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ON THE L1 NORM OF EXPONENTIAL SUMS

by S. K. PICHORIDES

1. Introduction.

The problem of finding a lower bound for the L1 norm of trigonometric
polynomials of the form

F(x) = a^ exp (in^x) + • • • + a^ exp (in^x)

where 0 < n^ < . .. < n^ are integers and \aj\ ^ 1J == 1, 2, . . ., N,
depending only on N has a relatively long history (see [1] for details). The
existence of such a bound of the order of log N (in the case of coefficients
equal to 1) is known as Littlewood's conjecture. The best result in this
direction up to now is a bound of the order of (log N)^2 (see [1] and [2]).
The purpose of this paper is to improve the above estimate by establishing the
following

THEOREM 1. — There is an absolute positive constant C such that

(1.1) r271
(27c)-1 \ |F| ^ C (log N)/(log log N)2.

The method of the proof is closely related to that of [2]. However the basic
lemma 3 of [2] is replaced now by lemma 5 which is considerably stronger
and its proof constitutes the main part of the present paper.

Loosely speaking we can summarize the main idea of the proof as follows :
After a suitable translation of the sequence {n i,. .. n^} we consider the parts
of F corresponding to those frequencies which are multiples of distinct
powers of 2. We prove that the L1 norm of ¥ exceeds an average of the L1

norms of some of these parts by a « sufficiently large » quantity except in the
case of a « big » number of such parts. In the first case the proof is completed
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by induction while in the second we use standard methods of the theory of
lacunary trigonometric series.

A few words concerning our notation. The letter C will denote an
absolute positive constant not necessarily always the same. The same letter C
with a subscript will denote an absolute positive constant which remains the
same in all its occurences. All integrals will be understood with respect to the
normalized Lebesgue measure (2n)~1 dx and the absence of limits of
integration will mean integration over [0,27i] . For any 271-periodic measur-

r2"able function g,\\g\\ will denote its L1 norm \g\. Finally for any subset
Jo

E of [0,27r] its normalized measure will be denoted by |E| and for any finite
sequence F of integers |r| will denote the number of its elements.

We shall give a detailed proof only in the case of coefficients equal to 1
(exponential sums). Trivial changes are needed for the proof of the general
case (see remark 1 of section 5). In section 2 we give some auxiliary lemmas
and in section 3 the main lemma 5. Section 4 is devoted to the completion of
the proof of theorem 1 and in the last one we offer some comments.

2. Auxiliary lemmas.

LEMMA 1. - Let E be a measurable subset of [0,27i] such that
0 < |E| < 1 and let G(x) = 1 + a^ exp (ix) + • • • + ^ exp (ikx). Then

( r i IEI r r 11E1

(2.1) ^(|E|-1) \G\[ ^(lE'l-1) \G\[ ^ 1
t JE J I JE' J

where E' is the complement of E in [0,27c].

Proof. - We write ^ and ^ for the characteristic functions of E and
E' respectively. On applying Jensen's formula ([4], VII 7.8) we obtain

0 ^ J log |G| = |E| (XE/IHI) log |G| + |E'| focE'/IEI) log |G|.

Jensen's convexity inequality ([4], I 10.8) applied to the last two integrals
yields

0 ^ |E|log{(|E|-1) f |G|l + lEIlog^lEr1) f |G|l
^ JE J I JE' J

from which (2.1) follows.
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LEMMA 2.— Let

G(x) = do + ^i exp (fx) + • • • + a,, exp (ffex) = ^(x) + ig(x)
and write exp (imx)G(x) = ^(x) + ^(x). Then

(2.2) lim ||̂ J =(2/7r)||G||, as m -^ oo.

Proo/ - Let I, = (a,,fc,) = (2nj/m,2n(i+l)/m)J = 0,1, .. . ,m - 1. We
take m so big that the variation of ^ and ^ in I, is less than s(>0). It
follows that g^(x) = ^(x) cos mx — g(x) sin mx differs from

^(o,) cos mx — g(cij) sin wx

by less than 2s. The last expression equals |G( .̂)| cos (mx + r̂ .) where tj is
such that tant, = g(aj)/g(aj). It follows

1^1 == |G(a,)| |cos(mx+r,)| dx + |I,|0(e)
JI; JI/

= (2/7r)|G(^)||I,| + |I,|0(e).

Adding for j = 0, 1, • • ' , m — 1 and letting m -> oo and 8 -> 0 we
obtain (2.2).

