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ON THE EIGENVALUES OF A CLASS
OF HYPO-ELLIPTIC OPERATORS. IV

by Johannes SJOSTRAND

0. Introduction.

Let X be a compact smooth manifold of dimension n and let P be a
classical pseudodifferential operator of order m > 1, formally selfadjoint
with respect to some fixed smooth positive density, and with non-negative
principal symbol p(x,) e C*(T*X\0). We shall always assume that P is
hypoelliptic with loss of 1 derivative and it is then easy to prove that P is'a
selfadjoint unbounded operator H(X) - H°(X) with domain
9p = {ueH°(X); PueH°(X)} « H""*(X), and that P has discrete
spectrum with locally finite multiplicity. In [6], [8] A. Menikoff and the
author determined the eigenvalue asymptotics in the case when £ = p~1(0)
is a symplectic submanifold and p vanishes on X to precisely the second
order. In [7] they eliminated the assumption that £ should be symplectic.
Using the results of A. Melin [3] and L. Hormander [1] it was proved in [8]
that microlocally ; either £ = p~1(0) is a symplectic manifold on which p
vanishes to precisely the second order, or

1.
0.1) Sp + Etr >0 on p Y0,

where S, is the subprincipal symbol of P and fr is the sum of the positive
1 . . . .

eigenvalues of —F, where F is the Hamilton matrix associated to the
]

Hessian of p. When (0.1) holds, we also know from [3] that P is bounded
from below.

In the present paper we shall generalize the results of [6], [ 7] by assuming
(0.1) but not necessarily that p~!(0) is a manifold. A part from a trivial

8



110 JOHANNES SJIOSTRAND

microlocalization, this will then together with the results of [8], cover general
self-adjoint operators of order > 1 with non-negative principal symbol,
hypoelliptic with loss of 1-derivative. The result on the eigenvalue
distribution (theorem 8.9) is somewhat technical to formulate and will be
given in the end of the paper. Here we only give a weaker statement :

THEOREM 0.1. — Let P be a formally selfadjoint classical pseudo-
differential operator of order m > 1 with non-negative principal symbol p and
assume (0.1). Then the number of eigenvalues of P smaller than or equal to A
is of the same order of magnitude as

U dx dE
pxE)+1gm— 1<

as A > + oo. Here [§| is the norm with respect to some Riemannian metric
and dx dg is the invariant symplectic volume on T*X.

The more precise formula for N(A) (the number of eigenvalues < 1) in
section 8 is given by a similar integral, where p + |§|™~! is replaced by

1. . .
p+Sp+ Etr and dx d€ by a measure depending on p which can be

thought of as a discretization of dx d§. We thank L. Hérmander for having
suggested the use of such measures already in the formulation of the results of

[6].

Asin[6],[7], [8] the proofis based on the construction of exp (—tP) asa
complex Fourier integral operator with quasi homogeneous phase, but
instead of using Taylor expansions in the study of the characteristic and
transport equations, we shall make estimates of the type already used by A.
Melin and the author in [4]. As in [6], [7], [8] we have a global problem for
the phase and the amplitude with respect to the time-variable, so the estimates
have to be pushed considerably further than in [4].

The treatment of the characteristic equation is carried out in sections 1-3,
the transport equation is treated in section 4 and in section 5 we conclude the
construction of exp (—tP). In section 6 we introduce the discrete measures,
the trace of exp (—tP) is studied in section 8, and the eigenvalue distribution
is derived by using Karamata’s Tauberian theorem, that we recall in section 7.

Using exp (—tP) one can also write down a parametrix of P (namely

j exp (—tP) dt) and prove the semiboundness result of A. Melin [3]. We
0



EIGENVALUES OF HYPO-ELLIPTIC OPERATORS 111

hope that the methods of sections 1-5 will also apply to other problems for
operators with double characteristics so that the eigenvalue distribution will
not be the only justification of these constructions (*).

The main result, theorem 8.9, was announced in a slightly different form in
[9]. The full proof of the result in [9] also requires some rather long and dull
estimates on the measures introduced in section 6 below, that we have chosen
to omit, since the presentation in theorem 8.9 is simpler and more natural
anyway.

1. Estimates along the Hamilton flow.

Let X = R" be open and p e C*(T*X\0) be homogeneous of degree 1
and such that p(x,£) > 0. (In section 5 we shall show how the treatment of
the transport- and characteristic equations can be reduced to the case when
the principal symbol is homogeneous of degree 1). We fix once and for all an

SN
almost analytic extension of p to some complex neighborhood T*X\0 of
T*X\0. Let

(1.1) ) = 8(1+T)~N

where 8 > 0, N > 0 will be fixed later on. We shall study various estimates
for integral curves [0,T] ot +p, of Hi, (cf. [4]) under the assumption that
po belongs to some small complex nei'ghborhood of a real point where p
vanishes and that

T
(1.2) sup_|Im p;| + J P’ (Re p,)l dt < &(T).
0

0<t<

If N> 1 and 8 > 0 is sufficiently small, (1.2) implies that p, stays in some
fixed compact set. The new feature compared with [4] is precisely that the
length of the time interval may tend to infinity when the initial point tends to a
real point, where p vanishes, while our estimates remain uniform.

ProOPOSITION 1.1. — Assume that N > 2 in(1.1) and that § is sufficiently
small. Let S(x,) = — <Imx,Re& >. Thenif 0 < s<o<t<T and

(*) Added in Prof : C. and N. Iwasaki have announced a slightly different
construction of exp (— tP)in Proc. Japan Acad., Vol. 55, Ser. A, No 7 (1979), 237-240.
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(1.2) holds, we have the estimates

1 t
(1.3)  S(p) — S(py = SJ p(Re p)) dt — C(t—s)Im p,?

(14)  |Im p,| < C(L+(t—5)'A(Im p12 + [Im p1?).
Here C > 0 is independent of T.

Proof. — From

dp, 1

1 =_H
o l.,,(pt)

1
we get by Taylor expanding ~H,(p,) at Rep,,
i

dp,

(1.5) -

1
= - H,Re p) + Fy., (Im p) + O(Im pdl?).
Here F isreal (it is the Hamilton matrix). Taking imaginary parts of (1.5), we
get

d
(1.6) 2 m P+ Alp) Imp, = — H,(Re py),

where the matrix A(p,) satisfies :
(L.7) A(p) = O(Im p)) < O(&(T)).

Let B,;,0 < s,t < T be the family of matrices which satisfy

0B,
(18) 7 + A(Pt)B,’s = 0, Bt,t = 1.

Then (1.6) gives
t
(1.9 Im p, = B, Im p, — j B, H, (Re p) dr.

s

If N>1 wehave B, = ¢(1) and (1.9) gives

t
(1.10) Im p| < C(Im py + | j I’ (Re p,) dt]).
Now recall from [4] that

s(p) _ 1
i "2

p(Re p) — C[Im p*,
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or rather

l t t
S(pt) - S(ps) 2 EJ\ p(Re p‘!‘) dT -C J\ lIm pt'l3 dT,

0<s<t<T.

(The constants « C » are different each time). By (1.10)

t

1
(L11)  S(p) — S(py) 2 EJ p(Re p) dt — C(t—s) [Im p,*

: t t 3
- CJ (J [P’ (Re p)| du) drt.
Using the Cauchy-Schwartz inequality

L 12 ‘a2 12
Pl dp < (t—s)Y p'l*dn)

and the fact that |p’| < Cp'? on the real domain, the last remainder in (1.11)
can be estimated by

t t t
C(t—S)(J p'l dp)® < C(t—S)zj 7'l duf pdu.

Now

| =

T
ca + T’)J 'l dp <
0
if N>2 and & > 0 is small enough, so the last term in (1.11) can be
absorbed, and we get (1.3).

For 0 < s <o <t<T we get using (1.10), (1.3) :

t

[Im p | < C(|IIm p,| + J Ip'| dv)

! 12
< C;(Imp,| + (t—s)‘ﬂ<J P dt) )

< C; (Im p| + (t—5)"(S(p) — S(py) + C(t—s)Im p,*)'?)
< G5 (IIm py| + (¢—5)"2(IIm p|'2 + [Im p|'2 + (¢ —5)"2Im p,|*?))
< Cu(1+(t—5)"))(jIm p|'2+ [Im p|'?)

and this completes the proof.
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Let C, be the union of all (p,,p,) for all integral curves satisfying (1.2). We
write p, = (x,&,), Po = (xo,50) and define the generating function @(¢,.) on
G, by

¢ = <xm§o>-
Somewhat incorrectly we shall write ¢ = o(t,x,,§,) although ¢ may
possibly be a multivalued function of (t,x,£,). We shall estimate Im ¢ when
(x,E0) is real. Then Im o@(t,x,,,) = S(p;) — S(po) and (1.3) gives

t

1
(112  Im o(txto) > gj p(Re p) dt — Ct [Im p,J*.
0

LeEmMMA 1.2. — When (x,&,) isreal, N 2 1,06 > 0 sufficiently small, we
have

t
(1.13) Im p,} < CJ P'(Re p)ldt, 0<1T<t.
0

Proof. — From (1.5) we get, since &, is real :

t t
Im &, < C(f Ip'(Re p,) dt + f [Im p_|? d‘c)
0 0

and the same estimate holds for Im x, (using that x, is real) and hence also

for Im p,. So if a = max |Im p,|, we have

[([ES £ 41

t
(1.14) a<C J IP'(Re p))| dt + ta?.
0

Using (1.2) we can absorb the last term and (1.13) follows.

