_{j}\right|^{-1} ; 1 / n\right)$.
Define

$$
\begin{aligned}
& a_{1, n}=b_{1, n}+2^{-(2 n+1)} k_{n}(1+\rho) b_{n, n} \\
& a_{i, n}=b_{i, n}+2^{-(2 n+1)} k_{n} \rho b_{n, n} ; 2 \leqslant i \leqslant n-1 \quad(\text { if } n>2) \\
& a_{n, n}=\left(1-2^{-(2 n+1)}-2^{-(2 n+1)} \rho \sum_{j=1}^{n-1} k_{j}\right) b_{n, n} .
\end{aligned}
$$

Hence in either case $0<a_{i, n}$ for all $i=1, \ldots, n$ and $\sum_{i=1}^{n} a_{i, n}<1$. Furthermore

$$
\begin{equation*}
\left|a_{i, n}-b_{i, n}\right| \leqslant 2^{-2 n} \quad \text { for all } \quad i \leqslant n . \tag{8}
\end{equation*}
$$

Define

$$
\begin{align*}
& e_{i, n}^{(n+1)}=e_{i, n+1)}^{(n+1)}+a_{i, n} e_{n+1, n+1}^{(n+1)} \quad i \leqslant n+1 \\
& e_{i, n}^{(n+1)}=e_{i, n}^{(n+1)}+a_{i, n-1} e_{n, n}^{(n+1)} \quad i \leqslant n \tag{9}\\
& \vdots \\
& e_{1,1}^{(n+1)}=e_{1,2}^{(n+1)}+a_{1,1} e_{2,2}^{(n+1) .} .
\end{align*}
$$

From (8) and (9) we derive easily $\left\|e_{i, k}^{(n+1)}-e_{i, k}^{(n)}\right\| \leqslant 2^{-n}$; $k=1, \ldots, n+1 ; i \leqslant n$. Hence $(2)_{n+1}$ and $(3)_{n+1}$ are established.
Furthermore, because the elements k_{j} of (7) depend only on $a_{i, k} ; i \leqslant k \leqslant n-1$; we obtain

$$
\begin{aligned}
e_{1,1}^{(n+1)} & =e_{1, n}^{(n+1)}+\sum_{j=2}^{n} k_{j} e_{j, n}^{(n+1)} \\
& =e_{1, n+1}^{(n+1)}+\sum_{j=2}^{n} k_{j} e_{j, n+1}^{(n+1)}+\left(a_{1, n}+\sum_{j=2}^{n} k_{j} a_{j, n}\right) e_{n+1, n+1}^{(n+1)} \\
& =e_{1, n+1}^{(n+1)}+\sum_{j=2}^{n} k_{j} e_{j, n+1}^{(n+1)}+\left(b_{1, n}+\sum_{j=2}^{n} k_{j} b_{j, n}\right) e_{n+1, n+1}^{(n+1)} \\
& =e_{1,1}^{(n)}=x .
\end{aligned}
$$

Now, in step $(n+2)$, repeat the procedure of step $(n+1)$ but replace E_{n+1} by E_{n+2} and $n+1$ by $n+2$. Then turn to step $(n+3), \ldots$, step (m). We obtain $(2)_{n+1}, \ldots,(2)_{m}$ and $(3)_{n+1}, \ldots,(3)_{m}$.

Consider now F_{n}. Find positively generated l_{∞}^{k} subspaces $\mathrm{F}_{n} \subset \mathrm{~F}_{n+1} \subset \ldots \subset \mathrm{~F}_{m} \subset \mathrm{Y}$ and peaked partitions spanning $\mathrm{F}_{k},\left\{f_{i, k}^{(m)} \in \mathrm{F}_{k} \mid i \leqslant k\right\}$ with

$$
f_{i, k}^{(m)}=f_{i, k+1}^{(m)}+a_{i, k} f_{k+1, k+1}^{(m)} ; k=n, \ldots, m-1
$$

where we have set $f_{i, n}^{(m)}=f_{i, n}^{(n)} ; i=1, \ldots, n$. This is possible by the Corollary after Lemma 4 . Define

$$
\begin{array}{lll}
f_{i}^{(j)}=f_{i}^{(m)} ; \quad i \leqslant k ; \quad n+1 \leqslant k \leqslant m ; & n+1 \leqslant j \leqslant m \\
f_{i, k}^{(i)}=f_{i, k}^{(n)} ; \quad i \leqslant k ; \quad 1 \leqslant k \leqslant n ; & n+1 \leqslant j \leqslant m .
\end{array}
$$

Find positively generated l_{∞}^{k}-subspaces F_{k} of Y with
$\mathrm{F}_{k-1} \subset \mathrm{~F}_{k} ; k=m+1, \ldots, r$; such that
(10) $\quad \inf \left\{\left\|y_{j}-x\right\| \mid x \in \mathrm{~F}_{r}\right\} \leqslant 2^{-m}\left\|y_{j}\right\| ; \quad j=1, \ldots, m$.

Repeat (${ }^{*}$) with r instead of m and F_{r} instead of E_{m}. This yields $\left(2^{\prime}\right)_{m+1}, \ldots,\left(2^{\prime}\right)_{r}$ and $\left(3^{\prime}\right)_{m+1}, \ldots,\left(3^{\prime}\right)_{r}$.