LEMMA 3. — Suppose that m^, m^, . . . is a sequence of posi-
tive integers such that any integer can be \vriten in at most
one way in the form b^m^ + • • • + fc^m^, for some integer n,
where bj e {-1,0,1},, j = 1, 2, . . . . Then for any g of the form
g(x) = OQ -h fli exp (ix) + • • • + a^ exp (mx) + • • • we have

f °o -jl/2 r

(2.3) ^ KJ2 ^ C I^Klog^l^+C
lj'=i J J

w^r^ log'^ 61 = log a i/ ^ ^ 1 and log^ a = 0 if 0 < a ^ 1.

Proo/. - In the case of a lacunary sequence Wp i.e. m^+i/w, ^ a > Ifor
all 7, this result, due to Zygmund, is known. The proof given in [4], XII 7.6
works word for word in the more general case we need here.

LEMMA 4. -
2n /s\

(2.4) Z(l/25) =1 .
W
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Proof. - We write A,, = ( l 2 " + (" + ^l""1 + • • • + ( ) and
W \ " / \ w /

observe that (2.4) is equivalent to An = 22". Using the formula

/ a + l \ /a\ / a \îHJ î)
we obtain easily A^^i = 2A^ 4- (l/2)A^+i i.e. A^+i = 4A^. The proof is
completed by induction on n.

3. The main lemma.

Let MI < n^ < . . . < UN be N integers and write

r = {^i,^-. -^NL /(x) = Z cos wx-
mer

Let ko < k^ < . . . < ^2/1 be 2n + 1 non negative distinct integers such
that for each r = 0, 1, . . . , In there are elements of r which are odd
multiples of 2^. We write

/rM = Z cos mx'> r^ = {m e r : m = odd multiple of 2^}.
wer^

We define now the function q to be 1 if more than n of the //s,
r = 0, 1, . . . , 2n, are positive and — 1 otherwise. Thus q(x) = 2^(x) — 1
where %(x) is the characteristic function of the set where the number of
positive //5 exceeds the number of negative ones.

LEMMA 5. — There is a set E <= [0,27i] and positive constants
bn, f cn+i , . . . , b^ such that |E| = 1 - 1/2", b, + b^, -h • • • + b^ = 1
and

o.i) L> zfcji/ j i+o/^-^fi^-j.
J s=n JE

Since the proof of this lemma is relatively long, it may preferably be read
after paragraph 4 where its role to the proof of theorem 1 is explained.

Proof. — We write g^(x) = sgn/^(x) and observe that

(3.2) The spectrum of g^ and of any product of the form g^g^ . . . g ^ ,
r < s < . . . < t , contains only odd multiples of 2^.
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This property is an immediate consequence of the trivial fact that an
integrable real function / has a spectrum consisting of odd multiples of 211 if

and only if / is (27^/2fc)-periodic and f( -.-hx ) = — f(x).
\y J

Let £ = {so, . . .,£2»J ^e a sequence of + Fs and — Vs and let O be
the set of such sequences which contain more + 1 than — 1. The function
%(x) mentioned above is then given by the formula

M = E n (^).
ee<D k = 0 \ M /

fSince / = 0 we have

J^=2 j /x=2f ( /o+- - -+ /2 , , )x

where the last equality is a consequence of (3.2). Thus

[fq = 2 S fcc.
J s=0 J

In order to prove (3.1) we shall show that all integrals A, = /,/ are

positive and that 2(A^+A^+i+ • • 'A^n) and 2A^_i exceed the first and
second term respectively of the right hand side of (3.1). To this end we examine
A, for a fixed 5. A, is the sum of the integrals

J). n (̂ )
J k=0 \ z /

for all choices of £ in 0. We observe now that

r .. fi + ̂ \, fr. f1 +e^ f(1-^) n1 + £kgk}r^A 2 ) J.UA 2 ^^v 2 ) - ^ 2 /
Because of (3.2) the contribution of the first factor in the last integral will

be only a factor 1/25 and hence

(") f/, ri (^) - HOT f/.^) n (^)
J k=0 \ z / J \ z / k > s \ z /

^d/^^L/jnf1^)
J k>s \ L /

where we used again (3.2) in the last equality.
Consider now the contribution to A^ of those sequences e which have a
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definite pattern for k > s and suppose that this pattern contains m,
0 ^ m ^ min (n,2n—s) elements equal to - 1.

We divide <D, the class of admissible £'5, into n + 1 classes <t>o,
<DI, .. ., 0^ according to the number of elements equal to - 1 that they

contain. The elements e with the given pattern for k > s are distributed
among the 0/s in the following manner : (i) There are no such elements for
j < w, (ii) There is one such element in 0^ with e, = 1 (iii) There are

(j-m-l) with £s = - 1 and (j.'J with £. = 1 in ^ J > ̂
It follows that the contribution to A, of the e's with the given pattern for

k > s is

(3.. {^•)fi'.in('̂ )}H;)-(;

-̂ •••U.knC )̂
/5\

where l l = O i f a > 5 . A , will be obtained by summing these expressions
\u/

over all e'5 with a pattern having m elements equal to - 1 for k > s and
then summing over all m with max(0,M-s) ^ m < min(n,2n-5).