The last term in (1.12) can now be estimated by

t t t
Ce( J Ip'(Re p))| d1)* < C, J IP'(Re p,)f dt tz_[ p(Re p,) dr.
0 0

0o

Thus by (1.2) :

Lemma 1.3, — If N = 2 and & sufficiently small we have

t

1
(1.15) Im (t.x,80) > f p(Re p)) dt,
0

when (x,£,) is real.
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We finally compare Im @(t,x,,£,) with p(x,.E,) assuming still that (x,,&)
isreal. Let £(Re p,, Re p,) denote the length of the curve [0,t] 35 +—Rep;.
Then by (1.5), (1.13) we get

t
(1.16) /(Re p,, Re py) < Ct J p'(Re p,)| dr.
0

In particular |x, — Re xtl, o — Re &,| satisfy the same estimate and
Taylor’s formula gives

Ip(x.80) — P(Re p)| < Ct J IP'(Re po)| dolp’(Re p.)|
0

t 2
+ Ct? <j Ip'(Re py)l do) .
0

Integrating this inequality from 0 to t we get

t t

2
P(Re p) dt| < Ce(1 +t2)(J IP'(Re p))| dT) )

0o

(1.17)  Jtp(xn&o) — J

0

which implies the somewhat weaker estimate

t

(1.18) |tp(x180) — I

0o

p(Re p,) dt| < Ct2(1 +t2)J p(Re p,) dr.
0

In particular

p(Re p) dt >

'[ ‘ tp(xE0)
o A +C(t*+1?))

which together with (1.15) gives :

Lemma 14. — For real x,, £ we have, when N >2 and 3 >0
sufficiently small :

(1.19) Im @(t,x,&o) = P(x,&0)-

t
4(1+C(t* +1?))
2. Estimates on the tangents and the curvatures.

To start with we shall study the linearized situation. Let M be a real
symplectic vector space of finite dimension, let M be its complexification. Let
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[0,T]>t +a, be a continuous family of real quadratic forms on M
satisfying

2.1) 0 < a(uy) < Colul?, ueM

for some fixed norm || || and some fixed constant C,. Let A, :M —» M be
the corresponding Hamilton matrix defined by

2.2) o(wAD) = 2a,(u).

Here o is the symplectic form and we extend A, and o, a, to be complex
linear on M. Let B, : M — M be a continuous family of real-linear maps
satisfying

(2.3) 1Bl < &(T)
where
2.4) g(T) =8(1+T)N

and & > 0, 1/N > 0 will be chosen sufficiently small. We shall first estimate
the solutions of the homogeneous equation '

du, 1
(2.5) e ?A,+B, u,, 0<t<T,

where in place of the function S(x,£), we shall use the function
1 -
(2.6) [uu] = % o(uu).
i

Our estimates will only depend on C, and the choice of norm, (that we
extend to M by putting ||u, + iu,||*> = |ju,||* + |lu,||?), but not on the size
of T.

PROPOSITION 2.1. — There is a constant C > 0 such that

{(anut)z 2

(2.7 [upu,] — [uguol > T C(L+2)e(Tllugll1*,
0<s,<t<T,

(2.8) lull < CA+)2(llugll +lul), O0<s<t<T

Sor all solution curves of (2.5), provided that & > 0 is sufficiently small, and
N > 2. Here £(u,ug) is the length of the curve [0,t]>s —u,.
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Proof. — Since A,u is of the same size as grad,a,(u,u) ; we have
lAull < Cla,(uu)'?,  ueM.
For u = u, + iu, in the complexification we then have

llAu|]* < (“Az“1||f+||Ar“z||2) < C*(ay(ug,uy) + ay(uz,u,))
= C?a,(u,u),

(2.9) Al < Cla,mu)*?,  ueM.

From (2.3), (2.5) it follows that

t t
(2.10) £ (uplho) < J Al ds + 8(T)J llugll ds
0 0

and hence by (2.9) and the Cauchy-Schwartz inequality :

t

a%wscw%f%MEMQ“+@mnwwqrmwwwy
0

0

If 8 > 0 is small enough and N > 2, we have ¢(T)T < 1 and hence

t

2.11)  £(uyup)? < Ctj

[

t
a,(u,u,) ds + 8(T)J llui? ds.
0o

Next, we notice that since A, is antisymetric for o :

1 1 _ -
[—_ A,u,u] + [u,TA,u] = o(u,Au) = 2a,(u,u),
i i

so by (2.3), (2.5)

%[uvut] = Zax(ux,;:) + (D(e(T)llu,Ilz)

Hence

212)  [u,u] — [uguo] = 2 f

0

t

t
a,(uyu,) ds — CG(T)J~ llugli* ds.
0

Combining (2.11), (2.12) we get
(2.13)

4 2 1 t
MM—WMJ<W%)—&mQ+JIW#ﬁ.
Ct t) Jo
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Now we use that |lu|| < [lu,| + £(uo,u,) for s, s, € [0,t] and get

£ (uyup)?

(214) [“nu:] - [“O,uol 2 Ct

= Ce(T)(1 + 1) (lug|I” +£ (ug,u,)?).

1
Now if N > 2 and & is sufficiently small we have Ce(T)(1+1) << o and
(2.7) follows.

For 0 < s <t we then have
llugll> < Clluoll* +¢ (uo,u,)*) < C(Ct([upu,] — [ug,uo]) +2lIuoll?),

which implies (2.8) and the proof is complete.

We next study the transversality properties of the real linear subspace
C, = {(upuo) ;uo € M} €« M x M, where u, aresolution curves of (2.5).
Let M = R" x R* with the standard symplectic form, so that
M=C"x C".

ProrosiTiON 2.2. — If N > 2 and & > O sufficiently small, then thereis a
constant C > 0 such that

(2.19) G + 1yl < CA+a)(Ix]l+ImlD)

Jor all (x.G,y,n) € %,.

Proof. — We shall actually prove a littlemore :Let L « M x M bea
complex linear canonical relation which is negative. More precisely we
assume that dim L = dim M, ¢’ — ¢”|_ = 0, where o'(c”) is the
symplectic form on the first (second) copy of M in M x M and that
[uu] — [v,v] <O for all (up)e L. (We shall take L = {(0,§,y,0); y,
€ € C"} below). We also assume that L and €, = graph (Identity) are
transversal.

To measure the degree of transversality between L and ¥,, choose
(u,uo) € €, and distinguish two cases :

Case 1 : |jJu, — ug|| < ojuyl], where o > 0 is small. Then if d denotes
the distance :

d((“n“o),L) 2 d((an “o),L) - “ut - u()”

C
2 Clluoll — alluoll = 7 I (upsuo)ll -
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Here C isthe constant measuring the degree of transversality between %,
and L.

Case 2 : With a > 0 small but fixed, assume that |[u, — uo|| = olju,l|.
Let (v,w) e L be the point which satisfies :

d((uvuo), (U,W)) = d((“»“o)»U-

Now £(u,u,) is at least of the same order of magnitude as |ju,||, so if we
choose s, = 0 in(2.7), the remainder term there can be absorbed, and we get

£ (o)
(2.16) [upta] = [tgte] > =2~

We estimate [u,,u,] — [uq,u,] from above :

[ut’ut] = [u,—v,u,——v] + [ut—v’v] + [v,u,—v] + [U,U]
- [“o,“o] = — [ug—wuo—w] — [ug—w,w] — [wuo—w] — [w,w].

Since [v,v] — [w,w] < O by the negativity of L, we get
[upu,] — [uosuol

< C(llu, = vll* + |[oll llu, — vll + Wl llug — Wil + lluog — wll?),
SO

(1] — [uo,uo] < Cd((upto), (0,W))* + [|(@W d((upuo), (v,W))).
Since (v,w) minimizes the distance to (u,u,) we have

217 Nl@WIl < ll(usuolll,  d((upuo), (0,w)) < [(Upuo)ll,
(at least after choosing || || to be a Hilbert space norm) so

(2.18) [upu] — [uouo] < Cll(upuo)ll d((upuo),L)-

On the other hand,
l(upuolll < Clllu, — uoll + [luoll) < C<1 + —;—)Ilu. — wo|

< C<1 + é) £ (uug)

50 (2.16), (2.18) give

(2.19) d((u,uo),L) = gll(u,,uo)n.
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Combining the two cases we get in general

C
d((upuo),L) > T+ [l (usuo)ll

and with the choice of L indicated above, (2.15) follows.

