MANUEL VALDIVIA On certain barrelled normed spaces

Annales de l'institut Fourier, tome 29, nº 3 (1979), p. 39-56 <http://www.numdam.org/item?id=AIF_1979_29_3_39_0>

© Annales de l'institut Fourier, 1979, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON CERTAIN BARRELLED NORMED SPACES

by Manuel VALDIVIA

Let \mathscr{A} be a σ -algebra on a set X. If A belongs to \mathscr{A} let e(A) be the function defined on X taking value 1 in every point of A and vanishing in every point of $X \sim A$. Let $\ell_0^{\infty}(X, \mathscr{A})$ be the linear space over the field K of real or complex numbers generated by $\{e(A) : A \in \mathscr{A}\}$ endowed with the topology of the uniform convergence. We shall prove that if (E_n) is an increasing sequence of subspaces of $\ell_0^{\infty}(X, \mathscr{A})$ covering $\ell_0^{\infty}(X, \mathscr{A})$ there is a positive integer p such that E_p is a dense barrelled subspace of $\ell_0^{\infty}(X, \mathscr{A})$, and we shall deduce some new results in measure theory from this fact.

1. The space $\ell_0^{\infty}(X, \mathscr{A})$.

If $z \in l_0^{\infty}(X, \mathcal{A})$ and if z(j) denotes its value in the point j of X we define the norm of z in the following way:

$$||z|| = \sup \{|z(j)| : j \in X\}.$$

Given a member A of \mathscr{A} we denote by $\ell_0^{\infty}(A, \mathscr{A})$ the subspace of $\ell_0^{\infty}(X, \mathscr{A})$ generated by $\{e(M) : M \in \mathscr{A}, M \subset A\}$. We write $(\ell_0^{\infty}(X, \mathscr{A}))'$ to denote the Banach space conjugate of $\ell_0^{\infty}(X, \mathscr{A})$. If $u \in (\ell_0^{\infty}(X, \mathscr{A}))', u(A)$ stands for restriction of u to $\ell_0^{\infty}(A, \mathscr{A})$. The norm of u(A) is denoted by ||u(A)|| and the value of u at the point z is written $\langle u, z \rangle$. If A_1, A_2, \ldots, A_n are disjoint members of \mathscr{A} and contained in A then

$$\sum_{p=1}^{n} \|u(A_{p})\| \le \|u(A)\|$$
(1)

since if every any $\epsilon > 0$ we take z_p in $\ell_0^{\infty}(A_p, \mathscr{A})$ with

$$||z_p|| \leq 1, \langle u, z_p \rangle \geq ||u(\mathbf{A}_p)|| - \frac{\epsilon}{n}, \quad p = 1, 2, \dots, n.$$

Then $z = \sum_{p=1}^{n} z_p$ has norm less than or equal to 1, belongs to $\ell_0^{\infty}(A, \mathcal{A})$ and

$$||u(\mathbf{A})|| \ge |\langle u, z \rangle| \ge \sum_{p=1}^{n} ||u(\mathbf{A}_{p})|| - \epsilon$$

and (1) follows.

PROPOSITION 1. - Let B be the closed unit ball of real $\ell_0^{\infty}(X, \mathcal{A})$. Then the absolutely convex hull of $\{e(A) : A \in \mathcal{A}\}$ contains $\frac{1}{2}B$.

Proof. – If $z \in \frac{1}{2}$ B and if z takes exactly two non vanishing values, we obtain $A_1, A_2, A_3 \in \mathcal{A}$, $A_i \cap A_j = \phi$, $i \neq j$, i, j = 1, 2, 3 such that $A_1 \cup A_2 \cup A_3 = X$ and such that

$$z(j) = \alpha, \ j \in A_1; \ z(j) = \beta, \ j \in A_2; \ z(j) = 0, \ j \in A_3.$$

Then $|\alpha| \leq \frac{1}{2}$, $|\beta| \leq \frac{1}{2}$ and

$$z = \alpha e(A_1) + \beta e(A_2)$$

and therefore z belongs to the absolutely convex hull of $\{e(A): A \in \mathscr{A}\}$.

By recurrence we suppose that for a $p \ge 2$ every vector of $\frac{1}{2}$ B taking exactly p non vanishing values belongs to the absolutely convex hull of $\{e(A) : A \in \mathcal{A}\}$. If $z \in \frac{1}{2}$ B taking p + 1 non vanishing values we descompose X in $A_1, A_2, \ldots, A_{p+2}$ members of \mathcal{A} such that z takes the value α_j in A_j , $j = 1, 2, \ldots, p + 1$ and zero in A_{p+2} . Since p is larger than or equal to 2, z takes two different values of the same sign. We can suppose that $0 < \alpha_1 < \alpha_2$ or $\alpha_2 < \alpha_1 < 0$. If $0 < \alpha_1 < \alpha_2$ we consider the vectors z_1 and z_2 which coincide with z in $A_2 \cup A_3 \cup \ldots \cup A_{p+2}$ such that z_1 takes the value α_2 in A_1 and z_2 takes the value zero in A_1 . Then z_1 and z_2 take p non zero different values and since $z_1, z_2 \in \frac{1}{2}$ B they belong to the absolutely convex hull M of $\{e(A) : A \in \mathcal{A}\}$. Since $0 < \frac{\alpha_1}{\alpha_2} < 1$ then

$$\frac{\alpha_1}{\alpha_2} z_1 + \left(1 - \frac{\alpha_1}{\alpha_2}\right) z_2 = z$$

belongs to M. If $\alpha_2 < \alpha_1 < 0$ then $0 < -\alpha_1 < -\alpha_2$ and so $-z \in M$ and therefore $z \in M$.

q.e.d.

PROPOSITION 2. -Let B be the closed unit ball of complex $\mathfrak{L}_0^{\infty}(X, \mathcal{A})$. Then the absolutely convex hull of $\{e(A) : A \in \mathcal{A}\}$ contains $\frac{1}{4}$ B.

Proof. – If $z \in \frac{1}{4}$ B we write

$$z = z_1 + i z_2$$

where z_1 , z_2 are real vectors of $\frac{1}{4}$ B. According to Proposition 1 the vectors $2z_1$ and $2z_2$ belong to the absolutely convex hull of $\{e(A) : A \in \mathcal{A}\}$. Then

$$z = \frac{1}{2} (2z_1) + \frac{i}{2} (2z_2)$$

belongs also to the absolutely convex hull of $\{e(A) : A \in \mathcal{A}\}$.

q.e.d.