Thus it is evident that all A;5 are > 0. We examine now the cases
s = n — 1 and s ̂  n.

( s \
s == n - 1. Since = 1, A^_i will exceed

\n-m}

(i^L-jz n f1^)
J k>n-l \ 2 /k>n-l

where the summation exceeds over all choices of + 1 and - 1 for the e ,
^n+i. ' " ^ i n except the choices £„ = £^+i = • • • = e^^ = - 1 and

^ = ^+1 == • • • = £2n ^ 1-

We conclude that the sum appearing inside the integral sign equals 1 for all x
except for the set of points where /^,/^i, • • ' J ^ are all ^ 0 or all ^ 0.
The last set has measure

J n (48-) 4 n (^) - ./2.
J k>n-l \ ^ / J k>n-l \ 2 /
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and so its complement E has measure 1 -(1/2"). This shows that 2A^_i
exceeds the last term in the right hand side of (3.1).

s ^ n. In this case all choices of e^, k ^ n, are permissible and all the

factors ( ) are not less than ( ). Arguing as in the previous case we
\n-m) W

obtain

2A, ^ 2(1/2^ ̂ f5) fl/J = (l^/'Vll.
W J W

Writing b, = (1/2S)( ),5 = n , n + 1, . . . , 2n and using lemma 4 we see
W

that the condition &„ + fc^+ i 4- • • • + b^n = 1 is satisfied. This completes
the proof of lemma 5.

4. Proof of theorem 1.

We recall our notation
N

r = {ni,^- • -^N^ ^^ =/M + ^(x) = Z ex? O'^)'

We shall prove theorem 1 by induction on N, so we assume that

||H|| ^Co(logM)/(loglogM)2

for all exponential sums H with M < N non zero terms, where Co will be
determined in the course of the proof. We also recall that in this paragraph we
shall give the proof for exponential sums only. The case of more general
polynomials is essentially the same (see section 5). To avoid trivialities we
assume, as we may, that N is large.

We shall first replace F by one of its translates. This obviously does not
affect F and allows a profitable use of lemma 5.

We write the numbers n^, . . . , UN m ^e dyadic system and substract
their common tail (if any). This amounts to a translation which leaves all the
n '5 positive. Let 2^° be the highest power of 2 which divides all the elements of
the so translated sequence. There are certainly odd and even multiples of 2/co.
If the number of odd ones exceeds the number of the even ones then we add
2/co to all the elements of F. We write Fo for the set of odd multiples of 2V
Now we consider the set of even multiples of 2^° and substract again their
common tail from all the elements of r . Let 2^ {k^ >ko) be the highest
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power of 2 which divides all the even multiples of 2^°. If there are more odd
than even multiples of 2^ (among the even multiples of 2^°) we add 2^ to
all elements of T. It is obvious that the operations in the second step do not
affect [Poland 2^. We write F^ for the set of odd multiples of 2^ and we
continue in the same way until the sequence r is exhausted. We obtain thus a
sequence FQ, r\, . . . , F,. of disjoint subsets of r such that Fy contains only
odd multiples of l^j = 0, 1, . . . , r, |r̂ .| ^ |r^| + • • • + |F,|J < r and
r = FQ u FI u . . . ur,.

Finally we translate the sequence F by a large multiple of 2^ so that the
L1 norm of any part of F will differ from n/2 times the L1 norm of its real
part by less than 1/N. This is possible because of lemma 2.

Using now lemma 5 we have

(4.1) ||F|| = (7C/2)||/|| + 0(N-1) ^ (Ti/2) \fq + 0(N-1)

^ W Z WJI + (7T/2)(1/2"-1) f |/,_J + 0(N-1)
s=n JE

= E fcJ|F,|| + (C/2"-1) f |^_J + 0(N-1)
s=n JE

where F, = ^ exp (imx) and E depends on the choice of /,'s,
meF^

s = 0,1, . . . , In. We shall now consider two cases :

Case a. « There are In + 1, with n an integer satisfying the inequalities
log log log N < n log 2 < 1 + log log log N, sets Vj such that

|F,| ^N/QogN)4)).

In this case the induction hypothesis and the fact that

bn + ^n+l + •" + ^2n = 1 ™ply

2n /log N-4 log log N\
(4.2) ^ W >. Co (-^d^gi^g^jd +0(l/log N))

> c ( logN 1̂ - 5CO

" ° \(log log N)2; log log N

provided that N is sufficiently large.