ProOPOSITION 2.3. — Let a, = a be independent of t and assume that
B, = 0. Then ¥, is of the form

(2.20) £ =q,(txmn), y=oyx,n)
where @ is a quadratic form in (x,m) satisfying

(2.21)  Im ®(t,x,n) > a(x,n,x,n), (x,n) € R™.

t
C1+1%)
Proof. — When B, = 0, €, will be acanonical relation and proposition
2.2 implies (2.20) with ®(t,x,n) = %—((x,f;} +<{y,M))l¢,- An easy computa-
tion shows that for (x,£,y,n) € €,
[(x8), (x,8)] — Ly (ym)] = 2 Im ®(t,x,n)

when (x,n) is real.

On the other hand, with u, = (x.£), uy = (y,n), (2.7) and (2.12) simplify

to
£ (ugsttr)?
(2.22) [u,u] — (ool = %—,
t
t
(2.23) [upi] — [Uosto] = 2 j a(ugu,) ds.
0

Since sup |ju, — v|| < Cl(ugpu,) if v = (x,m),

0<s<t

t t

av—u,v—u,) ds + 2 J a(ugu,) ds

0

ta(v,v) = J" a(v,) ds < 2J

o
< Cltl (ugu + [pit] — [itoti])
< C1(1+t2)([ubut] - [“o,“o])-

Thus
[ut’ut] - [uo’“o] >

and (2.21) follows.
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Assuming still (2.1), (2.3) we next study the inhomogeneous equation

Oug 1
(2.24) =|-A;+B;, Ju, + v,,
Js i

where v; depends continuously on s € [0,T]. We write (u,),,(u,); for the x,
E-components of x, & (identifying M with R"” x R").

ProrosiTioN 2.4. — If & > O is sufficiently small and N > 2 in(2.4), then
there is a constant C > 0 such that if u, v :[0,T] - M satisfy (2.24) and
(u), = (ug)y = 0 for some te[0,T], then

sup |lug| < C(1+12)t sup ol
0

0<s<t <s<t
Proof. — The assumptions imply that

(2.25)° [uu,] — [uouo] = 0.
Put U = sup |lull, V= sup |lvy|. Integrating (2.24) gives
0<s<t 0<s<t

t

(2.26) £(uou;) < Ct‘”(f a,(u ) ds>"2 + Cte(T)U + CtV.

0

Alsofor 0 < s <t:

d -
(2.27) 7 [upu,] > 2a,(ugu,) — Ce(Miull> — CliullV,
S

SO an integration gives :
t
(2.28)  [upu] — [uguol = 2! ay(ugu,) ds — Ce(T)tU? — CrUV,
o
and (2.25) then implies :

t
(2.29) J a,(uyu,) ds < Cte(T)U? + CtUV.
0

Combining this with (2.26) shows that

(2.30)  £(ugm,)? < Ct(te(T)U? + tUV) + C(2e(T)*U? + 12V?).
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Hence
(2.31) ¢ (ugu,)* < C(t2e(T)U? + t2UV + 12V?).
Since (u,), = 0, (up); = 0 we have U < C/l(ug,u,) and we get
(2.32) U? < C(%e(T)U? + t*UV + t2V?).
For every a > 0,

o 1
22UV < = U? + — t*V?;
2 200

so (2.32) implies
a 1
(2.33) U? < C((ﬁs(T) + 5>U2 + (t2 + > t4>V2>.

Choosing 6, a sufficiently small, we can absorb the first term to the right and
the proposition follows.

We shall now apply our linearized estimates to study the tangents and
curvatures of C,, introduced in section 1. Let [0,T] 3t —p, be an integral

1
curve of — H, satisfying (1.2). We also assume that p, = p,(r) is a smooth
i

p

function of a real parameter r. Differentiating the equation

op, 1

= ~H,(p)

2.34
(234) ot i

0

with respect to r, we get with p; = % :
,

op; 10H, 10H, —

= + —-— .
ot i op P73 op Pr

Hence

op; 1
(2.35) EL = ;Ftpi + B{Y p;

where F, is the Hamilton matrix of p at p, and B is a real-linear matrix
satisfying ||BY|| = @ (lIm p,) for all N.
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In general if f(x) > 0 is a smooth function then (locally) from the
1
estimate f(x+1t) + f(x—t) = 0, we get f(x) + 3 S"X)E, £ = — 0(tY),

and it follows that locally :
f'(x) 2 — Cf(x)"1.

Thus if C > 0 is sufficiently large the form
1 ” 2
a,(uu) = 5(1) (Re pJu, up + Cp(Re p,)"[[ul|

is positive semi-definite and we define A, to be the corresponding Hamilton
matrix. Then from (2.35) :
o, _ 1, ,
(2.36) 5 = APt B
t 1

where ||B,|| < C(|Im p,|+p(Re p,)?). Assume now that T > 1. Then for
t e [0,T], let I be an interval of length 1 such that tel < [0,T]. Then

T

p(Re p)) ds + jp(Re p) — p(Re py)ds

p(Re p) = j p(Re p) ds < J

1 0

T
< J‘ p(Re ps) ds + C J Ipl(Re ps)lz ds + C J‘ |pt - ps|2 ds.
1 I

0

From (1.5), (1.10) it follows that for sel :

Ipe = Pl < C(f IP'(Re p,)ldo + [Im Ptl)
1

so we get
T S~
p(Re p,) < C(IIm p,* + J Ip'(Re py)lds) < Ce(T).
0
Hence
(2:37) IIB,|| < Ce(T)2,

so to take N > 4 in (1.1) corresponds to take N > 2 in (2.4), and all our
estimates so far are valid.
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ProPOSITION 2.5. — Let N = 4 in(1.1)and 6 > O sufficiently small. Then
there is a constant C >0 such that for all (p,po)€C,,
(8[),,8[)0) = (5",55’5%511) € T(p,,po)(ct) =¢:

(2.38) IIBEIl + 118yll < C(A+8)([IdxI| + [I8n]|,
1
(239) [6(us0) — S(ugbo) < Cat(1+8)" 2 [Im (ppo) M| (tio)l -1 @ao)

Jor all N > 0, (u,uo), (v,0o) € 6,,

3
(2.40) d(i%,%) < Cxt(1+1) "2 [Im (p,po)|™.
Here d denotes a distance in the appropriate Grassmannian manifold.

Proof. — (2.38) follows from proposition 2.2. (The case T < 1 can easily
be treated along the same lines and is in fact already treated in [5].) To prove
(2.39) we replace p; by u, and v, in (2.35). Then we obtain forall N > 0 :

d N
75 st = 0(1) Im PNl - logll -

Integrating and using (1.4), (2.8) we get (2.39).

Let # denote multiplication by i in M, the complexification of T*R".
Let (u,u,) € €, and let' a be its projection in the (x,n)-space. Let (v,,0,) € €,
be the vector which projects to fa. From (2.35) we get

oo,
ds

Oug
(2.41) = Gyu,,

s G,v,, 0<s<t

where [G,,#] = O (Im p ™) for all N. Then
0
(2'42) a—s (jus_vs) = Gs(fus_vs) - [Gs5j]us'

Since (fu,—v,), = (Fuo—1vo), = 0, wecan apply proposition 2.4 and (2.8),
(1.4)

3
(243) sup [|£u, — vl < Cat(1+0)" "2 [Im (p,po) Ml (pto)ll-

0<s<t

In particular, the same estimate holds for ||#(u,u,) — (v,00)ll and (2.40)
follows.
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Next we study the curvatures of C,. Differentiating (2.34) N times with
respect to r we get

(N)
P00 _ LM, gy 10H,

2.44 I —
(244) o0 iop "t iop
+ ; a PP ...
eyl + o+ N = Dlky g + P+ + N = Dy - | =N
(-1 (pye . (PN,
N) _ a .. . .
Here p;” = k;,¢; are multiindices and a, , are smooth functions (and

orN sy J
in particular bounded, since p, stays in a compact set). (2.44) gives

oo™ /1
(2.45) gt <A+B)<N>

+ 0(1) > Pl .. llpf™ ik -1

kp+- - +MN-Dky_ =N

Here we recall the inequality

(2.46) a'...ax < Yoa;,
7]
1

when a; > 0,0; > 0, Za; = 1.

. ik jk/N
Writing [IpP1l5 = (PP, we get
I IRt < 5 R IO,

since Ljk;/N = 1. Then (2.45) implies

op™
ot

1
(2.47) = <; A,+B> ™+ 0(1). Z llpEIINa.

PRrOPOSITION 2.6. — Let N > 4 in(1.4)and & > O sufficiently small. For a
fixed t >0, let 1ar —(p,(r), po(r)) € C, be a curve such that (p*)(r)),,
(P§"(r))e) is constant and of length 1. (Here 1 is some interval). Then there exist
constants C, > O independent of t and the choice of the curve above, such that

( +2hg)
(248) sup [Ip¥ll < Ce(1+1)

0<s<t
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Proof. — From (2.38), (2.8) we first obtain (2.48) for k = 1. Put

W= sup Ip®Il.