Note 1. — If $A \in \mathscr{A}$ let $\mathscr{B} = \{A \cap B : B \in \mathscr{A}\}$. Then \mathscr{B} is a σ -algebra and we can suppose that $\ell_0^{\infty}(A, \mathscr{B})$ coincides with $\ell_0^{\infty}(A, \mathscr{A})$. Given an absolutely convex set T of $\ell_0^{\infty}(A, \mathscr{A})$ which is not a neighbourhood of the origin and given any positive real number λ we can apply Proposition 1 or Proposition 2 to $\ell_0^{\infty}(A, \mathscr{A}) = \ell_0^{\infty}(A, \mathscr{B})$ to obtain a member A_1 of \mathscr{A} contained in A so that $\lambda e(A_1) \notin T$.

Given a closed absolutely convex set U of $\ell_0^{\infty}(X, \mathscr{A})$ we say that the member $A \in \mathscr{A}$ has property U if there is a finite set Q in $\ell_0^{\infty}(X, \mathscr{A})$ such that if V is the absolutely convex hull of $U \cup Q$ then $V \cap \ell_0^{\infty}(A, \mathscr{A})$ is a neighbourhood of the origin in $\ell_0^{\infty}(A, \mathscr{A})$. Obviously, if A has property U, $B \subset A$, $B \in \mathscr{A}$, then B also has property U.

PROPOSITION 3. – If $A \in \mathcal{A}$ does not possess property U and if A_1, A_2, \ldots, A_n are elements of \mathcal{A} which are a partition of A there is an integer $q, 1 \leq q \leq n$, such that A_a does not have property U.

Proof. – We suppose that A_p , p = 1, 2, ..., n, have property U. There is a finite set Q_p in $\ell_0^{\infty}(X, \mathscr{A})$ such that if U_p is the absolutely convex hull of $U \cup Q_p$ then $V_p = U_p \cap \ell_0^{\infty}(A_p, \mathscr{A})$ is a neighbourhood of the origin in $\ell_0^{\infty}(A_p, \mathscr{A})$. Let V be the absolutely convex hull of $U \cup \begin{pmatrix} n \\ \bigcup p \\ p=1 \end{pmatrix}$. Since A does not have property U, $V \cap \ell_0^{\infty}(A, \mathscr{A})$ is not a neighbourhood of the origin in $\ell_0^{\infty}(A, \mathscr{A})$. Since $\ell_0^{\infty}(A, \mathscr{A})$ is the topological direct sum of $\ell_0^{\infty}(A_1, \mathscr{A})$, $\ell_0^{\infty}(A_2, \mathscr{A}), \ldots, \ell_0^{\infty}(A_n, \mathscr{A})$, the absolutely convex hull W of $\bigcup_{p=1}^n V_p$ is a neighbourhood of the origin in $\ell_0^{\infty}(A, \mathscr{A})$. On the other hand, W is contained in V and we arrive at a contradiction.

q.e.d.

PROPOSITION 4. – Suppose that $A \in \mathcal{A}$ does not have property U. Given a positive integer $p \ge 2$, the elements x_1, x_2, \ldots, x_n of $\ell_0^{\infty}(X, \mathcal{A})$ and a positive real number α , there are p elements A_1, A_2, \ldots, A_p of \mathcal{A} , which are a partition of A, and p vectors u_1, u_2, \ldots, u_p in $(\ell_0^{\infty}(X, \mathcal{A}))'$ such that, if $i = 1, 2, \ldots, p$,

$$|\langle u_i, e(\mathbf{A}_i)\rangle| > \alpha$$
, $\sum_{j=1}^n |\langle u_i, x_j\rangle| \le 1$, $|\langle u_i, x\rangle| \le 1$, $\forall x \in \mathbf{U}$.

Proof. - Let Q be the absolutely convex hull of

 $\{e(A), nx_1, nx_2, \ldots, nx_n\}.$

Since Q is compact, V = U + Q is a closed absolutely convex set of $\ell_0^{\infty}(X, \mathscr{A})$. Since A does not have property U, $V \cap \ell_0^{\infty}(A, \mathscr{A})$ is not a neighbourhood of the origin in $\ell_0^{\infty}(A, \mathscr{A})$ and therefore, according to Note 1, we can choose a subset P_{11} in A, $P_{11} \in \mathscr{A}$, such that

$$\frac{1}{1+\alpha} e(\mathbf{P}_{11}) \notin \mathbf{V}.$$

If V° denotes the polar set of V in $(\ell_0^{\infty}(X, \mathcal{A}))'$ we can find an element $u_1 \in V^{\circ}$ such that

$$\left|\langle u_1, \frac{1}{1+\alpha} e(\mathbf{P}_{11})\rangle\right| > 1$$

and therefore

$$|\langle u_1, e(\mathbf{P}_{11})\rangle| > 1 + \alpha > \alpha$$
.

On the other hand, if $P_{12} = A \sim P_{11}$ we have

$$\langle u_1 e(\mathbf{P}_{11}) \rangle = \langle u_1, e(\mathbf{A}) \rangle - \langle u_1, e(\mathbf{P}_{12}) \rangle$$

thus

$$|\langle u_1, e(\mathbf{P}_{11})\rangle| \leq |\langle u_1, e(\mathbf{A})\rangle| + |\langle u_1, e(\mathbf{P}_{12})\rangle|$$

and so

$$|\langle u_1, e(\mathbf{P}_{12})\rangle| \ge |\langle u_1, e(\mathbf{P}_{11})\rangle| - |\langle u_1, e(\mathbf{A})\rangle| > 1 + \alpha - 1 = \alpha.$$

According to Proposition 3, P_{11} or P_{12} does not have property U. We suppose that P_{12} does not have property U and we set $A_1 = P_{11}$. We have that

$$|\langle u_1, e(A_1)\rangle| > \alpha \quad , \quad |\langle u_1, x\rangle| \le 1 \quad , \quad \forall x \in U \quad ,$$
$$\sum_{j=1}^n |\langle u_1, x_j\rangle| = \sum_{j=1}^n \frac{1}{n} |\langle u_1, nx_j\rangle| \le \sum_{j=1}^n \frac{1}{n} = 1 \quad .$$

(The same result is obtained if P_{11} does not have property U and we set $A_1 = P_{12}$).

