## Annales de l'institut Fourier

## Manuel Valdivia

## On certain barrelled normed spaces

Annales de l'institut Fourier, tome 29, no 3 (1979), p. 39-56

[http://www.numdam.org/item?id=AIF_1979__29_3_39_0](http://www.numdam.org/item?id=AIF_1979__29_3_39_0)
© Annales de l'institut Fourier, 1979, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

# ON CERTAIN BARRELLED NORMED SPACES 

by Manuel VALDIVIA

Let $\mathscr{A}$ be a $\sigma$-algebra on a set X . If A belongs to $\mathscr{A}$ let $e(\mathrm{~A})$ be the function defined on $X$ taking value 1 in every point of $A$ and vanishing in every point of $\mathrm{X} \sim \mathrm{A}$. Let $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ be the linear space over the field $K$ of real or complex numbers generated by $\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}\}$ endowed with the topology of the uniform convergence. We shall prove that if $\left(\mathrm{E}_{n}\right)$ is an increasing sequence of subspaces of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ covering $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ there is a positive integer $p$ such that $\mathrm{E}_{p}$ is a dense barrelled subspace of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$, and we shall deduce some new results in measure theory from this fact.

1. The space $\ell_{0}^{\infty}(X, \mathscr{A})$.

If $z \in \ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ and if $z(j)$ denotes its value in the point $j$ of X we define the norm of $z$ in the following way:

$$
\|z\|=\sup \{|z(j)|: j \in \mathrm{X}\}
$$

Given a member A of $\mathscr{A}$ we denote by $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$ the subspace of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ generated by $\{e(\mathrm{M}): \mathrm{M} \in \mathscr{A}, \mathrm{M} \subset \mathrm{A}\}$. We write $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ to denote the Banach space conjugate of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. If $u \in\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}, u(\mathrm{~A})$ stands for restriction of $u$ to $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$. The norm of $u(\mathrm{~A})$ is denoted by $\|u(\mathrm{~A})\|$ and the value of $u$ at the point $z$ is written $\langle u, z\rangle$. If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}$ are disjoint members of $\mathscr{A}$ and contained in A then

$$
\begin{equation*}
\sum_{p=1}^{n}\left\|u\left(\mathrm{~A}_{p}\right)\right\| \leqslant\|u(\mathrm{~A})\| \tag{1}
\end{equation*}
$$

since if every any $\epsilon>0$ we take $z_{p}$ in $\ell_{0}^{\infty}\left(\mathrm{A}_{p}, \mathscr{A}\right)$ with

$$
\left\|z_{p}\right\| \leqslant 1,\left\langle u, z_{p}\right\rangle \geqslant\left\|u\left(\mathrm{~A}_{p}\right)\right\|-\frac{\epsilon}{n}, \quad p=1,2, \ldots, n
$$

Then $z=\sum_{p=1}^{n} z_{p}$ has norm less than or equal to 1 , belongs to $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$ and

$$
\|u(\mathrm{~A})\| \geqslant|\langle u, z\rangle| \geqslant \sum_{p=1}^{n}\left\|u\left(\mathrm{~A}_{p}\right)\right\|-\epsilon
$$

and (1) follows.
Proposition 1. - Let B be the closed unit ball of real $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. Then the absolutely convex hull of $\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}\}$ contains $\frac{1}{2} \mathrm{~B}$.

Proof. - If $z \in \frac{1}{2} \mathrm{~B}$ and if $z$ takes exactly two non vanishing values, we obtain $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \in \mathscr{A}, \mathrm{~A}_{i} \cap \mathrm{~A}_{j}=\varnothing, i \neq j, i, j=1,2,3$ such that $A_{1} \cup A_{2} \cup A_{3}=X$ and such that

$$
z(j)=\alpha, j \in \mathrm{~A}_{1} ; z(j)=\beta, j \in \mathrm{~A}_{2} ; z(j)=0, j \in \mathrm{~A}_{3}
$$

Then $|\alpha| \leqslant \frac{1}{2},|\beta| \leqslant \frac{1}{2}$ and

$$
z=\alpha e\left(\mathrm{~A}_{1}\right)+\beta e\left(\mathrm{~A}_{2}\right)
$$

and therefore $z$ belongs to the absolutely convex hull of $\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}\}$.
By recurrence we suppose that for a $p \geqslant 2$ every vector of $\frac{1}{2} \mathrm{~B}$ taking exactly $p$ non vanishing values belongs to the absolutely convex hull of $\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}\}$. If $z \in \frac{1}{2} \mathrm{~B}$ taking $p+1$ non vanishing values we descompose X in $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{p+2}$ members of $\mathscr{A}$ such that $z$ takes the value $\alpha_{j}$ in $\mathrm{A}_{j}, j=1,2, \ldots, p+1$ and zero in $\mathrm{A}_{p+2}$. Since $p$ is larger than or equal to $2, z$ takes two different values of the same sign. We can suppose that $0<\alpha_{1}<\alpha_{2}$ or $\alpha_{2}<\alpha_{1}<0$. If $0<\alpha_{1}<\alpha_{2}$ we consider the vectors $z_{1}$ and $z_{2}$ which coincide with $z$ in $A_{2} \cup A_{3} \cup \ldots \cup A_{p+2}$ such that $z_{1}$ takes the value $\alpha_{2}$ in $\mathrm{A}_{1}$ and $z_{2}$ takes the value zero in $\mathrm{A}_{1}$. Then $z_{1}$ and $z_{2}$ take $p$ non zero different values and since $z_{1}, z_{2} \in \frac{1}{2} \mathrm{~B}$ they belong to the absolutely convex hull M of $\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}\}$. Since $0<\frac{\alpha_{1}}{\alpha_{2}}<1$
then

$$
\frac{\alpha_{1}}{\alpha_{2}} z_{1}+\left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) z_{2}=z
$$

belongs to M. If $\alpha_{2}<\alpha_{1}<0$ then $0<-\alpha_{1}<-\alpha_{2}$ and so $-z \in M$ and therefore $z \in M$.
q.e.d.

Proposition 2. - Let B be the closed unit ball of complex $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. Then the absolutely convex hull of $\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}\}$ contains $\frac{1}{4} \mathrm{~B}$.

Proof. - If $z \in \frac{1}{4}$ B we write

$$
z=z_{1}+i z_{2}
$$

where $z_{1}, z_{2}$ are real vectors of $\frac{1}{4} \mathrm{~B}$. According to Proposition 1 the vectors $2 z_{1}$ and $2 z_{2}$ belong to the absolutely convex hull of $\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}\}$. Then

$$
z=\frac{1}{2}\left(2 z_{1}\right)+\frac{i}{2}\left(2 z_{2}\right)
$$

belongs also to the absolutely convex hull of $\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}\}$.
q.e.d.

Note 1.- If $\mathrm{A} \in \mathscr{A}$ let $\mathscr{B}=\{\mathrm{A} \cap \mathrm{B}: \mathrm{B} \in \mathscr{A}\}$. Then $\mathscr{B}$ is a $\sigma$-algebra and we can suppose that $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{B})$ coincides with $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$. Given an absolutely convex set T of $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$ which is not a neighbourhood of the origin and given any positive real number $\lambda$ we can apply Proposition 1 or Proposition 2 to $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})=\ell_{0}^{\infty}(\mathrm{A}, \mathscr{B})$ to obtain a member $\mathrm{A}_{1}$ of $\mathscr{A}$ contained in A so that $\lambda e\left(\mathrm{~A}_{1}\right) \notin \mathrm{T}$.