We shall prove by induction that
(2.49), b < Gl +)™

This clearly holds for k =1, with a, = 3/2. Assume (2.49), for
1<k<N-1. By(247):

ap(N)

(2.50) o

G AS+BS> ™ 4 0(1) Z (1 + 1Nl

Since (pMV), = (p§"). = 0, proposition 2.4 shows that (2.49)y holds with
4

N W

a
(2.51) ay =2+ max N-% g, >
1<ksN-1 Kk

With by = max a,/k, (2.51) is equivalent to
1<k<N

2
9 bN>—+bN 1

(2.52) b, > N _

N W

The optimal choice is therefore

N2
+ZE +210gN
2

N!u

3
so we can take ay = N (5 + 2log N>, and the proposition follows.

3. The phase function.

We still consider the situation described in the beginning of section 1. In
this section we keep N = N, in (1.4) fixed, > 4, and choose & > 0
sufficiently small so that all the estimates of section 1 and 2 are valid. As above
let C, be the set of points (p,p,), p; = exp tH1 p(po) with the restriction
(1.2) and the restriction that p, belongsto a small open neighborhood W of
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a real point where p vanishes. Put

C = {(tpupo);t = 0, (P,po) € C,} .

An element in T(,,pppo,(C) can be written h = (k,u,+kHu1,u,) with keR,
(“vuo) € T(pt,po)(cl) » SO

(U)x 5 (o)) = O(lhnl 1K) = O(lh )
Thus by (2.15); (u,ue) = O(1+1)lh, xml) and we conclude that the projection
3.1) T 0,((’f) 3 (t,000) = (1,()0(vo)) €R x C?"
is bijective, with inverse = O((1+¢t)). The projection
(3.2 Catxtym) —(txn)eR x C"

is therefore locally a difffomorphism, and by restricting it suitably we shall
achieve injectivity.

Fix a point (x,n) € W. Thenfor ¢t > 0 sufficiently small, there is a unique
point (x,£,y,,M) € C, depending smoothly on t. Let Ts(x,n) € J0, + oo] be
the largest number such that there exists (x.£,,y,,n) € C,, depending smoothly
on t, for 0 <t < Tg(x,m). Clearly &,, y, are unique and we put

Q; = {(txm); 0 <t < Ty(x,m)}.

Then Q; is open and over Q, we have a unique « branch » of C given by
smooth equations

3.3) & = H(t,x,n), y = G(t,x,n).

For (t,x,n) € Q;, let [0,t] 35 > p,(t,x,n) be the corresponding integral
curve of Hi, and put

(3.4 y(tx,n) = sup |[Im p| + f Ip'(Re py)| ds.
0

0<s<e
LemMa 3.1. — There is a constant C > 0 such that for all (t,x,n) :

YO t’y ’9 ) - L,x,
65 B eRm el
tx'\n) = (t,x,n) ”(t -t x—Xx ,MN—N )”
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Proof. — Let r — (t(r),x(r)n(r) € Qs be a Cl-curve with derivative
bounded by 1 in norm, and let

[0.(n] 35 +=py(r) = (x,(r)E,(r)

be the corresponding integral curves of Hi, so that x,,(r) = x(r),
Eo(r) = n(r). Since the inverse of (3.1)is O((1+t)) we have

|d Pn(r )l ld Po(")|
dr | dr |

+ ' } = O((14+t(r).
Then (2.8) shows that

op4(r)
or

= 0((1+t(r)*?, se[0t(r)].

It follows easily that for ' close to r,

ly () x(r)n () — v(E@)xEnE)
= O((L+t()Pr — 7| + (L +t@)*r — '),

and we deduce (3.9).

Now assume that for some (x,n) and some & > 0, we have
Ts(x,n) < o0 and

3
y(tx,n) < A1 &, 0 <t < Ty(x,m).

Then it is clear that lim (x,£,y,n) exists in Cy, and this contradicts the
t-Tg

maximality of T;. Thus, in view of the local Lipschitz property of v :

)
36) limy(Etxn)=—"———6.+H—, when T; < c©.
G6) m Yo = o ;

From now on we denote also by C, C, the restricted parts given by (3.3).

To estimate the derivatives of H and G we let v be a constant
vectorfield in the (x,n)-space of length < 1. Proposition 2.6 then shows that

( : )N ( : )N
(3.7 — | H,{\ =] G=0(1+)™), (txn)e;,
ov ov
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for all N, where, here and below ay, g, , 5, etc. will denote some positive
constants, that we shall not try to estimate closer. Moreover (3.7) is uniform

. . 0 : .
with respectto v. Since the vectorfield % + Hi, istangential to C wehave
1

0
(5; + (H%P)x>(H%p)§ =0

9}
(a + (H%,,),‘)G(t,x,n) =0

where (Hi,),, (Hi,), are the x and &-components of the Hamilton field,

i

computed at the point & = H(t,x,n). Differentiating these equations
successively with respect to t, we get

(38) DD H,  DEDL,G = O((1+0)a),

if we first notice that (3.8) for k = 0 follows from (3.7).(By D,, D, we denote
derivatives with respect to the real variables Re x, Imx, Ren, Imn.)

From proposition 2.5 if follows that

(3.9) 10 Il + 110Gl = O(1)(1 +2)™Ny(t,x,n)N.
To estimate the derivatives here we put u = 0H, (u = 0G) and let
)
= 2n € —
(txm)eQs, v=(@xn)eRxC", o< Ca T so that

(t,x,n) + v e Q,; in view of lemma 3.1. (3.8) and Taylor’s formula imply that
for a certain k, > 0 :

U (tx )y = w((txn)+0) — u(txn) + O(1+1)2lvl).
Here u' is the gradient in the real sense. Choosing v = C;'(1+18) "k,

)
where k; > k, and C, are so large that |jv|| < E(1+t)'5/2—No, we get
ll'|* ( [l'||? >
——— =01+t N+ ———
Cavon - A\ G s
so when k + |of + |B| =1, we get forall N > 0,
(310)  ||D!DDEH]| + IDDIDEIG] = O((1 +tyranny).

Repeating the same argument we get (3.10) for all k, o, B, N.
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Since C, isconic, (2.39)implies with § dx = &, dx, + -+ + §,dx, etc,

(3.11) Edx — n dY|c, = O(1)(1 +t)>~nyN, YN > 0,
and we claim that

(3.12)
ip(xE) dt + & dx — n dyle = O()(L+8™N, YN > 0.

By (3.11) this certainly holds when applied to tangent vectors with vanishing
t-component, so it suffices to apply the form in (3.12) to the tangent-vector

0
" + Hi,. By the almost analyticity and the homogeneity we obtain

1 0
D+ <z §>+06M =06, W,
so (3.12) follows.

Now recall that the generating function, ¢ is defined as

(3.13) o(tx,n) = Yy Wle.

Mostly, we consider ¢ as a function on €, but sometimes as a function on
C. From (3.12), (3.13), we get

(3.14) do = ndy + ydn|e = ip(x,£) dt + § dx
+ y dn + O(1)(1+t)enyN,

On the other hand

do f3L0) 130) op — 0o —
315 do=—dt +—d —d —d —dn,
(15) do = di 4+ o dx + 5 dn + G dx 4 oodn

so comparing (3.14), (3.15), we get

8 5
(3.16) P oaa+omyN, VN,
ox on
(3.17)
f5l0) 0
E——, y——=01)(14+twN, VN, on C,
Ox on
1 [ o
(3.18) @2 p<x,—9 = 0(1)(1+tyN,  VN.
ot i ox
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It follows from (3.8), that
(3.19) D'DDBo(1,x,n) = O(1)(1 +1)NkB, VN, k, a, B.

Using (3.19) we can now sharpen (3.16), (3.17), (3.18) as in the proof of (3.10) :

ProposITION 3.2. — If @ is defined by (3.13) we have for all N > 0 :

0 .
“D2D? %\ + lD“D“D" —‘p‘ O(1)(1+ 1),
(3.17) For all (tx,tyn)eC :

o 8 )
\DfDiDﬁ@ - % y - %)' = O(1)(1 +1)™*=PNN

0 1 0 a
"<_(p ¥ _‘p<x’ _(P)) = O(1)(1 +1)=#NN,
ot i 0x

We now restrict the attention to the real domain ; Q; ; and notice first, by
(1.13), (1.15) that

t 2 t
¥Y? < C(J |p’|dt> SCIJ pdt < CtIm o(t,x,n),

0 0o

so that
,YZ
(3‘20) Im (P(t,x,rl) > a’ (t,x,n) € QB,R'
ProposiTION 3.3. — There exists a function

x(tx,m) e C*(R, x Wg; [0,1])
with support in Q; ¢ such that :
(3:21) 0208y = O((1 +t)%.p)

1
(3.22) Im o(t,x,n) > m, when  x(t,x,n) € JO,1[,

where N, > 2 is given in (1.4).