We apply the same method substituting P_{12} for A to obtain a division of P_{12} into two subsets A_2 and P_{22} belonging to \mathscr{A} and an element $u_2 \in (\ell_0^{\infty}(X, \mathscr{A}))'$ so that

$$\begin{split} |\langle u_2, e(\mathbf{A}_2) \rangle| > \alpha \quad , \quad |\langle u_2, x \rangle| \leq 1 \quad , \quad \forall x \in \mathbf{U} \; , \\ \sum_{j=1}^n |\langle u_2, x_j \rangle| \leq 1 \end{split}$$

so that P_{22} does not have property U.

Following the same way we obtain a partition A_{p-1} , $P_{(p-1)2}$ of $P_{(p-2)2}$ and an element $u_{p-1} \in (\ell_0^{\infty}(X, \mathcal{A}))'$ such that

$$|\langle u_{p-1}, e(\mathbf{A}_{p-1})\rangle| > \alpha , |\langle u_{p-1}, e(\mathbf{P}_{(p-1)2})\rangle| > \alpha ,$$

$$|\langle u_{p-1}, x\rangle| \leq 1 , \forall x \in \mathbf{U} , \sum_{j=1}^{n} |\langle u_{p-1}, x_{j}\rangle| \leq 1 .$$

Setting $u_{p-1} = u_p$, $P_{(p-1)2} = A_p$ the conclusion follows.

q.e.d.

Now we consider a sequence (U_n) of closed absolutely convex subsets of $\ell_0^{\infty}(X, \mathcal{A})$ such that the member $A \in \mathcal{A}$ does not have property U_n for $n = n_1, n_2, \ldots, n_p$ and for an infinity of values of n.

PROPOSITION 5. – Given a positive real number α and the vectors x_1, x_2, \ldots, x_r in $\ell_0^{\infty}(X, \mathcal{A})$ there are p pairwise disjoint subsets M_1, M_2, \ldots, M_p in A, belonging to \mathcal{A} and p elements u_1, u_2, \ldots, u_p in $(\ell_0^{\infty}(X, \mathcal{A}))'$ so that, for every $i = 1, 2, \ldots, p$,

$$|\langle u_i, e(\mathbf{M}_i) \rangle| > \alpha$$
, $\sum_{j=1}^r |\langle u_i, x_j \rangle| \le 1$, $|\langle u_i, x \rangle| \le 1$, $\forall x \in \mathbf{U}_{n_i}$

and $A \sim \bigcup_{i=1}^{p} M_i$ does not have property U_n for $n = n_1, n_2, \ldots, n_p$ and for an infinity of values of n.

Proof. – According to Proposition 4 we can find a partition $Q_1, Q_2, \ldots, Q_{p+2} \in \mathcal{A}$ of A and $v_1, v_2, \ldots, v_{p+2}$ in $(\ell_0^{\infty}(X, \mathcal{A}))'$ such that, for $i = 1, 2, \ldots, p + 2$,

$$|\langle v_i, e(\mathbf{Q}_i)\rangle| > \alpha \quad , \quad \sum_{j=1}^r |\langle v_i, x_j\rangle| \leq 1 \quad , \quad |\langle v_i, x\rangle| \leq 1 \quad , \quad \forall x \in \mathbf{U}_{n_1}.$$

It is obvious that, for an infinity of values of n, some of the sets

$$Q_1, Q_2, \ldots, Q_{p+2} \tag{2}$$

do not have property U_n . We suppose that Q_1 does not have property U_n for an infinity of values of n. On the other hand, given a positive integer q, $1 \le q \le p$, some of the sets (2) do not have property Un_q . Since in (2) are p + 2 elements we can find an element Q_h , $1 \le h \le p + 2$, such that $A \sim Q_h$ does not have property U_n for $n = n_1, n_2, \ldots, n_p$. Obviously $A \sim Q_h$ contains Q_1 and therefore does not have property U_n for an infinity of values of n. We set $M_1 = Q_h$, $u_1 = v_h$, and then

$$|\langle u_1, e(\mathbf{M}_1)\rangle| > \alpha , \sum_{j=1}^r |\langle u_1, x_j\rangle| \le 1 , |\langle u_1, x\rangle| \le 1 , \forall x \in \mathbf{U}_{n_1}.$$

By recurrence we suppose that we already obtained elements $u_i \in (\Re_0^{\infty}(X, \mathscr{A}))'$, i = 1, 2, ..., s < p, and pairwise disjoint subsets $M_1, M_2, ..., M_s \in \mathscr{A}$ such that, for i = 1, 2, ..., s,

$$|\langle u_i, e(\mathbf{M}_i) \rangle| > \alpha \quad , \quad \sum_{j=1}^r |\langle u_i, x_j \rangle| \le 1 \quad , \quad |\langle u_i, x \rangle| \le 1 \quad , \quad \forall x \in \mathbf{U}_{n_i}$$

and $A \sim \bigcup_{j=1}^{r} M_j$ does not have property U_n for $n = n_1, n_2, \dots, n_p$ and for an infinity of values of n. Since $A \sim \bigcup_{j=1}^{s} M_j$ does not have property $U_{n_{s+1}}$, we apply Proposition 4 to obtain a partition $R_1, R_2, \ldots, R_{p+2}$ of $A \sim \bigcup_{j=1}^{s} M_j$, by members of \mathscr{A} , and elements $w_1, w_2, \ldots, w_{p+2}$ in $(\ell_0^{\infty}(X, \mathscr{A}))'$ so that, for $i = 1, 2, \ldots, p+2$, $|\langle w_i, e(R_i) \rangle| > \alpha$, $\sum_{j=1}^{r} |\langle w_i, x_j \rangle| \le 1$, $|\langle w_i, x \rangle| \le 1$, $\forall x \in U_{n_{s+1}}$.

Then some of the subsets

$$R_1, R_2, \dots, R_{p+2}$$
 (3)

do not have property U_n for an infinity of values of n. We suppose that R_1 does not have property U_n for an infinity of values of n. As we did before we find an element R_k , $1 < k \le p + 2$, such that $\left(A \sim \bigcup_{j=1}^{S} M_j\right) \sim R_k$ does not have property U_{n_i} , $i = 1, 2, \ldots, p$. We set $M_{s+1} = R_k$, $u_{s+1} = w_k$. Then, for $i = 1, 2, \ldots, s + 1$,

$$|\langle u_i, e(\mathbf{M}_i) \rangle| > \alpha , \sum_{j=1}^{r} |\langle u_i, x_j \rangle| \leq 1 , |\langle u_i, x \rangle| \leq 1 , \forall x \in \mathbf{U}_{n_i} ,$$

and $A \sim \bigcup_{j=1}^{s+1} M_j$ does not have property U_n for $n = n_1, n_2, \ldots, n_p$ and for an infinity of values of n.

q.e.d.