Given a closed absolutely convex set $U$ of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ we say that the member $A \in \mathscr{A}$ has property $U$ if there is a finite set $Q$ in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ such that if V is the absolutely convex hull of $\mathrm{U} \cup \mathrm{Q}$ then $\mathrm{V} \cap \ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$ is a neighbourhood of the origin in $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$. Obviously, if A has property $\mathrm{U}, \mathrm{B} \subset \mathrm{A}, \mathrm{B} \in \mathscr{A}$, then B also has property $U$.

Proposition 3.- If $\mathrm{A} \in \mathscr{A}$ does not possess property U and if $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}$ are elements of $\mathscr{A}$ which are a partition of A there is an integer $q, 1 \leqslant q \leqslant n$, such that $\mathrm{A}_{q}$ does not have property U .

Proof. - We suppose that $\mathrm{A}_{p}, p=1,2, \ldots, n$, have property U . There is a finite set $\mathrm{Q}_{p}$ in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ such that if $\mathrm{U}_{p}$ is the absolutely convex hull of $U \cup \mathrm{Q}_{p}$ then $\mathrm{V}_{p}=\mathrm{U}_{p} \cap \ell_{0}^{\infty}\left(\mathrm{A}_{p}, \mathscr{A}\right)$ is a neighourhood of the origin in $\ell_{0}^{\infty}\left(\mathrm{A}_{p}, \mathscr{A}\right)$. Let V be the absolutely convex hull of $U \cup\left(\bigcup_{p=1}^{n} Q_{p}\right)$. Since $A$ does not have property $\mathrm{U}, \mathrm{V} \cap \ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$ is not a neighbourhood of the origin in $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$. Since $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$ is the topological direct sum of $\ell_{0}^{\infty}\left(\mathrm{A}_{1}, \mathscr{A}\right)$, $\ell_{0}^{\infty}\left(\mathrm{A}_{2}, \mathscr{A}\right), \ldots, \ell_{0}^{\infty}\left(\mathrm{A}_{n}, \mathscr{A}\right)$, the absolutely convex hull W of $\bigcup_{p=1}^{n} \mathrm{~V}_{p}$ is a neighbourhood of the origin in $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$. On the other hand, W is contained in V and we arrive at a contradiction.
q.e.d.

Proposition 4. - Suppose that $\mathrm{A} \in \mathscr{A}$ does not have property U . Given a positive integer $p \geqslant 2$, the elements $x_{1}, x_{2}, \ldots, x_{n}$ of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ and a positive real number $\alpha$, there are $p$ elements $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{p}$ of $\mathscr{A}$, which are a partition of A , and $p$ vectors $u_{1}, u_{2}, \ldots, u_{p}$ in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ such that, if $i=1,2, \ldots, p$,

$$
\left|\left\langle u_{i}, e\left(\mathrm{~A}_{i}\right)\right\rangle\right|>\alpha, \sum_{j=1}^{n}\left|\left\langle u_{i}, x_{j}\right\rangle\right| \leqslant 1, \quad\left|\left\langle u_{i}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U} .
$$

Proof. - Let Q be the absolutely convex hull of

$$
\left\{e(\mathrm{~A}), n x_{1}, n x_{2}, \ldots, n x_{n}\right\}
$$

Since Q is compact, $\mathrm{V}=\mathrm{U}+\mathrm{Q}$ is a closed absolutely convex set of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. Since A does not have property $\mathrm{U}, \mathrm{V} \cap \ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$ is not a neighbourhood of the origin in $\ell_{0}^{\infty}(\mathrm{A}, \mathscr{A})$ and therefore, according to Note 1 , we can choose a subset $\mathrm{P}_{11}$ in $\mathrm{A}, \mathrm{P}_{11} \in \mathscr{A}$, such that

$$
\frac{1}{1+\alpha} e\left(\mathrm{P}_{11}\right) \notin \mathrm{V}
$$

If $\mathrm{V}^{\circ}$ denotes the polar set of V in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ we can find an element $u_{1} \in \mathrm{~V}^{\circ}$ such that

$$
\left|\left\langle u_{1}, \frac{1}{1+\alpha} e\left(\mathrm{P}_{11}\right)\right\rangle\right|>1
$$

and therefore

$$
\left|\left\langle u_{1}, e\left(\mathrm{P}_{11}\right)\right\rangle\right|>1+\alpha>\alpha .
$$

On the other hand, if $\mathrm{P}_{12}=\mathrm{A} \sim \mathrm{P}_{11}$ we have

$$
\left.\left\langle u_{1} e\left(\mathrm{P}_{11}\right)\right\rangle=\left\langle u_{1}, e(\mathrm{~A})\right)\right\rangle-\left\langle u_{1}, e\left(\mathrm{P}_{12}\right)\right\rangle
$$

thus

$$
\left|\left\langle u_{1}, e\left(\mathrm{P}_{11}\right)\right\rangle\right| \leqslant\left|\left\langle u_{1}, e(\mathrm{~A})\right\rangle\right|+\left|\left\langle u_{1}, e\left(\mathrm{P}_{12}\right)\right\rangle\right|
$$

and so

$$
\left|\left\langle u_{1}, e\left(\mathrm{P}_{12}\right)\right\rangle\right| \geqslant\left|\left\langle u_{1}, e\left(\mathrm{P}_{11}\right)\right\rangle\right|-\left|\left\langle u_{1}, e(\mathrm{~A})\right\rangle\right|>1+\alpha-1=\alpha
$$

According to Proposition 3, $\mathrm{P}_{11}$ or $\mathrm{P}_{12}$ does not have property U. We suppose that $P_{12}$ does not have property $U$ and we set $\mathrm{A}_{1}=\mathrm{P}_{11}$. We have that

$$
\begin{gathered}
\left|\left\langle u_{1}, e\left(\mathrm{~A}_{1}\right)\right\rangle\right|>\alpha, \quad\left|\left\langle u_{1}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}, \\
\sum_{j=1}^{n}\left|\left\langle u_{1}, x_{j}\right\rangle\right|=\sum_{j=1}^{n} \frac{1}{n}\left|\left\langle u_{1}, n x_{j}\right\rangle\right| \leqslant \sum_{j=1}^{n} \frac{1}{n}=1 .
\end{gathered}
$$

(The same result is obtained if $P_{11}$ does not have property $U$ and we set $A_{1}=P_{12}$ ).

We apply the same method substituting $P_{12}$ for $A$ to obtain a division of $\mathrm{P}_{12}$ into two subsets $\mathrm{A}_{2}$ and $\mathrm{P}_{22}$ belonging to $\mathscr{A}$ and an element $u_{2} \in\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ so that

$$
\begin{gathered}
\left|\left\langle u_{2}, e\left(\mathrm{~A}_{2}\right)\right\rangle\right|>\alpha, \quad\left|\left\langle u_{2}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U} \\
\sum_{j=1}^{n}\left|\left\langle u_{2}, x_{j}\right\rangle\right| \leqslant 1
\end{gathered}
$$

so that $P_{22}$ does not have property $U$.
Following the same way we obtain a partition $\mathrm{A}_{p-1}, \mathrm{P}_{(p-1) 2}$ of $\mathrm{P}_{(p-2) 2}$ and an element $u_{p-1} \in\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ such that

$$
\begin{aligned}
& \left|\left\langle u_{p-1}, e\left(\mathrm{~A}_{p-1}\right)\right\rangle\right|>\alpha, \quad\left|\left\langle u_{p-1}, e\left(\mathrm{P}_{(p-1) 2}\right)\right\rangle\right|>\alpha \\
& \left|\left\langle u_{p-1}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}, \sum_{j=1}^{n}\left|\left\langle u_{p-1}, x_{j}\right\rangle\right| \leqslant 1
\end{aligned}
$$

Setting $u_{p-1}=u_{p}, \mathrm{P}_{(p-1) 2}=\mathrm{A}_{p}$ the conclusion follows.
q.e.d.