Proof. — We may assume that W is contained in some larger
neighborhood W, such that all our constructions and estimates are valid
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with W replaced by W. If (t,x,n)eaﬂg,n, we notice from (3.20) that

1

2.
Im (P(t9xan) C(l +t)1+2N0

Using the estimate on the Lipschitz continuity of y and the temperate
growth of the derivatives of @, it is easy to see that the function

Xs(tx,n) = Jd’%("x',n’)(l +ONEHID(1+ )N -t x—x'n—7) dr’ dx’ dv’,

will have the required properties, if (Dg is the characteristic function of Q;,
and 0 < ® e CP(R?"*!) hasintegral 1 and its support in a sufficiently small
neighborhood of 0, and N > 0 is sufficiently large.

To end this section we shall give some approximations for ¢, that will
serve, later for the study of the trace of the heat-kernel.

ProrosITION 3.4. — For (t,x,n) € $;x we have

(3.23) lIx — @atxnl + lIn = eLtxn)ll < Cet+Pelp (xn)l
(324) @(txn) = Cnd + itp(xn) + O(1)2eC+|lp ()|

Proof. — For (t,x,n) € Qs g, let [0,t] 25 — p,(t,x,n) be the correspond-
ing integral curve of Hy,, so that (py); = m, (p), = §. We fix (x,n) and
shall first estimate how (p,(t,x,n),po(t,x,n) varies with t. Passing from ¢ to
t + ot, afirst candidate for (p,, g(t +98t,x,m), po(t+dt,x,n) can bechosen to
be (p,(t)+8t Hy,(p,),po(t)). However, in the x-projection, we then have an
error, which is' O(|5t||H,(p,))) and since the differential of the projection
C - Q; isinvertible with inverse = O((1 +1t)), we get the correct point, after
adding a correction, which is O((1 +¢)|5t|[H,(p,)|). In other words :

0
(3.25) = (p&x.m), po(txm) = O (Pt XA +0).

If we put A, = |lp,(zx,n) — (x;n)ll + lIpo(t,x,n) — (x,n)ll, then by (3.25)
(3.26) 0FA, = O()(P'(xn)+A)(1+1), Ay =0,
where 9, (0,) denotes the right (left) derivative. Then

0FA; — C(1+0A, < CIp'(xn)l(1 +1)
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if C is sufficiently large. Writing this as

_C+? C1+1?

ofe 2 A, <CPPxn)(l+t)e 2

and integrating, we get with a new constant C :
(327) llptxn) — omll + llpo(txm) — ()l < Celp' (x| e+,

One can also estimate intermediate points on the integral curve. (3.27),
(3.25) imply

0
(3.28) % (Pt xM), Po(tx,1)) = O(1)eCH+7p’ (x,n).

Using proposition 2.1 it follows easily that

0
(3.29) 7 Pstxm) = O(1)ect+|p' (x,n)l,

for 0 < s < t. With (3.27) this shows that
(3.30) llp(t,x,m) — (eIl < CteC+Ppem)l, 0<s <.
When (x,m) is real (3.30) shows that
(3:31) ¥(tx,m) < Cr e+ p (x,m)].

If p(tx,n) = (x.8), po(t.x,n) = (y,n), we see from (3.27), (3.17) that (3.23)
follows. By (3.18)

0
(332) a—T = ip(x,9) + O()(1+1)2 y(tx.n)*.
Then (3.24) follows if we use (3.23), (3.31) and integrate.

We also need an approximation result for the second order derivatives.

ProPoSITION 3.5. — Let p, = 0 be homogeneous of degree 1 and vanish at
the (real) point (xo,Mo) . Let @q(t,x,n) be the corresponding phase function.
Then for (t,xo,Mo) € 25 :

@"(t,x0M0) — PoltXoMo) = O(1)(E U +72]p’ (xo,m0)ll
+ t(L+1* [Ip" (XooMo) — P (XooMo)l)-
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Proof. — Let C, , be the canonical relations generated by ¢,, so that
Tonexong(Co.) s the set of points (u,u,) obtained by integrating the system

ou, 1
=—7Aus, 0<S$t,
Os i

where A is the Hamilton matrix of p, at (xq,&)-

Similarly T, (xn.pexm)(Ce) is obtained by integrating a system

(G

F 1
P <—,A+B, >v 0<s<t,
0s i ’

where

IIB,, I < C(ee®+|p' (xoMo)ll + lIP"(X0M0) — P (X0

Now assume that (v), = (u), = X, (vp): = (o) = E, [[XF) < 1.
Then v, = O((1+1¢)¥?) by (2.38), (2.8), and since

Oug, — vy
0s

1 1
= _.A(us—'vs) - B!, Vs = —_A(us—vs)
i i
+ O(1)(+7|p’ (xoMolll + (L+2)2lIp" — pgll),
we get from proposition 2.4
(3.33) llu, — vl < C(te+P||p'(xg,mo)ll + t(1+1)%p" — pil).
On the other hand the two tangent spaces are given by

(88,8y) = @g(8x,8m),  (3E,8y) = " (8x,6m)

so the proposition follows from (3.33) by choosing s =t and s = 0.

4. The transport-equation.

Let p be as before and p,_,(x,£) another smooth function. We shall
study the transport operator :

1/ 102 5
41 L=(241y ooy +q._,),
(1) i(at i,.;p(“p)axj 1 ‘)
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where
N ?p(x,9,) ¢
] (42) Im- l(t’x’n) = DPm- l(x’(px) + Z ; Z

0¢,08, 0x0x,

Here ¢ is the generating function studied in the previous section. Since @', is
approximately = & when (t,x,£,y,n) € C, we shall replace ¢/, by & in (4.1)
and consider iL as an ordinary differential operator of the form
0 0

% + H%,, + ¢,,-, along the integral curves of m + H%p in C. These
approximations will be justified a posteriori when we have proved that the
solutions to the modified transport equations are small for large ¢ and
sufficiently almost analytic. Along each integral curve iL will take the form.

d
(4.3) 7 T a1

We want to estimate solutions of such an equation when t - + co. In
order to do this we first do some approximations. Let T > 1 and let vy :
[0,T]>s —p, be an integral curve of H%p satisfying (1.1), (1.2), with
N > 4. Let p° be a real point such that

(4.4) llp, — p°ll < CTe(T), 0<s<T.

In view of (1.5), for any t € [0,T], we can take p® = Re(x,n) if p, = (x,£),
po = (). As noticed in section 2 (see (2.37)) we know that

p"(p% = — Ce(T),

where &(T) = €(T)"2. We can therefore construct a smooth real-valued
function p such that

(4.5) p(p°) =0, Pe® =0, p(p)=0,
p"(P%) — p"(p°) = O(e(T).
Let ¢ solve
0

1. -
—_ — ,;=0
at+ip(xq>)

4.6 ~
( ) (p|t=0 = <x,11>

to infinite order at p° and define L as above, by replacing (p,¢) by (7,9).
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At p°, L is given by

- 0 .
. iL = — ~1(®,
(4.7) iL=—t4n-10)

where
- 1 *p 0%¢
oy = Pm—1(P®) + —ZZ 0 .
qm 1 pm l(p ) 21 5&, aE_,k (p )axj axk

Corresponding to @, there is a family of canonical relations C,, and the
tangent space T(DO,QO)(C,) is the set of (u,u,) obtained by integrating

Ou, 1
4.8) = - Fu,, 0<s<t.
0s i

Here F is the Hamilton matrix of p at p°. We can compare this with
T, po(C,), which is the space of all (v,v,) obtained by integrating

Ov, 1
4.9) ——=<—.F+Bs>v,, 0<s<t,
0s i
where now
(4.10) B, = 0(¢(T)).

Using proposition 2.4 as in the proof of proposition 2.5, we obtain
u, — vy = O(T"%(T)), 0<s<t

if (uo)e = (vo)e, (u)x = (v), havenorm < 1. Hence,if T, ,(C), T, ,o(C)
are given by (&) = H,(x,n), () = H,(x,n) respectively, then

(4.11) IH, — HJl = 0(T"%(T)).
It follows that

(4.12) la(®) — 4(0] = O(T"(T)).

9
We require from now on that N > 2 in (2.4) i.e. N > 9 in (1.1)).

Tostudy L of p® we may first make a (symplectic) translation so that p°
becomes the point (0,0) and without any loss of generality we may then
assume that p is a quadratic form. We are then reduced to the linearized
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situation. As in [7], we notice that on C = {(tx.£y,n); (x.E&ym)eC} :
(4.13) (iLa)\/dt dx dn = (£, + S)(a\/dt dx dn),

0
where v = p + Hiz and &, is the Lie derivative, and
i

1y
2i  0x;0%;

g = pm-—l

is the subprincipal symbol.