Now we consider a sequence (U_n) of closed absolutely convex subsets of $\ell_0^{\infty}(X, \mathcal{A})$ such that X does not property U_n for $n = 1, 2, \ldots$

PROPOSITION 6. – There are: (i) a family $\{A_{ij} : i, j = 1, 2, ...\}$ of pairwise disjoint members of \mathcal{A} , (ii) a strictly increasing sequence (n_i) of positive integers and (iii) a set $\{u_{ij} : i, j = 1, 2, ...\}$ in $(\mathfrak{Q}_0^{\infty}(X, \mathcal{A}))'$ so that, for i, j = 1, 2, ...

$$|\langle u_{ij}, e(\mathbf{A}_{ij})\rangle| > i + j$$

$$\sum_{\substack{h+k < i+j \\ |\langle u_{ij}, x\rangle| \leq 1}} |\langle u_{ij}, e(\mathbf{A}_{hk})\rangle| \leq 1$$
(4)

Proof. – We apply the preceding proposition to obtain an element $u_{11} \in (\ell_0^{\infty}(X, \mathcal{A}))'$ and an element $A_{11} \in \mathcal{A}$ so that

$$|\langle u_{11}, e(\mathbf{A}_{11})\rangle| > 2$$
, $|\langle u_{11}, x\rangle| \leq 1$, $\forall x \in \mathbf{U}_1$

and such that $X \sim A_{11}$ does not have property U_n for n = 1 and an infinity of values of n. By recurrence suppose we have obtained q integers

$$1 = n_1 < n_2 < \ldots < n_a,$$

and a family $\{A_{ij}: i+j \leq q+1\}$ of pairwise disjoint elements of \mathscr{A} and a set $\{u_{ij}: i+j \leq q+1\}$ in $(\ell_0^{\infty}(X,\mathscr{A}))'$ so that (4) is verified for $i+j \leq q+1$ and such that $X \sim \bigcup_{i+j \leq q+1} A_{ij}$ does not have property U_n for $n = n_1, n_2, \ldots, n_q$ and for an infinity of values of n. Let n_{q+1} be smallest integer larger than n_q such that $X \sim \bigcup_{i+j \leq q+1} A_{ij}$ does not have property $U_{n_{q+1}}$. We apply now Proposition 5 to $A = X \sim \bigcup_{i+j \leq q+1} A_{ij}$, p = q + 1, $\alpha = q + 2$ and $\{x_1, x_2, \ldots, x_r\} = \{e(A_{nk}): h+k \leq q+1\}$. We obtain the pairwise disjoints subsets

$$A_{1(q+1)}, A_{2q}, A_{3(q-1)}, \ldots, A_{(q+1)1}$$

in $X \sim \bigcup_{i+j \leqslant q+1} A_{ij}$ belonging to \mathscr{A} , and the elements

 $\begin{aligned} u_{1(q+1)}, u_{2q}, u_{3(q-1)}, \dots, u_{(q+1)1} \\ &\text{in } (\ell_0^{\infty}(X, \mathscr{A}))' \text{ such that, for } i = 1, 2, \dots, q+1 \\ &|\langle u_{i(q+2-i)}, e(A_{i(q+2-i)})\rangle| > q+2 \\ &\sum_{h+k < q+2} |\langle u_{i(q+2-i)}, e(A_{hk})\rangle| \leq 1 \\ &|\langle u_{i(q+2-i)}, x\rangle| \leq 1 , \quad \forall x \in U_{n_i} \end{aligned}$

and $X \sim \bigcup_{i+j \leq q+2} A_{ij}$ does not have property U_n for $n = n_1, n_2, \ldots, n_{q+1}$ and for an infinity of values of n. Proceeding this way we arrive at the desired conclusion.

q.e.d.

PROPOSITION 7. – Let V be a closed absolutely convex subset of $\ell_0^{\infty}(X, \mathcal{A})$. If V is not a neighbourhood of the origin in its linear hull L, then X does not have property V.

Proof. – Suppose first that the codimension of L in $\ell_0^{\infty}(X, \mathscr{A})$ is finite. Let $\{z_1, z_2, \ldots, z_p\}$ be a cobasis of L in $\ell_0^{\infty}(X, \mathscr{A})$. Let M be the absolutely convex hull of $\{z_1, z_2, \ldots, z_p\}$. Then W = V + M is a barrel in $\ell_0^{\infty}(X, \mathscr{A})$ such that $(V + M) \cap L = V$ and thus W is not a neighbourhood of the origin in $\ell_0^{\infty}(X, \mathcal{A})$. Let B be any finite subset of $\ell_0^{\infty}(X, \mathcal{A})$ and let Z be the absolutely convex hull of $V \cup B$. We find a positive integer *n* such that $B \subset nW$. Then

$$\mathbf{Z} \subset \mathbf{V} + n\mathbf{W} \subset (n+1)\mathbf{W}$$

and therefore Z is not a neighbourhood of the origin in $\ell_0^{\infty}(X, \mathcal{A})$, i.e. X does not have property V. If L has infinite codimension in $\ell_0^{\infty}(X, \mathcal{A})$ and B is any finite subset of $\ell_0^{\infty}(X, \mathcal{A})$ let Z be the absolutely convex hull of $V \cup B$. Then Z is not absorbing in $\ell_0^{\infty}(X, \mathcal{A})$ and therefore X does not have property V.

q.e.d.

THEOREM 1. – Let (E_n) be an increasing sequence of subspaces of $\ell_0^{\infty}(X, \mathcal{A})$ covering $\ell_0^{\infty}(X, \mathcal{A})$. Then there is a positive integer psuch that E_n is a barrelled dense subspace of $\ell_0^{\infty}(X, \mathcal{A})$.