Now we consider a sequence $\left(\mathrm{U}_{n}\right)$ of closed absolutely convex subsets of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ such that the member $\mathrm{A} \in \mathscr{A}$ does not have property $\mathrm{U}_{n}$ for $n=n_{1}, n_{2}, \ldots, n_{p}$ and for an infinity of values of $n$.

Proposition 5. - Given a positive real number $\alpha$ and the vectors $x_{1}, x_{2}, \ldots, x_{r}$ in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ there are $p$ pairwise disjoint subsets $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{p}$ in A , belonging to $\mathscr{A}$ and $p$ elements $u_{1}, u_{2}, \ldots, u_{p}$ in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ so that, for every $i=1,2, \ldots, p$,
$\left|\left\langle u_{i}, e\left(\mathrm{M}_{i}\right)\right\rangle\right|>\alpha, \sum_{j=1}^{r}\left|\left\langle u_{i}, x_{j}\right\rangle\right| \leqslant 1, \quad\left|\left\langle u_{i}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}_{n_{i}}$
and $\mathrm{A} \sim \bigcup_{i=1}^{p} \mathrm{M}_{i}$ does not have property $\mathrm{U}_{n}$ for $n=n_{1}, n_{2}, \ldots, n_{p}$ and for an infinity of values of $n$.

Proof. - According to Proposition 4 we can find a partition $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{p+2} \in \mathscr{A}$ of A and $v_{1}, v_{2}, \ldots, v_{p+2}$ in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ such that, for $i=1,2, \ldots, p+2$,

$$
\left|\left\langle v_{i}, e\left(\mathrm{Q}_{i}\right)\right\rangle\right|>\alpha, \sum_{j=1}^{r}\left|\left\langle v_{i}, x_{j}\right\rangle\right| \leqslant 1, \quad\left|\left\langle v_{i}, x\right\rangle\right| \leqslant 1 \quad, \quad \forall x \in \mathrm{U}_{n_{1}}
$$

It is obvious that, for an infinity of values of $n$, some of the sets

$$
\begin{equation*}
\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{p+2} \tag{2}
\end{equation*}
$$

do not have property $U_{n}$. We suppose that $Q_{1}$ does not have property $U_{n}$ for an infinity of values of $n$. On the other hand, given a positive integer $q, 1 \leqslant q \leqslant p$, some of the sets (2) do not have property $\mathrm{U} n_{q}$. Since in (2) are $p+2$ elements we can find an element $\mathrm{Q}_{h}, \quad 1<h \leqslant p+2$, such that $\mathrm{A} \sim \mathrm{Q}_{h}$ does not have property $\mathrm{U}_{n}$ for $n=n_{1}, n_{2}, \ldots, n_{p}$. Obviously $\mathrm{A} \sim \mathrm{Q}_{n}$ contains $\mathrm{Q}_{1}$ and therefore does not have property $\mathrm{U}_{n}$ for an infinity of values of $n$. We set $\mathrm{M}_{1}=\mathrm{Q}_{h}, u_{1}=v_{h}$, and then
$\left|\left\langle u_{1}, e\left(\mathrm{M}_{1}\right)\right\rangle\right|>\alpha, \sum_{j=1}^{r}\left|\left\langle u_{1}, x_{j}\right\rangle\right| \leqslant 1, \quad\left|\left\langle u_{1}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}_{n_{1}}$.
By recurrence we suppose that we already obtained elements $u_{i} \in\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}, i=1,2, \ldots, s<p$, and pairwise disjoint subsets $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{s} \in \mathscr{A}$ such that, for $i=1,2, \ldots, s$,
$\left|\left\langle u_{i}, e\left(\mathrm{M}_{i}\right)\right\rangle\right|>\alpha, \sum_{j=1}^{r}\left|\left\langle u_{i}, x_{j}\right\rangle\right| \leqslant 1, \quad\left|\left\langle u_{i}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}_{n_{i}}$
and $\mathrm{A} \sim \bigcup_{j=1}^{s} \mathrm{M}_{j}$ does not have property $\mathrm{U}_{n}$ for $n=n_{1}, n_{2}, \ldots, n_{p}$ and for an infinity of values of $n$. Since $A \sim \bigcup_{j=1}^{s} M_{j}$ does not have
property $\mathrm{U}_{n_{s+1}}$, we apply Proposition 4 to obtain a partition $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{p+2}$ of $\mathrm{A} \sim \bigcup_{j=1}^{s} \mathrm{M}_{j}$, by members of $\mathscr{A}$, and elements $w_{1}, w_{2}, \ldots, w_{p+2}$ in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ so that, for $i=1,2, \ldots, p+2$, $\left|\left\langle w_{i}, e\left(\mathrm{R}_{i}\right)\right\rangle\right|>\alpha, \sum_{j=1}^{r}\left|\left\langle w_{i}, x_{i}\right\rangle\right| \leqslant 1,\left|\left\langle w_{i}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}_{n_{s+1}}$.
Then some of the subsets

$$
\begin{equation*}
\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{p+2} \tag{3}
\end{equation*}
$$

do not have property $\mathrm{U}_{n}$ for an infinity of values of $n$. We suppose that $\mathrm{R}_{1}$ does not have property $\mathrm{U}_{n}$ for an infinity of values of $n$. As we did before we find an element $\mathrm{R}_{k}, 1<k \leqslant p+2$, such that $\left(\mathrm{A} \sim \bigcup_{j=1}^{s} \mathrm{M}_{i}\right) \sim \mathrm{R}_{k}$ does not have property $\mathrm{U}_{n_{i}}, i=1,2, \ldots, p$. We set $\mathrm{M}_{s+1}=\mathrm{R}_{k}, u_{s+1}=w_{k}$. Then, for $i=1,2, \ldots, s+1$, $\left|\left\langle u_{i}, e\left(\mathrm{M}_{i}\right)\right\rangle\right|>\alpha, \sum_{j=1}^{r}\left|\left\langle u_{i}, x_{j}\right\rangle\right| \leqslant 1,\left|\left\langle u_{i}, x\right\rangle\right| \leqslant 1, \forall x \in \mathrm{U}_{n_{i}}$, and $\mathrm{A} \sim \stackrel{s+1}{\cup} \mathrm{M}_{j}$ does not have property $\mathrm{U}_{n}$ for $n=n_{1}, n_{2}, \ldots, n_{p}$ and for an infinity of values of $n$.
q.e.d.