We shall show that the remaining term (1/2"~1) |/n-il of (4.1) exceeds

5Co/log log N if Co is suitably chosen.
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We start with a few simple remarks :
(i) Except for a factor 1/2, /^_i is an exponential sum and hence

lemma 1 applies to 2/,,_i.
(ii) The norm ||/^-i|| is bounded by the norm of the sum of all terms in F

corresponding to frequencies which are multiples (even and odd) of 2^-1.
The'norm of this sum is in turn bounded by ||F||.

(iii) We may obviously assume that ||F|| ^ logN, since otherwise there
is nothing to prove.

(iv) The factors (l/IEI)'^ and (I/IE'D^I appearing in (2.1) are bounded by
an absolute constant.

Using these remarks and applying lemma 1 we obtain

^(f^-jK-jr^cffi/^.i)161
i <cN i^-iirii/n-iir'^cn 1/,,-j\ JE / \ JE /

where in the last inequality we used (iii) and the estimate

|E'| = 1/2" < I/log logN.

It follows

(4.3) f l^-il ^ C.
JE

(4.1), (4.2), (4.3) and the inequality 1/2""1 > I/log logN yield

^^"((iSO-io^-^-^^

/ logN \
'-'^(loglogN)^

provided that N is sufficiently large. This completes the proof of case a.

Case b. « At most 4 log log log N F ^ s are such that

|r,| ^NAiogN)4)).
Let r,^, r,^, .... r,^, j, < ]^ < . . . < A, k < 4 log log log N be the

Tj's with more than N/(log N)4 elements. We shall show that in this case
there are more than (logN)3 classes Fj. Indeed we may assume that 7\,
J 2 ~ 7i» • • ' J k ~ J k - i are l^8 t^lan O0^ N)3. We write

r} = r^i u . . . ur,,
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i.e. the set of even multiples of 2^. Since |r |̂ ^ \Fj\ we have

|r,| >(i/2)|r,u r,| ^(i/2){N - ̂ (iogN)3| = (i/2){N - ̂ y.

Continuing in the same way we obtain

|^yJ^( l /2 h ){N-^^( l+2+•••+2 / I - l ) l , 1 ̂ h ^ k .

Taking h = fc in the last inequality we see that |rj exceeds

CN/(loglogN)4.

Since \Tj\ ^ N/(log N)4 if j ^ j^, the number of F/s with j > ̂  exceeds

——————, ^ (log N)3. On choosing now one frequency from each such
(log log N)4

class we obtain a subsequence of F which satisfies the hypotheses of lemma 3.
Applying this lemma and the obvious inequality log |F| ^ log N we have

(logN^IIFII ^COogN)^ 2

provided than N is large enough. If Co is chosen less than the constant C in
the above inequality then (1.1) follows.

Since the cases a and b are obviously complementary the proof of
theorem 1 is complete.

5. Remarks.

(i) Minor changes are needed for the proof of the general case of theorem 1
(coefficients not necessarily equal to 1). Only the application of lemma 3 in
case b of section 4 deserves to be mentioned. In this case the assumption
||F|[ ^ logN implies [|F||^ ^ NIogN and hence

(log^ \¥\)112 ^(logN)^2.

The extra factor 2 has obviously no effect to the proof.
(ii) Examining the proof of lemma 5 we see-that more terms of the form

ars 1/sl wlt^ ^rs > 0 and & < [EJ < 1 could be added to the right hand
JE,

side of (3.1). This can conceivably lead to an improvement of the factor
(log log N)~2 in (1.1). However, as far as we have to rely on lemmas 1 and 3
(or even lemma 4 of [2] which has not been used here), there is no hope that
we can obtain the conjectured best bound C log N. It is because of this
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reason that we did not base our proof on the refinements of lemma 5
mentioned above, but we prefered to keep the exposition as simple as possible
at the cost of a probably better final estimate (see also remark b of [2]).

(iii) A common feature of the present proof, as well those used previously
in connection with Littlewood's conjecture, is the following : Directly or

indirectly we try to find a function q such that \\q\\^ ^ 1 and \fq is as large

as possible. We assume that

f(x) = cos (n^x) 4- cos (n^x) + • • • 4- cos (n^x).

The best choice of q is obviously sgnf, in which case ||/[| is the sum of the
q(n^fs. However to obtain information on sgnf(n^s appears to be a difficult
task. We are thus led, very losely speaking, to « approximate » sgnfby another
bounded function which is easier to handle. The choice in the present paper
was the characteristic function of the set where there are more positive than
negative parts of a suitably chosen decomposition of /.

The above choice suggests another possible candidate for q ; namely the
characteristic function of the set where there are more positive than negative
terms cos rijX. Again it appears to be a difficult task to obtain information on
the Up 1 ^ j < N, Fourier coefficients of this q.
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