Proof. – Suppose first that E_n is not barrelled, n = 1, 2, ...Then, for every positive integer n we can find a barrel W_n in E_n which is not a neighbourhood of the origin in E_n . Let U_n be the closure of W_n in $\ell_0^{\infty}(X, \mathcal{A})$. According to the preceding proposition, X does not have property U_n for every n positive integer. We apply Proposition 6 to obtain the pairwise disjoints subsets $\{A_{ij}: i, j = 1, 2, ...\}$ of X belonging to \mathcal{A} , the strictly increasing sequence of positive integers (n_i) and the set $\{u_{ij}: i, j = 1, 2, ...\}$ in $(\ell_0^{\infty}(X, \mathcal{A}))'$ with conditions (4).

We order the pairs of all the positive integers in the following way: given two of those pairs (p_1, p_2) and (q_1, q_2) we set $(p_1, p_2) < (q_1, q_2)$ if either $p_1 + p_2 < q_1 + q_2$ or $p_1 + p_2 = q_1 + q_2$ and $p_1 < q_1$. Setting $G = \bigcup \{A_{ij} : i, j = 1, 2, \ldots\}$ we find a positive integer *m* such that $||u_{11}(G)|| < m$. We make a partition of the set of pairs of positive integers $\{(i, j) : i + j > 2\}$ in *m* parts $\mathscr{P}_1^{(11)}, \mathscr{P}_2^{(11)}, \ldots, \mathscr{P}_m^{(11)}$, so that, in each one, given any positive integer *i* there are infinitely many elements whose first component is *i*. According to (1)

$$\sum_{n=1}^{m} \|u_{11}(\cup \{A_{ij} : (i, j) \in \mathcal{P}_{h}^{(11)}\})\| \leq \|u_{11}(G)\|$$

and thus there is an integer k, $1 \le k \le m$, such that

$$||u_{11}(\cup \{A_{ii}: (i, j) \in \mathcal{P}_{k}^{(11)}\})|| < 1.$$

Setting $\mathscr{P}_{k}^{(11)} = \mathscr{P}^{(11)}$ and using recurrence suppose $\mathscr{P}^{(11)}, \ldots, \mathscr{P}^{(wt)}$ have already been constructed. If (r, s) is the pair following (w, t)we take in $\mathscr{P}^{(wt)}$ an element of the form (r, r_s) with $r_s > s + 2$. We find a positive integer q such that $||u_{rr_s}(G)|| < q$. We make a partition of the set $\{(i, j) \in \mathscr{P}^{(wt)} : i + j > r + r_s\}$ in q parts $\mathscr{P}_1^{(rs)}, \mathscr{P}_2^{(rs)}, \ldots, \mathscr{P}_q^{(rs)}$ so that, in every one, given any positive integer i, there are infinitely many elements whose first component is i. We have that

$$\sum_{h=1}^{q} \|u_{rr_{s}}(\cup \{A_{ij}: (i, j) \in \mathcal{P}_{h}^{(rs)}\})\| \leq \|u_{rr_{s}}(G)\|$$

and therefore there is a positive integer ℓ , $1 \leq \ell \leq q$, such that

$$\|u_{rr_{g}}(\cup \{A_{ij}: (i,j) \in \mathscr{P}_{g}^{(rs)}\})\| < 1.$$
(5)

We set $\mathscr{P}_{\varrho}^{(rs)} = \mathscr{P}^{(rs)}$ and we continue the construction in the same way. We set $A_{rr_s} = A_{11}$ for r = s = 1 and H for

Since (E_n) is an increasing sequence and covers $\ell_0^{\infty}(X, \mathcal{A})$ there is a positive integer r such that U_{n_r} absorbs e(H) and therefore there is a positive number λ such that $\lambda e(H) \subset U_n$.

On the other hand,

$$\langle u_{rr_s}, e(\mathbf{H}) \rangle = \langle u_{rr_s}, e(\mathbf{A}_{rr_s}) \rangle + \sum_{\substack{n+n_m < r+r_s \\ + \langle u_{rr_s}, e(\cup \{\mathbf{A}_{nn_m} : n+n_m > r+r_s\}) \rangle }$$

and therefore, according to (4) and (5),

$$\begin{split} |\langle u_{rrs}, e(\mathbf{H}) \rangle| \\ \geqslant |\langle u_{rr_s}, e(\mathbf{A}_{rr_s}) \rangle| &- \sum_{n+n_m < r+r_s} |\langle u_{rr_s}, e(\mathbf{A}_{nn_m}) \rangle| \\ &- |\langle u_{rr_s}, e(\cup \{\mathbf{A}_{nn_m} : n+n_m > r+r_s\}) \rangle| \\ \geqslant r+r_s - \sum_{i+j < r+r_s} |\langle u_{rr_s}, e(\mathbf{A}_{ij}) \rangle| \\ &- |\langle u_{rr_s}(\cup \{\mathbf{A}_{nn_m} : n+n_m > r+r_s\}) \rangle| \\ \geqslant r+r_s - 1 - ||u_{rr_s}(\cup \{\mathbf{A}_{ij} : (i,j) \in \mathcal{P}^{(rs)}\})|| \\ \geqslant r+r_s - 1 - 1 \ge r+s \end{split}$$

and thus

$$\lim_{s \to \infty} |\langle u_{rr_s}, e(\mathbf{H}) \rangle| = \infty.$$
 (6)

On the other hand, since $\lambda e(\mathbf{H}) \in U_{n_n}$, we apply (4) to obtain

$$|\langle u_{rr}, \lambda e(\mathbf{H}) \rangle| \leq 1$$

which contradicts (6) and therefore there is a positive integer m_0 such that E_{m_0} is a barrelled space.

Next we suppose that E_n is not dense in $\ell_0^{\infty}(X, \mathcal{A})$ for $n = 1, 2, \ldots$ Let \overline{E}_n be the closure of E_n in $\ell_0^{\infty}(X, \mathcal{A})$. Let V_n be a closed absolutely convex neighbourhood of the origin in \overline{E}_n . Obviously, \overline{E}_n is of infinite codimension in $\ell_0^{\infty}(X, \mathcal{A})$, hence X does not have property V_n , $n = 1, 2, \ldots$ Following the preceding argument we arrive at contradiction and therefore there is a positive integer n_0 so that E_{n_0} is dense in $\ell_0^{\infty}(X, \mathcal{A})$.

The sequence (E_{n_0+r}) is increasing and $\bigcup_{r=1}^{\infty} E_{n_0+r} = \ell_0^{\infty}(X, \mathcal{A})$ and therefore there is a positive integer r_0 so that $E_{n_0+r_0}$ is barrelled. If $p = n_0 + r_0$, E_p is barrelled and dense in $\ell_0^{\infty}(X, \mathcal{A})$.

q.e.d.