Now we consider a sequence ( $\mathrm{U}_{n}$ ) of closed absolutely convex subsets of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ such that X does not property $\mathrm{U}_{n}$ for $n=1,2, \ldots$

Proposition 6. - There are: (i) a family $\left\{\mathrm{A}_{i j}: i, j=1,2, \ldots\right\}$ of pairwise disjoint members of $\mathscr{A}$, (ii) a strictly increasing sequence $\left(n_{i}\right)$ of positive integers and (iii) a set $\left\{u_{i j}: i, j=1,2, \ldots\right\}$ in $\left(_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ so that, for $i, j=1,2, \ldots$

$$
\left.\begin{array}{l}
\left|\left\langle u_{i j}, e\left(\mathrm{~A}_{i j}\right)\right\rangle\right|>i+j  \tag{4}\\
\sum_{n+k<i+j}\left|\left\langle u_{i j}, e\left(\mathrm{~A}_{h k}\right)\right\rangle\right| \leqslant 1 \\
\left|\left\langle u_{i j}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}_{n_{i}}
\end{array}\right\}
$$

Proof. - We apply the preceding proposition to obtain an element $u_{11} \in\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ and an element $\mathrm{A}_{11} \in \mathscr{A}$ so that

$$
\left|\left\langle u_{11}, e\left(\mathrm{~A}_{11}\right)\right\rangle\right|>2, \quad\left|\left\langle u_{11}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}_{1}
$$

and such that $\mathrm{X} \sim \mathrm{A}_{11}$ does not have property $\mathrm{U}_{n}$ for $n=1$ and an infinity of values of $n$. By recurrence suppose we have obtained $q$ integers

$$
1=n_{1}<n_{2}<\ldots<n_{q}
$$

and a family $\left\{\mathrm{A}_{i j}: i+j \leqslant q+1\right\}$ of pairwise disjoint elements of $\mathscr{A}$ and a set $\left\{u_{i j}: i+j \leqslant q+1\right\}$ in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ so that (4) is verified for $i+j \leqslant q+1$ and such that $\mathrm{X} \sim \underset{i+j \leqslant q+1}{\cup} \mathrm{~A}_{i j}$ does not have property $\mathrm{U}_{n}$ for $n=n_{1}, n_{2}, \ldots, n_{q}$ and for an infinity of values of $n$. Let $n_{q+1}$ be smallest integer larger than $n_{q}$ such that $\mathrm{X} \sim \cup_{i+j \leqslant q+1} \mathrm{~A}_{i j}$ does not have property $\mathrm{U}_{n_{q+1}}$. We apply now Proposition 5 to $\mathrm{A}=\mathrm{X} \sim \bigcup_{i+j \leqslant q+1} \mathrm{~A}_{i j}, \quad p=q+1, \quad \alpha=q+2$ and $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}=\left\{e\left(\mathrm{~A}_{h k}\right): h+k \leqslant q+1\right\}$. We obtain the pairwise disjoints subsets

$$
\mathrm{A}_{1(q+1)}, \mathrm{A}_{2 q}, \mathrm{~A}_{3(q-1)}, \ldots, \mathrm{A}_{(q+1) 1}
$$

in $\mathrm{X} \sim \underset{i+j \leqslant q+1}{\cup} \mathrm{~A}_{i j}$ belonging to $\mathscr{A}$, and the elements

$$
u_{1(q+1)}, u_{2 q}, u_{3(q-1)}, \ldots, u_{(q+1) 1}
$$

in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ such that, for $i=1,2, \ldots, q+1$

$$
\begin{aligned}
& \left|\left\langle u_{i(q+2-i)}, e\left(\mathrm{~A}_{i(q+2-i)}\right)\right\rangle\right|>q+2 \\
& \sum_{n+k<q+2}\left|\left\langle u_{i(q+2-i)}, e\left(\mathrm{~A}_{h k}\right)\right\rangle\right| \leqslant 1 \\
& \left|\left\langle u_{i(q+2-i)}, x\right\rangle\right| \leqslant 1, \quad \forall x \in \mathrm{U}_{n_{i}}
\end{aligned}
$$

and $X \sim \cup_{i+j \leqslant q+2} A_{i j}$ does not have property $U_{n}$ for $n=n_{1}, n_{2}, \ldots, n_{q+1}$ and for an infinity of values of $n$. Proceeding this way we arrive at the desired conclusion.
q.e.d.

Proposition 7. - Let V be a closed absolutely convex subset of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. If V is not a neighbourhood of the origin in its linear hull L , then X does not have property V .

Proof. - Suppose first that the codimension of L in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ is finite. Let $\left\{z_{1}, z_{2}, \ldots, z_{p}\right\}$ be a cobasis of L in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. Let M be the absolutely convex hull of $\left\{z_{1}, z_{2}, \ldots, z_{p}\right\}$. Then $\mathrm{W}=\mathrm{V}+\mathrm{M}$ is a barrel in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ such that $(\mathrm{V}+\mathrm{M}) \cap \mathrm{L}=\mathrm{V}$
and thus W is not a neighbourhood of the origin in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. Let $B$ be any finite subset of $\ell_{0}^{\infty}(X, \mathscr{A})$ and let $Z$ be the absolutely convex hull of $\mathrm{V} \cup \mathrm{B}$. We find a positive integer $n$ such that $\mathrm{B} \subset n \mathrm{~W}$. Then

$$
\mathrm{Z} \subset \mathrm{~V}+n \mathrm{~W} \subset(n+1) \mathrm{W}
$$

and therefore $Z$ is not a neighbourhood of the origin in $\ell_{0}^{\infty}(X, \mathscr{A})$, i.e. X does not have property V . If L has infinite codimension in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ and B is any finite subset of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ let Z be the absolutely convex hull of $\mathrm{V} \cup \mathrm{B}$. Then Z is not absorbing in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ and therefore X does not have property V .
q.e.d.

Theorem 1.-Let ( $\mathrm{E}_{n}$ ) be an increasing sequence of subspaces of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ covering $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. Then there is a positive integer $p$ such that $\mathrm{E}_{p}$ is a barrelled dense subspace of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$.

Proof. - Suppose first that $\mathrm{E}_{n}$ is not barrelled, $n=1,2, \ldots$ Then, for every positive integer $n$ we can find a barrel $W_{n}$ in $\mathrm{E}_{n}$ which is not a neighbourhood of the origin in $E_{n}$. Let $U_{n}$ be the closure of $\mathrm{W}_{n}$ in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. According to the preceding proposition, X does not have property $\mathrm{U}_{n}$ for every $n$ positive integer. We apply Proposition 6 to obtain the pairwise disjoints subsets $\left\{\mathrm{A}_{i j}: i, j=1,2, \ldots\right\}$ of X belonging to $\mathscr{A}$, the strictly increasing sequence of positive integers $\left(n_{i}\right)$ and the set $\left\{u_{i j}: i, j=1,2, \ldots\right\}$ in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ with conditions (4).

We order the pairs of all the positive integers in the following way: given two of those pairs $\left(p_{1}, p_{2}\right)$ and $\left(q_{1}, q_{2}\right)$ we set $\left(p_{1}, p_{2}\right)<\left(q_{1}, q_{2}\right)$ if either $p_{1}+p_{2}<q_{1}+q_{2}$ or $p_{1}+p_{2}=q_{1}+q_{2}$ and $p_{1}<q_{1}$. Setting $\mathrm{G}=\cup\left\{\mathrm{A}_{i j}: i, j=1,2, \ldots\right\}$ we find a positive integer $m$ such that $\left\|u_{11}(\mathrm{G})\right\|<m$. We make a partition of the set of pairs of positive integers $\{(i, j): i+j>2\}$ in $m$ parts $\mathscr{P}_{1}^{(11)}, \mathscr{P}_{2}^{(11)}, \ldots, \mathscr{P}_{m}^{(11)}$, so that, in each one, given any positive integer $i$ there are infinitely many elements whose first component is $i$. According to (1)

$$
\sum_{n=1}^{m}\left\|u_{11}\left(\cup\left\{\mathrm{~A}_{i j}:(i, j) \in \mathscr{P}_{h}^{(11)}\right\}\right)\right\| \leqslant\left\|u_{11}(\mathrm{G})\right\|
$$

and thus there is an integer $k, 1 \leqslant k \leqslant m$, such that

$$
\left\|u_{11}\left(\cup\left\{\mathrm{~A}_{i j}:(i, j) \in \mathscr{P}_{k}^{(11)}\right\}\right)\right\|<1
$$