ProposiTioN 4.1. — If La(t) =0, a(0) = 1, then

4.14) a(t) = e~ tero), t > 00.

1.~
Here x = S + ztr(p) and the estimate « o(1) » is uniform when p variesina

compact set of non-negative quadratic forms.

Proof. — Taking (t,y,n) as local coordinates on C, we simply have

0 ~
&, =5’ so if La = 0 and we define b by

a/dt dx dn = b,/dt dy dn,
we have b = e~%. Our problem is therefore to prove that on C, :

(4.15) |dy dn| = e~ @@ +eM)dx dn|.

On M = T,(T*X) we introduce new (linear) symplectic coordinates
(x,%) so that the Lagrangian planes A, = {E=0} and A_ = {x=0} are
positive and negative respectively (A,)r = (A_)r = 0 and A, = A_. Then
{(x,&,ym); x = 0, n=0} is a negative canonical relation, hence transversal
to C,, and it follows easily that C, is given by

(4.16) €y = G/(xn)
where the matrix G, is bounded as ¢t —» oo . In particular

4.17) ldx dn| < Cldxdn| on C,.
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Also in view of (2.38) we have
(4.18) ldx dn| < C(1+1t)*"ldxdnq| on C,.

It is therefore enough to prove (4.15) with (x,£,y,n) replaced by (x.Z,y,n).
(Notice that |dy dn| = |dy dn|.)

To do this we shall first consider p as the polarization of a bilinear form :
a(uu) = p(u).
Then we have adopted the notation of section 2, and we shall first show that

for (u,uo)eC, :

[u,,u,] - [“o’“o] )

(4.19) lauu)l < ;

Indeed, by (2.23) we have

(4.20) 2t inf a(ugu,) < [upu,] — [uouo]-

0<s<t

On the other hand

la(u,u)] < a(Re u, Re u) + 2ja(Re u, Im u)| + a (Im u, Im u)
< 2(a(Re u, Re u) + a(Im u, Im u)) = 2a(u,u),

and since a(ug,u;) is independent of s, we get (4.19).

We now consider a(u,u) asaquadraticformon M x M, constantalong
the second factor, and write (u,u,) = (x,£,5,n). Let Aa denote the
restriction of a to C,, extended to be constant in (£,y), and put
b, = a — Aa. Then by (4.16), (4.19) :

1
(4.21) ble,=0,  [Ib, —all = 0((—1+—t)>

Let A,B,: M x M » M x M be the Hamilton matrices associated to a
and b,. By (4.21) we know that B, maps C, into itself, and that

1
A — Bl = 0(*).
1+

1 1
We can therefore find eigenvalues p,, ..., 4y, of ;A suchthat — By has
i
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the eigenvalues p,(2); ..., K,,(t), with
by = 1O = O(1+0)=1*).

We know from [7], that C, will converge to a limiting canonical relation C_

1
(although the convergence may be very slow, if — A has small non-vanishing
i

1
eigenvalues), so clearly p,, ..., H,, have to be the eigenvalues of — Al . It
l oC

also follows from [7] that
1
tr—Ale, =W + " + My, =tra,
i
so we obtain

1 ~
(4.22) tr=Ble, = it a + O((1+)~1).
1 t

1
On the other hand tr - B¢, is the divergence of v (on C) computed
4
with respect to the coordinates (t,x,n) and since
Z(dt dx dn) = div (v) (dt dx dn),
while Z,(dt dy dn) = 0, we conclude that

\dt d% dfi| _

——— =t 5 o
|dt dy dn|

(4.23)

at a point (t,x,£,y,n) € C. The proof is complete in view of (4.17), (4.18).

In view of (4.12) and proposition 4.1 we get :

d
ProvposiTioN 4.2. — If (Z + q,,,_l(t))ao(t) =0, a,0) =1, then

(4.24) ap(t) = e~tx+o® ¢ oo,

From now on we assume that the condition (0.1) holds, so that x > 0. It
is then easy to consider inhomogeneous transport equations.
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ProrosiTION 4.3. — Suppose that b(t) = O(1)e~'®*+°W ¢t — oo and that

d
(4.25) (— + qm-l(t)>a(t) = b().

dt
Then
a(t) = O(1)e—tx+o) t— 0.

Proof. — (4.25) can be written :

d _
Eia(;la = 4o 'b,
SO
Yay(t)b
a(t) = f Mds + Cao(t).
o 4ol
For 0<s<t:
ao(t)b(s) - @(l)e-zx+o(1)t+o(l)s,
ay(s)

and the proposition follows.

We shall now estimate the derivatives of a solution to the equation
La=0. Let o be a constant vectorfield on Q; with vanishing ¢-
component and modulus < 1. For a given t > 0, 1 gives rise to a
vectorfield  (v,v,) on C,, where v, =exp (tH%,)*(vo). Put
v, = exp (sH1,),(vg), 0<s<t. We know from section 2 that
(VoVo) = O(1+1), v, = O(1+1)*?).

Let r +—(p,(r), po(r)) be an integral curve of (v,v,), so that
r —>(p4(r),po(r)) is an integral curve of pu, = (v,,v,). Then considering gq,,_,
as a function on C we obtain

0 \N
426) (g = (a—r> (Gm-1(5:p5(r), po(r)) = O(1)(1 +1)*N
in view of proposition 2.6 and the polynomial bounds on the derivatives of .
ProrosiTioN4.4. — Let a € C*(Q;) be a solution of La = 0 (where L is
0
identified with the ordinary differential operator % + Hi, + gp—, on Q).

Then for all multiindices o and all ke N :
4.27) DD a(t,x,n) = O(1)e=tx+o), t— 00,
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Proof. — \_’Ye already know that (4.27) holds for t = 0. Wefixa t > 0,
and choose a , (v,Vv,), Vs, 1, as above.

. 0 .
By construction, PN + Hi, and p; ¢commute so we obtain
'S i

0o 1 .
(428) (a—s + ;Hp>(p'sa) + qm—i(usa) = ,J's(qm—l)aa 0 <s<t.

Applying (4.26) and proposition 4.3 we obtain
(4.29) pa = O(1)(1 +t)1e=sk+ol), 0<sx<t.

(Here o(1) denotes a term tending to zero when s — oo uniformly with
respect to t € [s,+ oo[.) Continuing to apply p, to (4.28) we get

(4.30) pi(a@) = O(1)(1 +t)oNe—sx+o) 0<s<t
and hence by taking s = ¢t we obtain (4.27) for k = 0.

To estimate also the t-derivatives of a we can write the transport equation
explicitely and differentiate successively in ¢, x, 1.

Remark 4.5. — If we consider the inhomogeneous transport equation
La = b, where b satisfies the estimates (4.27) then a will satisfy the same
estimates. Indeed, the same proof works.

We shall finally estimate 3(x,n,a. If v is a real vector field we denote by iv
the differential operator defined by (iv)(f) = i(v(f)) for all functions f, and
by Jv the unique real vectorfield such that iv(f) = Jv(f) for all holomorphic
functions f. Let P , By = (V,V,) bethe sameasabove and let i, = (V,,V,) be
the vectorfield on C, which projects on Jo.

Proposition 2.5 then shows that
(4.31) Ju, — B, = O()A +teNy(tx,m)N, VYN,

If V,=exp(s Hlip)*(%), fiy, = (V,V,), then by proposition 2.4 :
(4.32)  Ju, — [, = O + )Ny (tx,m)N, 0<s<t.

Applying i, — iy to the transport equation La = 0, we get

4 s . .
(g + H%,,>(us = iJa + g1 (B — inJa = (i, — ip)(gn-,)a.

9
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Estimating the almost analyticity of ¢,,_, by means of (3.16') and
applying (4.31) we see that

(4.33) (A — in)(@m-1) = ODA+1)™yN, VN > 0.
Applying proposition 4.4 and remark 4.5 we get
(4.34) (B, — inJa = O(e—troyN YN,

provided that a is almost analytic in the usual sense for t = 0. Projecting
(4.34) into the (t,x,n)-space we get :

(4.35) Opn@(tx,n) = O(1)e1x+onyN, VN,

for (t,x,n) € Q5. As in section 3 we can use the Lipschitz continuity of y and
the estimates (4.27), to strengthen (4.35) to

(436)  DIDEpfunaltxn) = O(lee+e0yN | YNk, o.

The same arguments apply to the inhomogeneous transport equations and
we obtain

THEOREM 4.6. — Let b e C*(Q;) satisfy the estimates

(4.37) DD b = O(1)ex+o)
(4.38) DD fumb = O(1)e1x+oyN

for all k,a,N. Let a be a solution of

0
(439) (5 + H%p + qm_,)a =)

such that a(0,x,m) is almost analytic. Then a also satisfies (4.37), (4.38) and

o 1
(4.40) DfD;DE,(b - (— o

" P00 o + s Jo
ot ~ Tox, Tt

! = (g(l)e—t(x+o(l)),YN

J

for all k,a, B.