Note 2. – If we take natural number N for X in Theorem 1, the set of the parts $\mathscr{P}(N)$ of N for \mathscr{A} and $E_n = \ell_0^{\infty}(X, \mathscr{A})$ we obtain the well known result which asserts the barrelledness of $\ell_0^{\infty}(N, \mathscr{P}(N))$ [3, p. 145].

2. Applications to the space of the bounded finite additive measures on a σ -algebra.

We denote by $H(\mathcal{A})$ the linear space over K of the K-valued finitely additive bounded measures on \mathcal{A} such that if $\mu \in H(\mathcal{A})$ its norm is the variation $|\mu|$ of μ . A set M of $H(\mathcal{A})$ is simply bounded in a subset \mathcal{B} of \mathcal{A} if, for every $A \in \mathcal{B}$,

$$\sup \{ |\mu(\mathbf{A})| : \mu \in \mathbf{M} \} < \infty.$$

Let T be the linear mapping of $H(\mathscr{A})$ into $(\ell_0^{\infty}(X, \mathscr{A}))'$ such that, if $\mu \in H(\mathscr{A})$, then

$$\langle T(\mu), e(A) \rangle = \mu(A), \quad \forall A \in \mathscr{A}.$$

It is obvious that T is a topological isomorphism between the Banach spaces $H(\mathcal{A})$ and $(\ell_0^{\infty}(X, \mathcal{A}))'$.

THEOREM 2. – Let (\mathcal{A}_n) be an increasing sequence of subsets of \mathcal{A} covering \mathcal{A} . Then, there is a positive integer p such that, if M is a subset of $H(\mathcal{A})$ simply bounded in \mathcal{A}_p then M is bounded in $H(\mathcal{A})$.

Proof. – Let E_n be the subspace of $\ell_0^{\infty}(X, \mathcal{A})$ generated by $\{e(A) : A \in \mathcal{A}_n\}$. The sequence (E_n) is increasing and covers $\ell_0^{\infty}(X, \mathcal{A})$. According to Theorem 1 there is a positive integer p such that E_p is a dense barrelled subspace of $\ell_0^{\infty}(X, \mathcal{A})$. If M is simply bounded in \mathcal{A}_p then its image by T, T(M) is a bounded subset of

$$(\mathfrak{l}_{0}^{\infty}(\mathbf{X}, \mathcal{A}))' [\sigma((\mathfrak{l}_{0}^{\infty}(\mathbf{X}, \mathcal{A}))', \mathbf{E}_{n})]$$

and, since E_p is barrelled, T(M) is bounded in $(\ell_0^{\infty}(X, \mathcal{A}))'$ and therefore M is a bounded subset of $H(\mathcal{A})$.

q.e.d.

THEOREM 3. – If (\mathcal{A}_n) is an increasing sequence of subsets of \mathcal{A} covering \mathcal{A} there is a positive integer p such that, if (μ_n) is a sequence in $H(\mathcal{A})$ so that $(\mu_n(A))$ is a Cauchy sequence for every $A \in \mathcal{A}_p$, then (μ_n) is weakly convergent in $H(\mathcal{A})$.

Proof. – Let p be the positive integer determined by the preceding theorem. Then $(T(\mu_n))$ is a Cauchy sequence in

$$(\mathfrak{l}_0^{\infty}(\mathbf{X}, \mathscr{A}))' [\sigma((\mathfrak{l}_0^{\infty}(\mathbf{X}, \mathscr{A}))', \mathbf{E}_p)].$$

Since E_p is barrelled, then $(T(\mu_n))$ converges to an element v in

$$(\ell_0^{\infty}(\mathbf{X}, \mathcal{A}))' [\sigma((\ell_0^{\infty}(\mathbf{X}, \mathcal{A}))', \ell_0^{\infty}(\mathbf{X}, \mathcal{A}))]$$

and thus $(\mu_n(A))$ converges to $T^{-1}(v)(A)$, for every $A \in \mathcal{A}$, and therefore (μ_n) converges weakly in $H(\mathcal{A})$ to $T^{-1}(v)$, [2].

q.e.d.

3. Applications to certain locally convex spaces.

The linear spaces we shall use are defined over the field K of the real or complex numbers. Given the dual pair $\langle E, F \rangle$, $\sigma(E, F)$

ON CERTAIN BARRELLED NORMED SPACES

denotes the topology on E of the uniform convergence on every finite subset of F. The word "space" will mean "separated locally convex topological linear spaces". Given a space E, its topological dual is E' and its algebraic dual is E*. A finite additive measure μ with values in E on a σ -algebra \mathcal{A} is bounded if the set $\{\mu(A) : A \in \mathcal{A}\}$ is bounded in E. The finite additive measure μ is exhaustive if given any sequence (A_n) of pairwise disjoints elements of \mathcal{A} the sequence $(\mu(A_n))$ converges to the origin in E. If μ is a countably additive measure then μ is bounded.

A sequence (x_n) in a space E is subseries convergent if for every subset J of the natural numbers N the series $\sum_{n \in J}^{\infty} x_n$ converges. A sequence is bounded multiplier convergent if for every bounded sequence (a_n) in K the series $\sum_{n=1}^{\infty} a_n x_n$ converges. Given a subseries convergent sequence it is possible to associate with it an E-valued measure μ on the σ -algebra $\mathscr{P}(N)$ so that

$$\mu(\mathbf{J}) = \sum_{n \in \mathbf{J}} x_n$$
, for every $\mathbf{J} \in \mathscr{P}(\mathbf{N})$.

In [5] we gave the following definition: a) E is a Γ_r -space if every quasicomplete subspace of $E^*[\sigma(E^*, E)]$ intersecting $E'[\sigma(E', E)]$ in a dense subspace contains E'. The following results are true [5] b) If $f: E \longrightarrow F$ is a linear mapping with closed graph, f is continuous if E is a barrelled space and F is a Γ_r -space. c) If F is not a Γ_r -space there is a barrelled space E and a non-continuous linear mapping $f: E \longrightarrow F$ with closed graph. d) If $f: E \longrightarrow F$ is a continuous linear mapping, being E barrelled and F Γ_r -space then f can be extend in a continuous linear mapping of the completion \hat{E} of E into F.