Setting $\mathscr{P}_{k}^{(11)}=\mathscr{P}^{(11)}$ and using recurrence suppose $\mathscr{P}^{(11)}, \ldots, \mathscr{P}^{(w t)}$ have already been constructed. If $(r, s)$ is the pair following $(w, t)$ we take in $\mathscr{P}^{(w t)}$ an element of the form $\left(r, r_{s}\right)$ with $r_{s}>s+2$. We find a positive integer $q$ such that $\left\|u_{r r_{s}}(\mathrm{G})\right\|<q$. We make a partition of the set $\left\{(i, j) \in \mathscr{P}^{(w t)}: i+j>r+r_{s}\right\} \quad$ in $\quad q$ parts $\mathscr{P}_{1}^{(r s)}, \mathscr{P}_{2}^{(r s)}, \ldots, \mathscr{P}_{q}^{(r s)}$ so that, in every one, given any positive integer $i$, there are infinitely many elements whose first component is $i$. We have that

$$
\sum_{n=1}^{q}\left\|u_{r r_{s}}\left(\cup\left\{\mathrm{~A}_{i j}:(i, j) \in \mathscr{P}_{h}^{(r s)}\right\}\right)\right\| \leqslant\left\|u_{r r_{s}}(\mathrm{G})\right\|
$$

and therefore there is a positive integer $\ell, 1 \leqslant \ell \leqslant q$, such that

$$
\begin{equation*}
\left\|u_{r r_{s}}\left(\cup\left\{\mathrm{~A}_{i j}:(i, j) \in \mathscr{P}_{l}^{(r s)}\right\}\right)\right\|<1 \tag{5}
\end{equation*}
$$

We $\operatorname{set} \mathscr{P}_{l}^{(r s)}=\mathscr{P}{ }^{(r s)}$ and we continue the construction in the same way. We set $\mathrm{A}_{r_{r}}=\mathrm{A}_{11}$ for $r=s=1$ and H for

$$
\cup\left\{\mathrm{A}_{n n_{m}}: n, m=1,2, \ldots\right\}
$$

Since $\left(\mathrm{E}_{n}\right)$ is an increasing sequence and covers $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ there is a positive integer $r$ such that $\mathrm{U}_{n_{r}}$ absorbs $e(\mathrm{H})$ and therefore there is a positive number $\lambda$ such that $\lambda e(\mathrm{H}) \subset \mathrm{U}_{n_{r}}$.

On the other hand,

$$
\begin{aligned}
\left\langle u_{r r_{s}}, e(\mathrm{H})\right\rangle=\left\langle u_{r r_{s}}, e\left(\mathrm{~A}_{r r_{s}}\right)\right\rangle & +\sum_{n+n_{m}<r+r_{s}}\left\langle u_{r r_{s}}, e\left(\mathrm{~A}_{n n_{m}}\right)\right. \\
& +\left\langle u_{r r_{s}}, e\left(\mathrm{\cup}\left\{\mathrm{~A}_{n n_{m}}: n+n_{m}>r+r_{s}\right\}\right)\right\rangle
\end{aligned}
$$

and therefore, according to (4) and (5),

$$
\begin{aligned}
& \left|\left\langle u_{r r s}, e(\mathrm{H})\right\rangle\right| \\
& \geqslant\left|\left\langle u_{r r_{s}}, e\left(\mathrm{~A}_{r r_{s}}\right)\right\rangle\right|-\sum_{n+n_{m}<r+r_{s}}\left|\left\langle u_{r r_{s}}, e\left(\mathrm{~A}_{n n_{m}}\right)\right\rangle\right| \\
& -\left|\left\langle u_{r r_{s}}, e\left(\cup\left\{\mathrm{~A}_{n n_{m}}: n+n_{m}>r+r_{s}\right\}\right)\right\rangle\right| \\
& \geqslant r+r_{s}-\sum_{i+j<r+r_{s}}\left|\left\langle u_{r r_{s}}, e\left(\mathrm{~A}_{i j}\right)\right\rangle\right| \\
& -\left|\left\langle u_{r r_{s}}\left(\cup\left\{\mathrm{~A}_{n n_{m}}: n+n_{m}>r+r_{s}\right\}\right)\right\rangle\right| \\
& \geqslant r+r_{s}-1-\left\|u_{r r_{s}}\left(\cup\left\{\mathrm{~A}_{i j}:(i, j) \in \mathscr{P}^{(r s)}\right\}\right)\right\| \\
& \geqslant r+r_{s}-1-1 \geqslant r+s
\end{aligned}
$$

and thus

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left|\left\langle u_{r r_{s}}, e(\mathrm{H})\right\rangle\right|=\infty \tag{6}
\end{equation*}
$$

On the other hand, since $\lambda e(\mathrm{H}) \in \mathrm{U}_{n_{r}}$, we apply (4) to obtain

$$
\left|\left\langle u_{r r_{s}}, \lambda e(\mathrm{H})\right\rangle\right| \leqslant 1
$$

which contradicts (6) and therefore there is a positive integer $m_{0}$ such that $\mathrm{E}_{m_{0}}$ is a barrelled space.

Next we suppose that $\mathrm{E}_{n}$ is not dense in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ for $n=1,2, \ldots$ Let $\overline{\mathrm{E}}_{n}$ be the closure of $\mathrm{E}_{n}$ in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. Let $\mathrm{V}_{n}$ be a closed absolutely convex neighbourhood of the origin in $\overline{\mathrm{E}}_{n}$. Obviously, $\bar{E}_{n}$ is of infinite codimension in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$, hence X does not have property $\mathrm{V}_{n}, n=1,2, \ldots$ Following the preceding argument we arrive at contradiction and therefore there is a positive integer $n_{0}$ so that $\mathrm{E}_{n_{0}}$ is dense in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$.

The sequence $\left(\mathrm{E}_{n_{0}+r}\right)$ is increasing and $\bigcup_{r=1}^{\infty} \mathrm{E}_{n_{0}+r}=\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ and therefore there is a positive integer $r_{0}$ so that $\mathrm{E}_{n_{0}+r_{0}}$ is barrelled. If $p=n_{0}+r_{0}, \mathrm{E}_{p}$ is barrelled and dense in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$.
q.e.d.

Note 2. - If we take natural number N for X in Theorem 1, the set of the parts $\mathscr{P}(\mathrm{N})$ of N for $\mathscr{A}$ and $\mathrm{E}_{n}=\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ we obtain the well known result which asserts the barrelledness of $\ell_{0}^{\infty}(\mathrm{N}, \mathscr{P}(\mathrm{N}))$ [3, p. 145].

## 2. Applications to the space of the bounded finite additive measures on a $\sigma$-algebra.

We denote by $H(\mathscr{A})$ the linear space over $K$ of the $K$-valued finitely additive bounded measures on $\mathscr{A}$ such that if $\mu \in H(\mathscr{A})$ its norm is the variation $|\mu|$ of $\mu$. A set M of $\mathrm{H}(\mathscr{A})$ is simply bounded in a subset $\mathscr{B}$ of $\mathscr{A}$ if, for every $\mathrm{A} \in \mathscr{B}$,

$$
\sup \{|\mu(A)|: \mu \in M\}<\infty .
$$

Let T be the linear mapping of $\mathrm{H}(\mathscr{A})$ into $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ such that, if $\mu \in \mathrm{H}(\mathscr{A})$, then

$$
\langle\mathrm{T}(\mu), e(\mathrm{~A})\rangle=\mu(\mathrm{A}), \quad \forall \mathrm{A} \in \mathscr{A}
$$

It is obvious that T is a topological isomorphism between the Banach spaces $\mathrm{H}(\mathscr{A})$ and $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$.