In fact, the almost analyticity of a pérmits us to pass from the ordinary
differential equation (4.39), to the estimates (4.40).

Remark 4.7. — In the estimates (4.37), (4.38), (4.40) for a, we may replace y
by Im ¢, when (x,n) is real. Also, if y is the cut off function given in
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proposition 3.3, and we extend ¢ to be defined for real (x,n) and all ¢t > 0

by replacing @ by xo + i(1—yx), then we get from (3.18'), (3.21), (3.22) that
for real (x,n) and ¢t >0 :

0 1 0
(441) ID':D:;,m(a—‘f + —.p(x, 5‘3)> = O(1)(1 +1)%=Nm o¥,
1 X

VN, k, a.

Similarly in theorem 4.6 we can replace a by ya so that for real (x,n) and all
t >0, (440) is valid with y replaced by Im ¢. (Provided that b is
extended similarly).

5. Parametrics for the heat equation.

As in [6], [7] we apply the Fourier integral operator approach, and we
may rely on [7] for the general properties of our operators, and asymptotic
expansions.

Let X = R" beopenandlet P e L"(X) be a property supported classical
pseudo diferential operator satisfying the assumptions of theorem 0.1. The
first step in our construction of e~** will be to find a function
eeC?R, x X x R") with Im ¢ > 0 such that

(5.1) ¢(0,x,n) = {x,n)
Jdp 1
(5.2) m + - p(x,97) = 0 + « small error ».
i

The difference with section 2 is that p is now homogeneous of degree m > 1,
and as noted in [6], [7], ¢ will no more be homogeneous of degree 1 but
quasi-homogeneous (see [6], [7] for a definition) of degree 1 :

(53 o(txAn) = Ae(A" ' xm), A > 0.

To get a reduction to the situation studied in section 1-4, we introduce an
extra variable x, and put

; ‘= (xoax) H E = (&03&) H ;(;’E) = &Op(x’é/E.:O) = (l)—mp(xaé) .

Then p is homogeneous of degree 1 and according to proposition 3.2 and
remark 4.7 we can find a smooth function @(t,x,n) defined for teR,,
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xo€R, xeX, neR", n, >0 such that uniformly for (x,n) in any
compact set :

00 1aon~- -
(5.4) D’:D;D?.(a—(f + —.p(x,q»;)) = O(1)(1+0)%=pN (Im )M
i
for all k, o, B, N, and such that

(5.5) (~P|z=o = <;C,ﬁ> = XoNo + <{X,N).
We also have a polynomial control on the growth of the derivatives of ¢.

Now p is independant of the variable x,, so the corresponding
Hamiltonfield has a vanishing &,-component. Therefore ¢ can be

0
constructed with ® _ No. Now put
0x,

o(txn) = ¢(t,0x)(1,n) e C*(R, x X x R").
Then we get

PRroPOSITION 5.1. — We have Im ¢ > 0, and uniformly for (x,n) in any
compact set :

(5.6) DiDiDio(tx,n) = O(1)(1+t)%p
(5.7) D’fDiDﬁ@—T + %P(&(P&)) = O()(1 +1)%xpN [Im @[
(5.8) ¢(0x,n) = <x,n).

Replacing ¢ by its quasi-homogeneous extension from |n| = 1, we may
also assume that ¢ is quasi homogeneous of degree 1.

To make the same reduction for the transport equations we define
microlocally in the domain &, > 0 :

P(x,D;) = Di; "P(x,D,).
Then the full symbol of P is

where
p = E.t(l)—mp(xaé)’ pO = E.lé_mpm—l(xa&)'
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To P, P we then associate the transport operators :

1

) ¢
L.=- () X — . (629] L0
P <at+llep (x,95) J+(p,,. 1(x<px)+ Zp (60 = ¥ k))
2

1/0 Kl
Lp_-<6t+12p‘” ,<p)-—+(po(x,<p)+ ZP“"’(x,cpx) %o )

0

We note that

(5.9) PPX0n -1 = PP(x,0), 1<j<n
2> ‘e
0 (k) ’ : >
(510) FPGP) b | = PTG G When k21
Ox; 0%, 5 0% |0 =1 J
0= 0 when j=0 or k=0
(5.11) Po(X 0=t = Prm—1(X,05).

Thus, if Lya = T) where a, b are independent of x,, we get Lpa = b
with a = alno > T)Ino ,. Also, P satisfies (0.1) since Stlng= 1= Sp and
since the nonvanlshmg eigenvalues of the Hamiltonian matrix of p ata point
where &, = 1, p = 0, are the same as those of the Hamilton matrix of p.
The results of Section 4 (see Remark 4.7) then imply :

ProposITION 5.2.

(A) There is a function ae C*(R, x X x R") quasihomogeneous of
degree O such that for all k,o and all K << X x R*,

K ma = 0(l)e~+e, >0, (xn)ekK

Lea=b_, ali=o =1,
where

050 yb- o = O(1)e=t+eM (Im Q)N for all N, k, o,
when (xn)eK c <= X x R".
(B)Let be C*(R, x X x R") beq.h.ofdegree k + m — 1, such that
0L pa = O(l)e~tkte® >0, (xm)ekK

forall k,a, K < = X x R". Thenthereexists ae C*(R, x X x R", q.h.
of degree k, satisfying the same kind of estimates such that

Lea=b+b_,, al,-o = 0.
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Here b_ is of the same type as in (A).
The function k = x(x,n) is continuous, > 0, homogeneous of degree

1.
m-—1 and x = Sp+§tr on p~1(0).

We can now follow [7] closely : First we look for a formal object

el

a(t,x,n) ~ Zaj(t,x,n) where a; is q.h. of degree — j such that the formal
(4]

1
asymptotic expansion of <Dr + - P>(e"‘4’a) vanishes. Collecting the terms
i

according to their degree of quasihomogeneity, we obtain the transport
equations :

(TO) L(t’x’naDt,Dx)aO =0

(T;) L(tyx,TLDpr)aj + /j(t,xﬂl,ao, . 'aaj— 1) = 0

where L = L; is the transport operator above and 7; are linear differential
operators actingon a,, ..., d;_;, whose coefficients have the right degree of
quasi-homogeneity, and are of temperate growth as t - + oco. We also
impose the initial conditions : '

(5.12) a0xn)=1, a0xn) =0, j=>1

Proposition 5.2 tells us that this system can be sofved with certain errors :
Formally we get

1 ) .
(5.13) (D, + 3 P)(ae“") ~ be'®
where b ~ Y b;(t,x,n), b; q.h. of degree m — j and
1]

(514) 5’,‘6‘(’,(),”% = 0(1) e—t(x+o(1)),
302 b; = 0(1) e~ <+ Im N,

Following [7] we introduce S*(R, x X x R") =« C*(R, x X x R") as
the space of symbols a , such that for all v, o, B, N, K =< X, we have

(5.15) [(m|~*"~VD,)DDfa(t,x,n)|
< Cropn (I +IMPTH NI +MP-®, xeK, Il > 1.
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Weput $™® = [ §* and define asymptotic sums as usual. By S* we denote
keR

the elements in §* which have asymptotic expressions ~ ) a;, where
0

a;€ 877 is q.h. of degree k — j (in the region where |n| > 1). The formal
symbols a,b constructed above can now be defined in S and S"
respectively and from (5.14) it follows that

(5.16) beiv e S~

Applying theorem 3.1 of [7] we now get
1 4 -
(5.17) (D, + = P)(e"’a) €S>,
i

and if we define

J . . dn
(5.18) Au(x) = |e*tg(t,x,n)i(n) ,
: (2n)"
ueC2(X)

we get as in [7], section 4 :

THEOREM 5.3. — Let P, @ and a be as above. Then A, defined by (5.18) is
a continuous map CZ(X) » C*(R, ; C*(X)) and has a continuous extension
to &(X) » C*°R, ;92 (X). The distribution kernel A,(x,y) restricted to
x #y belongs to C*°(R, x(XxX\A) and the distribution kernel of

1 _
(D, + - P> A, belongs to C*(R, xX xC). Moreover A, = 1.
i

Naturally, in the situation of the introduction, where X is a compact
manifold, we get a parametrix for the heat equation by a partition of unity.
This parametrix differs from exp (— tP) by an operator with kernel in
C?(R, xX x X).

6. Some special measures on T*X\0.

We now make the assumptions of theorem 0.1, and fix some Riemannian
metricon X, sothat S*X isembedded naturally in T*X\0 and also carries
a Riemannian metric. We write p(0) = pls.x so that at a point (x,£) = r8 in
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1
T*X\0 : p = r"p(0). Wefixan g, € ]0, Z[ For r, > 1, we may cover the

- 1 _
set I' = {0 eS*X;p(0) < ro 1”"} by a finite number of balls of radius Ero R

centered in I', such that

(6.1) no pointin S*X is contained in more than N, of the concentric
balls with radius 3r, .