THEOREM 4. – Let μ be a bounded additive measure from a σ -algebra \mathcal{A} on X in a space E. Let (F_n) be an increasing sequence of Γ_r -spaces covering a space F. If $f: E \longrightarrow F$ is a linear mapping with closed graph there is a positive integer q such that $f \circ \mu$ is a F_a -valued bounded finite additive measure on \mathcal{A} .

Proof. – Let $S: \ell_0^{\infty}(X, \mathcal{A}) \longrightarrow E$ be the linear mapping defined by $S(e(A)) = \mu(A)$ for every $A \in \mathcal{A}$. Since μ is bounded S is continuous and therefore $T = f \circ S$ is a linear mapping with

51

closed graph. The increasing sequence $(T^{-1}(F_n))$ covers $\ell_0^{\infty}(X, \mathcal{A})$ and according to Theorem 1 there is a positive integer q such that $T^{-1}(F_q)$ is barrelled and dense in $\ell_0^{\infty}(X, \mathcal{A})$. Let $T_q = T | T^{-1}(F_q)$ and according to d) T_q can be extended continuously $\overline{T}_q : \ell_0^{\infty}(X, \mathcal{A}) \longrightarrow F_q$. Since T has closed graph there is on F a separated locally convex topology \mathcal{T} (see 4) coarser than the original topology such that $T : \ell_0^{\infty}(X, \mathcal{A}) \longrightarrow F[\mathcal{I}]$ is continuous. Then T and \overline{T}_q are continuous from $\ell_0^{\infty}(X, \mathcal{A})$ in $F[\mathcal{I}]$ and coincide on a dense subspace and thus are coincident on $\ell_0^{\infty}(X, \mathcal{A})$ from which the conclusion follows.

q.e.d.

COROLLARY 1.4. – Let (F_n) be an increasing sequence of Γ_r spaces covering a space F and let $f: E \longrightarrow F$ be a linear mapping with closed graph, being E a space. If (x_n) is a subseries convergent sequence in E there is a positive integer q such that $(f(x_n))$ is a bounded sequence of F_n .

Proof. – It is enough to consider the measure associated with (x_n) and to apply the preceding theorem.

q.e.d.

THEOREM 5. – Let (F_n) be any increasing sequence of Γ_r -spaces covering a space F. If (x_n) is a subseries convergent sequence in F there is a positive integer q such that (x_n) is a sequence of F_q which is bounded multiplier convergent.

Proof. – We set ℓ_0^{∞} to denote $\ell_0^{\infty}(N, \mathscr{P}(N))$. Its completion is ℓ^{∞} . Let $f: \ell_0^{\infty} \longrightarrow F$ be the linear mapping defined by $f(e(A) = \sum_{\substack{n \in A \\ 0}} x_n$ for every $A \subset N$. It is obvious that $f: \ell_0^{\infty}[\sigma(\ell_0^{\infty}, \ell^1)] \longrightarrow F$ is continuous. Proceeding as we did in Theorem 4 there is a positive integer q such that $f^{-1}(F_q)$ is a barrelled dense subspace of ℓ_0^{∞} . Let g be the restriction of f to $f^{-1}(F_q)$. According to result d) we extend g to a linear continuous mapping $\hat{g}: \ell^{\infty} \longrightarrow F_q$. Let $\hat{f}: \ell^{\infty}[\sigma(\ell^{\infty}, \ell^1)] \longrightarrow \hat{F}$ be the linear extension of f, being \hat{F} the completion of F. The functions \hat{f} and g coincide in $f^{-1}(F_q)$ and therefore are equal. Given the bounded sequence (a_n) in K we set $v = (a_n)$, $v_p = (b_i)$, $b_i = a_i$, i = 1, 2, ..., p and $b_i = 0$, i = p + 1, p + 2, ... The sequence (v_p) converges to v in $\ell^{\infty} [\sigma(\ell^{\infty}, \ell^1)]$ and therefore the sequence $(\hat{f}(v_p)) = \left(\sum_{n=1}^{p} a_n x_n\right)$ converges to $\hat{f}(v) = \sum_{n=1}^{\infty} a_n x_n$ in F_q . q.e.d.

COROLLARY 1.5. – Let (F_n) be an increasing sequence of spaces covering a space F. If for every positive integer n there is a topology \mathcal{T}_n on F_n finer than the original topology such that $F_n[\mathcal{T}_n]$ is a B_r -complete space, then given a subseries convergent sequence (x_n) in F there is a positive integer q such that (x_n) is a bounded multiplier convergent series in F_q .

Proof. — Since every B_r -complete space is a Γ_r -space [5] it results that $F_n[\mathcal{T}_n]$ is a Γ_r -space and applying c) it is easy to obtain that F_n is a Γ_r -space. We apply now Theorem 5.

q.e.d.

THEOREM 6. – Let (F_n) be an increasing sequence of spaces covering a space F. If for every positive integer *n* there is a topology \mathcal{T}_n on F_n finer than the original topology of F_n , such that $F_n[\mathcal{T}_n]$ is a B_r -complete space not containing \mathfrak{L}^∞ , then given a bounded additive measure μ on a σ -algebra \mathcal{A} into F there is a positive integer q so that μ is an additive exhaustive measure on \mathcal{A} into $F_a[\mathcal{T}_a]$.

Proof. - Let $T: \ell_0^{\infty}(X, \mathcal{A}) \longrightarrow F$ be the linear mapping defined by $T(e(A)) = \mu(A)$ for every $A \in \mathcal{A}$. Since μ is bounded, T is continuous and following the argument of the proof of Theorem 4 there is a positive integer q such that the image of T is contained in F_q . Then T has closed graph in $\ell_0^{\infty}(X, \mathcal{A}) \times F_q[\mathcal{J}_q]$ and therefore $T: \ell_0^{\infty}(X, \mathcal{A}) \longrightarrow F_q[\mathcal{J}_q]$ is continuous and thus the set $\{T(e(A)): A \in \mathcal{A}\} = \{\mu(A): A \in \mathcal{A}\}$ is bounded in $F_q[\mathcal{J}_q]$. Since μ is bounded in $F_q[\mathcal{J}_q]$ and this space does not contain ℓ^{∞} we obtain that μ is exhaustive in $F_q[\mathcal{J}_q]$ [4].

q.e.d.

In [1] the following result is proven and we shall need it later : e) Let $f: E \longrightarrow F$ be a linear mapping with closed graph being E a space and F a B_r-complete space. If F does not contain ℓ^{∞} , f maps every subseries convergent sequence of E in a subseries convergent sequence of F.