Theorem 2. - Let $\left(\mathscr{A}_{n}\right)$ be an increasing sequence of subsets of $\mathscr{A}$ covering $\mathscr{A}$. Then, there is a positive integer $p$ such that, if M is a subset of $\mathrm{H}(\mathscr{A})$ simply bounded in $\mathscr{A}_{p}$ then M is bounded in $\mathrm{H}(\mathscr{A})$.

Proof. - Let $\mathrm{E}_{n}$ be the subspace of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ generated by $\left\{e(\mathrm{~A}): \mathrm{A} \in \mathscr{A}_{n}\right\}$. The sequence $\left(\mathrm{E}_{n}\right)$ is increasing and covers $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. According to Theorem 1 there is a positive integer $p$ such that $\mathrm{E}_{p}$ is a dense barrelled subspace of $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. If M is simply bounded in $\mathscr{A}_{p}$ then its image by $\mathrm{T}, \mathrm{T}(\mathrm{M})$ is a bounded subset of

$$
\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}\left[\sigma\left(\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}, \mathrm{E}_{p}\right)\right]
$$

and, since $\mathrm{E}_{p}$ is barrelled, $\mathrm{T}(\mathrm{M})$ is bounded in $\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}$ and therefore M is a bounded subset of $\mathrm{H}(\mathscr{A})$.

Theorem 3. - If $\left(\mathscr{A}_{n}\right)$ is an increasing sequence of subsets of $\mathscr{A}$ covering $\mathscr{A}$ there is a positive integer $p$ such that, if $\left(\mu_{n}\right)$ is a sequence in $\mathrm{H}(\mathscr{A})$ so that $\left(\mu_{n}(\mathrm{~A})\right.$ ) is a Cauchy sequence for every $\mathrm{A} \in \mathscr{A}_{p}$, then $\left(\mu_{n}\right)$ is weakly convergent in $\mathrm{H}(\mathscr{A})$.

Proof. - Let $p$ be the positive integer determined by the preceding theorem. Then $\left(\mathrm{T}\left(\mu_{n}\right)\right)$ is a Cauchy sequence in

$$
\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}\left[\dot{\sigma}\left(\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}, \mathrm{E}_{p}\right)\right] .
$$

Since $\mathrm{E}_{p}$ is barrelled, then $\left(\mathrm{T}\left(\mu_{n}\right)\right)$ converges to an element $v$ in

$$
\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}\left[\sigma\left(\left(\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)^{\prime}, \ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})\right)\right]
$$

and thus $\left(\mu_{n}(\mathrm{~A})\right)$ converges to $\mathrm{T}^{-1}(v)(\mathrm{A})$, for every $\mathrm{A} \in \mathscr{A}$, and therefore $\left(\mu_{n}\right)$ converges weakly in $\mathrm{H}(\mathscr{A})$ to $\mathrm{T}^{-1}(v)$, [2].
q.e.d.

## 3. Applications to certain locally convex spaces.

The linear spaces we shall use are defined over the field K of the real or complex numbers. Given the dual pair $\langle\mathrm{E}, \mathrm{F}\rangle, \sigma(\mathrm{E}, \mathrm{F})$
denotes the topology on $E$ of the uniform convergence on every finite subset of F . The word "space" will mean "separated locally convex topological linear spaces". Given a space E, its topological dual is $\mathrm{E}^{\prime}$ and its algebraic dual is $\mathrm{E}^{*}$. A finite additive measure $\mu$ with values in E on a $\sigma$-algebra $\mathscr{A}$ is bounded if the set $\{\mu(\mathrm{A}): \mathrm{A} \in \mathscr{A}\}$ is bounded in E . The finite additive measure $\mu$ is exhaustive if given any sequence ( $\mathrm{A}_{n}$ ) of pairwise disjoints elements of $\mathscr{A}$ the sequence $\left(\mu\left(\mathrm{A}_{n}\right)\right)$ converges to the origin in E . If $\mu$ is a countably additive measure then $\mu$ is bounded.

A sequence $\left(x_{n}\right)$ in a space E is subseries convergent if for every subset J of the natural numbers N the series $\sum_{n \in \mathrm{~J}}^{\infty} x_{n}$ converges. A sequence is bounded multiplier convergent if for every bounded sequence $\left(a_{n}\right)$ in K the series $\sum_{n=1} a_{n} x_{n}$ converges. Given a subseries convergent sequence it is possible to associate with it an E-valued measure $\mu$ on the $\sigma$-algebra $\mathscr{P}(\mathrm{N})$ so that

$$
\mu(\mathrm{J})=\sum_{n \in \mathrm{~J}} x_{n}, \quad \text { for every } \quad \mathrm{J} \in \mathscr{P}(\mathrm{~N})
$$

In [5] we gave the following definition: a) E is a $\Gamma_{r}$-space if every quasicomplete subspace of $\mathrm{E}^{*}\left[\sigma\left(\mathrm{E}^{*}, \mathrm{E}\right)\right]$ intersecting $\mathrm{E}^{\prime}\left[\sigma\left(\mathrm{E}^{\prime}, \mathrm{E}\right)\right]$ in a dense subspace contains $\mathrm{E}^{\prime}$. The following results are true [5] b) If $f: \mathrm{E} \longrightarrow \mathrm{F}$ is a linear mapping with closed graph, $f$ is continuous if E is a barrelled space and F is a $\Gamma_{r}$-space. c) If F is not a $\Gamma_{r}$-space there is a barrelled space E and a non-continuous linear mapping $f: \mathrm{E} \longrightarrow \mathrm{F}$ with closed graph. d) If $f: \mathrm{E} \longrightarrow \mathrm{F}$ is a continuous linear mapping, being E barrelled and $\mathrm{F} \Gamma_{r}$-space then $f$ can be extend in a continuous linear mapping of the completion $\hat{\mathrm{E}}$ of E into F .

Theorem 4. - Let $\mu$ be a bounded additive measure from a $\sigma$-algebra $\mathscr{A}$ on X in a space E . Let $\left(\mathrm{F}_{n}\right)$ be an increasing sequence of $\Gamma_{r}$-spaces covering a space F . If $f: \mathrm{E} \longrightarrow \mathrm{F}$ is a linear mapping with closed graph there is a positive integer $q$ such that $f \circ \mu$ is a $\mathrm{F}_{q}$-valued bounded finite additive measure on $\mathscr{A}$.

Proof. - Let $\mathrm{S}: \ell_{0}^{\infty}(\mathrm{X}, \mathscr{A}) \longrightarrow \mathrm{E}$ be the linear mapping defined by $\mathrm{S}(e(\mathrm{~A}))=\mu(\mathrm{A})$ for every $\mathrm{A} \in \mathscr{A}$. Since $\mu$ is bounded S is continuous and therefore $\mathrm{T}=f \circ \mathrm{~S}$ is a linear mapping with
closed graph. The increasing sequence $\left(\mathrm{T}^{-1}\left(\mathrm{~F}_{n}\right)\right)$ covers $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ and according to Theorem 1 there is a positive integer $q$ such that $\mathrm{T}^{-1}\left(\mathrm{~F}_{q}\right)$ is barrelled and dense in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$. Let $\mathrm{T}_{q}=\mathrm{T} \mid \mathrm{T}^{-1}\left(\mathrm{~F}_{q}\right)$ and according to $d$ ) $T_{q}$ can be extended continuously $\overline{\mathrm{T}}_{q}: \ell_{0}^{\infty}(\mathrm{X}, \mathscr{A}) \longrightarrow \mathrm{F}_{q}$. Since T has closed graph there is on F a separated locally convex topology $\mathscr{T}$ (see 4) coarser than the original topology such that $\mathrm{T}: \ell_{0}^{\infty}(\mathrm{X}, \mathscr{A}) \longrightarrow \mathrm{F}[\mathscr{T}]$ is continuous. Then T and $\overline{\mathrm{T}}_{q}$ are continuous from $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ in $\mathrm{F}[\mathscr{T}]$ and coincide on a dense subspace and thus are coincident on $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A})$ from which the conclusion follows.
q.e.d.