Then go back to E_{m} and find positively generated l_{∞}^{k}-subspaces $\mathrm{E}_{m+1} \subset \ldots \subset \mathrm{E}_{r}$ of X with $\mathrm{E}_{m} \subset \mathrm{E}_{m+1}$ and peaked partitions $\left\{e_{i, k}^{(r)} \mid i \leqslant k\right\}$ of E_{k} with

$$
e_{i, k}^{(r)}=e_{i, k+1}^{(r)}+a_{i, k} e_{k+1, k+1}^{(r)} ; \quad k=m, \ldots, r-1 .
$$

(We have set $e_{i, m}^{(r)}=e_{i, m}^{(m)}$).
Define

$$
\begin{array}{lll}
e_{i, k}^{(j)}=e_{i, k}^{(r)} ; \quad i \leqslant k ; \quad m+1 \leqslant k \leqslant r ; & m+1 \leqslant j \leqslant r ; \\
e_{i, k}^{(j)}=e_{i, k}^{(m)} ; \quad i \leqslant k ; \quad 1 \leqslant k \leqslant m ; & m+1 \leqslant j \leqslant r .
\end{array}
$$

Finally go back to $\left({ }^{*}\right)$ and repeat everything with E_{r} and F_{r} instead of E_{n} and F_{n}, respectively. $\mathrm{By}(3)$ and (3^{\prime}) we obtain

$$
e_{i, n}=\lim _{j>\infty} e_{i, n}^{(j)} ; \quad f_{i, n}=\lim _{j \rightarrow \infty} f_{i, n}^{(j)} ; \quad i \leqslant n, n \in \mathbf{N} ;
$$

which are elements of peaked partitions with

$$
\begin{aligned}
& e_{i, n}=e_{i, n+1}+a_{i, n} e_{n+1, n+1} ; f_{i, n}=f_{i, n+1}+a_{i, n} f_{n+1, n+1} \\
& i \leqslant n ; n \in \mathbf{N} ; f_{1,1}=y ; e_{1,1}=x \text { ((2) and (2')). From (4), (10) }
\end{aligned}
$$

and (3), (3^{\prime}) we infer that
closed span $\left\{f_{i, n} \mid i \leqslant n ; n \in \mathbf{N}\right\}=\mathrm{Y}$
and
closed span $\left\{e_{i, n} \mid i \leqslant n ; n \in \mathbf{N}\right\}=\mathrm{X}$.
We define an isometric isomorphism $\mathrm{T}: \mathrm{A}_{0}(\mathrm{~S} ; s) \rightarrow \mathrm{A}_{0}(\mathrm{~S} ; \tilde{s})$ by $\mathbf{T}\left(e_{i, n}\right)=f_{i, n} ; i \leqslant n ; n \in \mathbf{N}$.

Proposition 6 establishes the assertion (a) of the Theorem if we extend T isometrically on $A(S)$ by defining $T(1)=1$.

Proof of (b):
Let $u, \nu \in \operatorname{exS}$ so that $g(u)>0$ and $g(\varphi)<0$. If there were an isometric isomorphism (onto) then in view of Lemma 5 there would be $\tilde{g} \in \partial \mathrm{~B}\left(\mathrm{~A}_{0}\left(\mathrm{~S} ; s_{1}\right)\right)$ with $\tilde{g}(u)>0$ and $\tilde{g}(\varphi)<0$ so that $\tilde{g}(s) \neq 0$ for all $s \in \mathrm{~S} ; s \neq s_{\mathbf{1}}$. But
then $s_{1}=\lambda u+(1-\lambda) \varphi$ for suitable $\lambda ; 0<\lambda<1$. Hence $u=\rho=s_{1}$, a contradiction.
(c) has been proved already by Lemma 5.

Concluding remarks. - The assertion (a) of the Theorem cannot be extended on any dense subset of $\partial \mathrm{B}(\mathrm{A}(\mathrm{S}))_{+}$since otherwise any element of $\partial \mathrm{B}(\mathrm{A}(\mathrm{S}))_{+}$would be extreme point of $\mathrm{B}(\mathrm{A}(\mathrm{S}))$ which is certainly not true. This follows from the fact that for any $e \in \operatorname{ex} \mathrm{~B}(\mathrm{~A}(\mathrm{~S}))$,

$$
\max (\|x+e\|,\|x-e\|)=1+\|x\|
$$

holds for all $x \in \mathrm{~A}(\mathrm{~S})$. (cf. [4] Theorem 4.7. and 4.8.).

BIBLIOGRAPHY

[1] E. M. Alfsen, Compact, convex sets and boundary integrals, Berlin-Heidelberg-New York, Springer 1971.
[2] B. Fuchssteiner, Sandwich theorems and lattice semigroups, J. Functional Analysis, 16 (1974), 1-14.
[3] A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are L_{1}-spaces and their representing matrices, Acta Math., 126 (1971), 165-194.
[4] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., 48 (1964).
[5] J. Lindenstrauss, G. Olsen and Y. Sternfeld, The Poulsen simplex, to appear in Anal. Inst. Fourier.
[6] W. Lusky, On separable Lindenstrauss spaces, J. Functional Analysis, 26 (1977), 103-120.
[7] W. Lusky, The Gurarij spaces are unique, Arch. Math., 27 (1976), 627-635.
[8] E. T. Poulsen, A simplex with dense extreme points, Ann. Inst. Fourier (Grenoble), 11 (1961), 83-87.
[9] P. Wostaszczyk, Some remarks on the Gurarij space, Studia Math., 41 (1972), 207-210.

Manuscrit reçu le 22 décembre 1976
Proposé par G. Choquet.
Wolfgang Lusky,
Gesamthochschule Paderborn
Fachbereich 17 - Mathematik - Informatik
Arbeitsstelle Mathematik
Pohlweg 55
Postfach 1621
479 Paderborn (R.F.A.).