THEOREM 7. – Let (F_n) be an increasing sequence of spaces covering a space F. If for every positive integer n there is a topology \mathcal{I}_n on F_n finer than the original topology such that $F_n[\mathcal{I}_n]$ is a B_r -complete space not containing \mathfrak{L}^{∞} , then given a countably additive measure μ on a σ -algebra \mathscr{A} into F there is a positive integer q so that μ is countably additive measure on \mathscr{A} into $F_a[\mathcal{I}_a]$.

Proof. — As we showed in Theorem 4, it is possible to find a positive integer q such that $\mu : \mathscr{A} \longrightarrow F_q$ is a countably additive measure. Let (A_n) be a sequence of pairwise disjoint elements of \mathscr{A} . Then $\sum_{n=1}^{\infty} \mu(A_n) = \mu \begin{pmatrix} \bigcup \\ n=1 \end{pmatrix}$ in F_q . Obviously the sequence $(\mu(A_n))$ is subseries convergent in F_q . If J is the canonical mapping of F_q onto $F_q[\mathscr{I}_q]$, J has closed graph in $F_q \times F_q[\mathscr{I}_q]$ and therefore, according to result e), the sequence $(J(\mu(A_n))) = (\mu(A_n))$ is subseries convergent in $F_q(\mathscr{I}_q)$ and thus $\sum_{n=1}^{\infty} \mu(A_n) = \mu \begin{pmatrix} \bigcup \\ n=1 \end{pmatrix}$ in $F_q[\mathscr{I}_q]$.

COROLLARY 1.7. – Let (F_n) be an increasing sequence of spaces covering a space F. If for every positive integer n there is a topology \mathcal{T}_n on F_n finer than the original topology such that $F_n[\mathcal{T}_n]$ is a B_r -complete space not containing \mathfrak{Q}^{∞} , then given a subseries convergent sequence (x_n) in F there is a positive integer q such that (x_n) is a subseries convergent sequence in $F_a[\mathcal{T}_a]$.

Proof. – It suffices to take in Theorem 7 $\mathscr{A} = \mathscr{P}(N)$ and $\mu(A) = \sum_{n \in A} x_n$ for every $A \in \mathscr{A}$. q.e.d.

Note 4. — Let E be a space containing a subspace F topologically isomorphic to ℓ^{∞} . Let u be an injective mapping of ℓ^{∞} into E such that u is a topological isomorphism of ℓ^{∞} onto F. Let

 $v: E' \longrightarrow (\ell^{\infty})'$ be its transposed mapping. We can find a closed absolutely convex neighbourhood of the origin U in E such that $u^{-1}(U)$ is contained in the closed unit ball of ℓ^{∞} . We consider ℓ^{1} as subspace of $(\ell^{\infty})'$ in the natural way. We represent bt (e_{n}) the element of ℓ^{1} having zero components but the *n*-th which is 1. If $(u^{-1}(U))^{0}$ is the polar of $u^{-1}(U)$ in $(\ell^{\infty})'$ then $e_{n} \in (u^{-1}(U))^{0}$, $n = 1, 2, \ldots$. If U^{0} is the polar set of U in E' then $v(U^{0}) = (u^{-1}(U))^{0}$. Taking $z_{n} \in U^{0}$ such that $v(z_{n}) = e_{n}$, $n = 1, 2, \ldots$, we define $P: E \longrightarrow F$ in the following way: given $x \in E$ the sequence $(\langle z_{n}, x \rangle)$ is in ℓ^{∞} and we write $P(x) = u((\langle z_{n}, x \rangle))$. Since U^{0} is an equicontinuous set in E' the mapping P is continuous. On the other hand, if $x \in F$ there is a sequence $(t_{n}) = t$ in K such that $t \in \ell^{\infty}$ and u(t) = x. Then

$$\langle z_n, x \rangle = \langle z_n, u(t) \rangle = \langle v(z_n), t \rangle = \langle e_n, t \rangle = t_n$$

and thus P(x) = x. Thus P is a continuous projection of E onto F and thus F has a topological complement in E. As a consequence ℓ^{∞} can not be contained in any separable space G. The former property is going to be used to show that "B_r-complete space" can not be substitued by " Γ_r -space" in Corollary 1.7. Indeed, if Z is the subspace of $(\ell^{\infty})'$ orthogonal to c_0 we take an element w in Z, $w \neq 0$. Then $\langle w, e(\{n\}) \rangle = 0$, $n = 1, 2, \ldots$ Let H be the linear hull of $\ell^1 \cup \{w\}$. Since $L = \ell^{\infty}[\sigma(\ell^{\infty}, \ell^1)]$ is separable, $Q = \ell^{\infty}[\sigma(\ell^{\infty}, H)]$ is also separable [6]. Since Q has a topology coarser than the topology of ℓ^{∞} , Q is a Γ_r -space not containing ℓ^{∞} . Since ℓ_0^{∞} is dense in ℓ^{∞} there is a subset A in N such that $\langle w, e(A) \rangle \neq 0$ which means that $(e(\{n\}))$ is a subseries convergent sequence in L which is not subseries convergent in Q. If we substitued in Theorem 7 "B_r-complete space" by "sequentially complete Γ_r -space" it can be shown to be valid.

Acknowledgement. – We would like to thank the referee for his indications.

BIBLIOGRAPHY

 G. BENNETT and N.J. KALTON, Addendum to "FK-spaces containing c₀", Duke Math. J., 39, (1972), 819-821.

- [2] R.B. DARST, On a theorem of Nikodym with applications to weak convergence and von Neumann algebra, *Pacific Jour. of Math.*, V. 23, No 3, (1967), 473-477.
- [3] A. GROTHENDIECK, Espaces vectoriels topologiques, Departamento de Matemática da Universidade de Sao Paulo, Brasil, 1954.
- [4] I. LABUDA, Exhaustive measures in arbitrary topological vector spaces, *Studia Math.*, LVIII, (1976), 241-248.
- [5] M. VALDIVIA, Sobre el teorema de la gráfica cerrada, Collectanea Math., XXII, Fasc. 1, (1971), 51-72.
- [6] M. VALDIVIA, On weak compactness, Studia Math., XLIX, (1973), 35-40.

Manuscrit reçu le 7 juillet 1978.

Manuel VALDIVIA, Facultad de Matematicas Avda Blasco Ibanez, 13 Valencia (Espagne).