Corollary 1.4. - Let $\left(\mathrm{F}_{n}\right)$ be an increasing sequence of $\Gamma_{r}-$ spaces covering a space F and let $f: \mathrm{E} \longrightarrow \mathrm{F}$ be a linear mapping with closed graph, being E a space. If $\left(x_{n}\right)$ is a subseries convergent sequence in E there is a positive integer $q$ such that $\left(f\left(x_{n}\right)\right)$ is a bounded sequence of $\mathrm{F}_{q}$.

Proof. - It is enough to consider the measure associated with $\left(x_{n}\right)$ and to apply the preceding theorem.
q.e.d.

Theorem 5. - Let $\left(\mathrm{F}_{n}\right)$ be any increasing sequence of $\Gamma_{r}$-spaces covering a space F . If $\left(x_{n}\right)$ is a subseries convergent sequence in F there is a positive integer $q$ such that $\left(x_{n}\right)$ is a sequence of $\mathrm{F}_{q}$ which is bounded multiplier convergent.

Proof. - We set $\ell_{0}^{\infty}$ to denote $\ell_{0}^{\infty}(\mathrm{N}, \mathscr{P}(\mathrm{N}))$. Its completion is $\ell^{\infty}$. Let $f: \ell_{0}^{\infty} \longrightarrow \mathrm{F}$ be the linear mapping defined by $f\left(e(\mathrm{~A})=\sum_{n \in \mathrm{~A}} x_{n} \quad\right.$ for every $\mathrm{A} \subset \mathrm{N}$. It is obvious that $f: \ell_{0}^{\infty}\left[\sigma\left(\ell_{0}^{\infty}, \ell^{1}\right)\right] \longrightarrow \mathrm{F}$ is continuous. Proceeding as we did in Theorem 4 there is a positive integer $q$ such that $f^{-1}\left(\mathrm{~F}_{q}\right)$ is a barrelled dense subspace of $\ell_{0}^{\infty}$. Let $g$ be the restriction of $f$ to $f^{-1}\left(\mathrm{~F}_{q}\right)$. According to result d) we extend $g$ to a linear continuous mapping $\hat{g}: \ell^{\infty} \longrightarrow \mathrm{F}_{q}$. Let $\hat{f}: \ell^{\infty}\left[\sigma\left(\ell^{\infty}, \ell^{1}\right)\right] \longrightarrow \hat{\mathrm{F}}$ be the linear extension of $f$, being $\hat{\mathrm{F}}$ the completion of F . The functions $\hat{f}$ and $g$ coincide in $f^{-1}\left(\mathrm{~F}_{q}\right)$ and therefore are equal.

Given the bounded sequence $\left(a_{n}\right)$ in $K$ we set $v=\left(a_{n}\right)$, $v_{p}=\left(b_{i}\right), \quad b_{i}=a_{i}, \quad i=1,2, \ldots, p \quad$ and $\quad b_{i}=0, \quad i=p+1$, $p+2, \ldots$ The sequence $\left(v_{p}\right)$ converges to $v$ in $\ell^{\infty}\left[\sigma\left(\ell^{\infty}, \ell^{1}\right)\right]$ and therefore the sequence $\left(\hat{f}\left(v_{p}\right)\right)=\left(\sum_{n=1}^{p} a_{n} x_{n}\right)$ converges to $\hat{f}(v)=\sum_{n=1}^{\infty} a_{n} x_{n}$ in $\mathrm{F}_{q}$.
q.e.d.

Corollary 1.5. - Let $\left(\mathrm{F}_{n}\right)$ be an increasing sequence of spaces covering a space F . If for every positive integer $n$ there is a topology $\mathscr{T}_{n}$ on $\mathrm{F}_{n}$ finer than the original topology such that $\mathrm{F}_{n}\left[\mathscr{T}_{n}\right]$ is a $\mathrm{B}_{r}$-complete space, then given a subseries convergent sequence $\left(x_{n}\right)$ in F there is a positive integer $q$ such that $\left(x_{n}\right)$ is a bounded multiplier convergent series in $\mathrm{F}_{q}$.

Proof. - Since every $\mathrm{B}_{r}$-complete space is a $\Gamma_{r}$-space [5] it results that $\mathrm{F}_{n}\left[\mathscr{T}_{n}\right]$ is a $\Gamma_{r}$-space and applying c) it is easy to obtain that $\mathrm{F}_{n}$ is a $\Gamma_{r}$-space. We apply now Theorem 5.
q.e.d.

Theorem 6. - Let $\left(\mathrm{F}_{n}\right)$ be an increasing sequence of spaces covering a space F . If for every positive integer $n$ there is a topology $\mathscr{T}_{n}$ on $\mathrm{F}_{n}$ finer than the original topology of $\mathrm{F}_{n}$, such that $\mathrm{F}_{n}\left[\mathscr{T}_{n}\right]$ is a $\mathrm{B}_{r}$-complete space not containing $\ell^{\infty}$, then given a bounded additive measure $\mu$ on a $\sigma$-algebra $\mathscr{A}$ into F there is a positive integer $q$ so that $\mu$ is an additive exhaustive measure on $\mathscr{A}$ into $\mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$.

Proof. - Let $\mathrm{T}: \ell_{0}^{\infty}(\mathrm{X}, \mathscr{A}) \longrightarrow \mathrm{F}$ be the linear mapping defined by $T(e(A))=\mu(\mathrm{A})$ for every $\mathrm{A} \in \mathscr{A}$. Since $\mu$ is bounded, T is continuous and following the argument of the proof of Theorem 4 there is a positive integer $q$ such that the image of T is contained in $\mathrm{F}_{q}$. Then T has closed graph in $\ell_{0}^{\infty}(\mathrm{X}, \mathscr{A}) \times \mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$ and therefore $\mathrm{T}: \ell_{0}^{\infty}(\mathrm{X}, \mathscr{A}) \longrightarrow \mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$ is continuous and thus the set $\{\mathrm{T}(e(\mathrm{~A})): \mathrm{A} \in \mathscr{A}\}=\{\mu(\mathrm{A}): \mathrm{A} \in \mathscr{A}\}$ is bounded in $\mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$. Since $\mu$ is bounded in $\mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$ and this space does not contain $\ell^{\infty}$ we obtain that $\mu$ is exhaustive in $\mathrm{F}_{q}\left[\mathscr{T}_{q}\right.$ ] [4].
q.e.d.

In [1] the following result is proven and we shall need it later : e) Let $f: \mathrm{E} \longrightarrow \mathrm{F}$ be a linear mapping with closed graph being E a space and F a $\mathrm{B}_{r}$-complete space. If F does not contain $\ell^{\infty}$, $f$ maps every subseries convergent sequence of E in a subseries convergent sequence of F .

Theorem 7. - Let $\left(\mathrm{F}_{n}\right)$ be an increasing sequence of spaces covering a space F . If for every positive integer $n$ there is a topology $\mathscr{T}_{n}$ on $\mathrm{F}_{n}$ finer than the original topology such that $\mathrm{F}_{n}\left[\mathscr{T}_{n}\right]$ is a $\mathrm{B}_{r}$-complete space not containing $\ell^{\infty}$, then given a countably additive measure $\mu$ on a $\sigma$-algebra $\mathscr{A}$ into F there is a positive integer $q$ so that $\mu$ is countably additive measure on $\mathscr{A}$ into $\mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$.

Proof. - As we showed in Theorem 4, it is possible to find a positive integer $q$ such that $\mu: \mathscr{A} \longrightarrow \mathrm{F}_{q}$ is a countably additive measure. Let $\left(\mathrm{A}_{n}\right)$ be a sequence of pairwise disjoint elements of $\mathscr{A}$. Then $\sum_{n=1}^{\infty} \mu\left(\mathrm{A}_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} \mathrm{A}_{n}\right)$ in $\mathrm{F}_{q}$. Obviously the sequence $\left(\mu\left(\mathrm{A}_{n}\right)\right)$ is subseries convergent in $\mathrm{F}_{q}$. If J is the canonical mapping of $\mathrm{F}_{q}$ onto $\mathrm{F}_{q}\left[\mathscr{F}_{q}\right]$, J has closed graph in $\mathrm{F}_{q} \times \mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$ and therefore, according to result e), the sequence $\left(J\left(\mu\left(\mathrm{~A}_{n}\right)\right)\right)=\left(\mu\left(\mathrm{A}_{n}\right)\right)$ is subseries convergent in $\mathrm{F}_{q}\left(\mathscr{T}_{q}\right)$ and thus $\sum_{n=1}^{\infty} \mu\left(\mathrm{A}_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} \mathrm{A}_{n}\right)$
in $\mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$. in $\mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$.

COROLLARY 1.7. - Let $\left(\mathrm{F}_{n}\right)$ be an increasing sequence of spaces covering a space F . If for every positive integer $n$ there is a topology $\mathscr{T}_{n}$ on $\mathrm{F}_{n}$ finer than the original topology such that $\mathrm{F}_{n}\left[\mathscr{T}_{n}\right]$ is a $\mathrm{B}_{r}$-complete space not containing $\ell^{\infty}$, then given a subseries convergent sequence $\left(x_{n}\right)$ in F there is a positive integer $q$ such that $\left(x_{n}\right)$ is a subseries convergent sequence in $\mathrm{F}_{q}\left[\mathscr{T}_{q}\right]$.

Proof. - It suffices to take in Theorem $7 \mathscr{A}=\mathscr{P}(\mathrm{N})$ and $\mu(\mathrm{A})=\sum_{n \in \mathrm{~A}} x_{n}$ for every $\mathrm{A} \in \mathscr{A}$.
q.e.d.

Note 4. - Let E be a space containing a subspace F topologically isomorphic to $\ell^{\infty}$. Let $u$ be an injective mapping of $\ell^{\infty}$ into E such that $u$ is a topological isomorphism of $\ell^{\infty}$ onto $F$. Let
$v: \mathrm{E}^{\prime} \longrightarrow\left(\ell^{\infty}\right)^{\prime}$ be its transposed mapping. We can find a closed absolutely convex neighbourhood of the origin $U$ in $E$ such that $u^{-1}(\mathrm{U})$ is contained in the closed unit ball of $\ell^{\infty}$. We consider $\ell^{1}$ as subspace of $\left(\ell^{\infty}\right)^{\prime}$ in the natural way. We represent bt $\left(e_{n}\right)$ the element of $\ell^{1}$ having zero components but the $n$-th which is 1 . If $\left(u^{-1}(\mathrm{U})\right)^{0}$ is the polar of $u^{-1}(\mathrm{U})$ in $\left(\ell^{\infty}\right)^{\prime}$ then $e_{n} \in\left(u^{-1}(\mathrm{U})\right)^{0}$, $n=1,2, \ldots$. If $\mathrm{U}^{0}$ is the polar set of U in $\mathrm{E}^{\prime}$ then $v\left(\mathrm{U}^{0}\right)=\left(u^{-1}(\mathrm{U})\right)^{0}$. Taking $z_{n} \in \mathrm{U}^{0}$ such that $v\left(z_{n}\right)=e_{n}$, $n=1,2, \ldots$, we define $\mathrm{P}: \mathrm{E} \longrightarrow \mathrm{F}$ in the following way: given $x \in \mathrm{E}$ the sequence $\left(\left\langle z_{n}, x\right\rangle\right)$ is in $\ell^{\infty}$ and we write $\mathrm{P}(x)=u\left(\left(\left\langle z_{n}, x\right\rangle\right)\right)$. Since $\mathrm{U}^{0}$ is an equicontinuous set in $\mathrm{E}^{\prime}$ the mapping P is continuous. On the other hand, if $x \in \mathrm{~F}$ there is a sequence $\left(t_{n}\right)=t$ in K such that $t \in \ell^{\infty}$ and $u(t)=x$. Then

$$
\left\langle z_{n}, x\right\rangle=\left\langle z_{n}, u(t)\right\rangle=\left\langle v\left(z_{n}\right), t\right\rangle=\left\langle e_{n}, t\right\rangle=t_{n}
$$

and thus $\mathrm{P}(x)=x$. Thus P is a continuous projection of E onto F and thus F has a topological complement in E . As a consequence $\ell^{\infty}$ can not be contained in any separable space $G$. The former property is going to be used to show that "B $\mathrm{B}_{r}$-complete space" can not be substitued by " $\Gamma_{r}$-space" in Corollary 1.7. Indeed, if Z is the subspace of $\left(\ell^{\infty}\right)^{\prime}$ orthogonal to $c_{0}$ we take an element $w$ in $Z$, $w \neq 0$. Then $\langle w, e(\{n\})\rangle=0, n=1,2, \ldots$ Let H be the linear hull of $\ell^{1} \cup\{w\}$. Since $L=\ell^{\infty}\left[\sigma\left(\ell^{\infty}, \ell^{1}\right)\right]$ is separable, $\mathrm{Q}=\ell^{\infty}\left[\sigma\left(\ell^{\infty}, \mathrm{H}\right)\right]$ is also separable [6]. Since Q has a topology coarser than the topology of $\ell^{\infty}, \mathrm{Q}$ is a $\Gamma_{r}$-space not containing $\ell^{\infty}$. Since $\ell_{0}^{\infty}$ is dense in $\ell^{\infty}$ there is a subset A in N such that $\langle w, e(\mathrm{~A})\rangle \neq 0$ which means that ( $e(\{n\})$ ) is a subseries convergent sequence in L which is not subseries convergent in Q . If we substitued in Theorem 7 " $\mathrm{B}_{r}$-complete space" by "sequentially complete $\Gamma_{r}$-space" it can be shown to be valid.

Acknowledgement. - We would like to thank the referee for his indications.

## BIBLIOGRAPHY

[1] G. Bennett and N.J. Kalton, Addendum to "FK-spaces containing $c_{0}{ }^{\prime}$, Duke Math. J., 39, (1972), 819-821.
[2] R.B. Darst, On a theorem of Nikodym with applications to weak convergence and von Neumann algebra, Pacific Jour. of Math., V. 23, No 3, (1967), 473-477.
[3] A. Grothendieck, Espaces vectoriels topologiques, Departamento de Matemática da Universidade de Sao Paulo, Brasil, 1954.
[4] I. Labuda, Exhaustive measures in arbitrary topological vector spaces, Studia Math., LVIII, (1976), 241-248.
[5] M. Valdivia, Sobre el teorema de la gráfica cerrada, Collectanea Math., XXII, Fasc. 1, (1971), 51-72.
[6] M. Valdivia, On weak compactness, Studia Math., XLIX, (1973), 35-40.

Manuscrit reçu le 7 juillet 1978.

Manuel Valdivia, Facultad de Matematicas
Avda Blasco Ibanez, 13
Valencia (Espagne).