Here N, is independent of r, > 1 and of €, €]0,1/4[. We shall later take
ro = 2%, ke N. If 0, €T is the center of one of these balls, let B(6,, 7o ) be
the ball with center at 6, and radius ry . Since S*X is a Riemannian
manifold we can define the Hessian matrix p” invariantly at points of S*X
where p’ = 0, and more generally if we only make changes of coordinates
which are bounded in C® (when the parameter r, tends to infinity) we can
define the Hessian matrix invariantly up to 0(||p’|[) = O(p'/3). In particular in
the ball B = B(8,, 7, *) we can define p” invariantly up to an error
o7 + ro_k")‘/2 = 0(r0—£°). We can now find g, = %so,

4 < k < 22"*2 (depending on B(8,,r, 9) such that
(6.2) p”(8,) has no eigenvalues in the interval [ry 1 pe 1.

After a (bounded) change of coordinates we may assume that 6 = (6, "),
dx d& = r"(dr/r) d® and that

(63) Poo@) =10, PireB),  Ph.e(8o) = O(r%).

Then (at least for r, sufficiently large),

1 —& ” ” —ZE
(6.4) Prw Z5r0"s  Poes  Pow = 0o 1)

in the ball B(0,, ro ). Let I bethe pointsin B where 6" — p(0',0”) takes
its minimum. By the implicit function theorem, Xy is of the form :

(6.5) 0" = h(®).

At the point 0,, we halve |lp2;~|| > (ro /C)|I65 — h(8,)|l, and on the other
hand  [|pi(8,)ll < Cro , SO

(6.6) 18 — @) < Cro 707" << pg
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when r, islarge. To fix the ideas we may assume therefore, that 8, € Zp. Set
for a while y = 0", x = @'. Differentiating the equation p/(x,h(x)) = 0,
shows that

(6.7) Pyx + Py, H(x) =0,
so that
(6.8) W= 0(rg 1) = 0(rg ).

Put p = pg + g, where g5 = p(x,h(x)). Then

|
(6.9) golz; =0, ps > ch '(dgy)?,

where ds_ denotes the distance to Xz. We may differentiate gy :
Ip

(6.10):  (g8) = Pi(xh(x)) + Py(x,h(x)h'(x)
= pi(xh(x)) = 0(ro ),

” ” ” 1.7 -2
(6.11) (@8)sx = Pix + Ph’ = 0(ro ).
From (6.11) and the positivity of g5 we also get
(6.12) (gs)e = O(ro "'(g8)'?).

LemMaA 6.1. — In B(0,, ro ), there are coordinates

x.y) = (x,y +F(x,y))
with FeC!, dF = 0(r, ') such that

~ 1 -~—
P =gs(x) + 5<p'é~e"(90)y,y>.
Proof. — We may first replace y by y — h(x) so that
1 ” 3
f(xy) = gs(x) + 7 Poe(x.0y.> + O(yP).

Then put j = t(x,y)y in order to absorb the error-term. We get
t =1+ s(x,y), where

s=0(0"), 5 =00,
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and hence (sy) = 0(ro z‘ﬂ). Finally to replace pgg(x,0) by pge(0,) we put
y = S(x)y for a suitable matrix S, close to the identity. We omit the details.

After another linear change of coordinates in y we can find local
coordinates ® in B(8,, 7, ) suchthat o' = x, I, isgivenby o” = 0 and

P = qa(@) + 0",
Moreover the Jacobian is

6.13 do _ 1 op
(6.13) %_j—”_(—m_’) (ro )

where 1/f is the square root of the product of the eigenvalues of pg(6',h(6"),
so that

1 - PlEl

(6.14) c S/<Cn

Passing to the cone B(6,, ro *) x R, we can express the symplectic volume
as

(6.15) dx d& = f(1+0(ro Hr" ! drdo.

Let B = B(®,, 10 ") X [— zzg, 2r0]. Let the codimension of X, be 2d

andlet 0 < p,;(0) < ... < p(0) bethe positive eigenvalues of i times the
fundamental matrix of py on S*X N X, (by £; we shall denote the
corresponding cone in T*X\0). Write p;(r,0) = r’"“uj(e). On B we use
the coordinates (r,m) to define a projection

Ty : (rw) - (re,0"),
where, if ®” = (@],...,0{n), 0" = (®],...,0f), ®" is given by

((B;j— la(I),le) = Cj(r,(l))((l);j_ 1 ,(1);1')

and ©}, = }, when 2d is odd. Here ¢; = 1 if p; = 0, otherwise it is the
~n2 ~n2

nonnegative number such that ©"3;_; + 3% = r™'k;u;(®’), where k;eN
is determined by

kpj(@)/r < 03;?—1 + 0)'2'3 < (k;+ Dp;(@)/r.
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On B we define the measure Qj as the direct image of f"~! dr do under
the projection mg (naturally Qg also depends on how we choose the
coordinates ).

Let now r, take the values 1, 2, 2%, 23 ... and for each such value
1 _
choose a covering of I" by balls B(Go, 2 ro £°> as above. We then get a

covering of the set
1
f=%mewwn>1mmm<Ewﬂw}

with sets B, ofthe type B above and the analogue of (6.1) holds. We can then
find a partition of unity

1= XO + sz
where 3, eCP(B,), 0 <y, <1, 0<% <1, supp xo = I and
(6.16) 0%0By,, = O(|&|coI+IBD=IPi)

uniformly with respect to v. As a discretization of the symplectic volume, we
now put

6.17) Q = yo,dxd§ + vaﬂgv.
Let x > 0 be a continuous function on T*X\0, homogeneous of degree
1.
m — 1, and equal to Sp + Etr on p~1(0). We shall study

(6.18) wm:J Q(dx dt)
p+x<A

and as a rough estimate of W(A) we will use

(6.19) V(o) = j dx dt.
p+lEm—l<a

LEMMA 6.2. — For a> 1, A =1 we have

(6.20) V(ar) < a’™=DV(A).
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Proof. — If p(x,€) + J§|™ ! < a), then

p(x, a~Vm=E) + |a=Ym-VE[" = g m-Tp(xE) + a Mgt < A
and the lemma follows.

Notice that the order of magnitude of V(L) or the validity of Lemma 6.2 is
not affected if we replace [E["”' by a positive continuous function,
homogeneous of degree m — 1.

o 1.
Forevery B, let x, = «,(r,®") bedefined as Sp, + itr(Pv) where P, is

obtained from P, by replacing p by ps,- Put

6.21) W) = J Yo dx d& + T j %, (dx dE).
p+x<A P

+Ky, <A

ProposITION 6.3. — W(A)/W(Q) - 1 when L > + oo and W(A) and
V(\) are of the same order of magnitude. Moreover there is a constant C > 0
such that

(6.22) W) — W) < Cam1 — W)
for A >1, a>=1.

Proof. — We first compare the order of magnitude of W(A) and V()).
First we write

623) WO < J

p+x<A

Yo dx d§ + Z j Qj (dx dF).

p+x, <A

(xE)eB,

Wefix a v and assume for simplicity that codim Zp = 2d is even and that
Ky, .-, 1y # 0. To compute the integral over B, in (6.23) we then have to

dr
compute the volume with respect to f(0')r" — do of the sets
r

ku; (k;+ 1p;
Wcag, o <M,

rge() + 1" (k, (@) + <)) < 7»}

ﬁv,kl,...kd = {(x,é) € Ev;
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and the sum over all k = (k;,...,k;) e N?. Let

2B, = 2B, x [Q, 4rv:|,
4

where B, = B, x [%, 2rv:| and 2B, is the concentric ball of double radius.

Then it is easy to see that the volume of ]ABV, ky
times the volume of

«, 1s smaller than a constant

~ ku; k:+1u;
{(x,g)esz;—'rﬁ <op, +op< (_:r_)“_gp +x, < x},

so finally if C > 0 is large enough (using also (6.15)) :

(624) W) < cq %o dx dE

p+/CEm—<a
+ X j dx dé).
2B, ~ {p+ (/O™ ~ 1<)

No more than a fixed finite number of sets 2B, intersect at any given
point, so with a new constant C we obtain

(6.25) W@R) < CVQ).
Essentially the same argument .shows that
(6.26) V(o) < CWQH),

so V(A) and W()) are of the same order of magnitude.
Now (6.22) follows for a > 2 and in order to prove the estimate for
ae[1,2] we first write

(6.27)
W(ar) — WQ) < f Xodxdg + Y JQQV (dx dE).
A<p+x<akr ls(zg):vﬁsal

The same licing argument as above, shows that

J Qg (@dxdf) < C f dx dE .
A<p+K<a:r lsp-tl(<al
(xE)eB, (xE)eB,
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Since x,/k — 1 when r, - oo we canestimate the last integral by a constant

times
J dx dE
A<p+K<a)

(xE)e3B,

where 3B, = 3B, x [%, 6rv]. Thus as above we get

(6.28) ﬁmm—Wmscj dx dE .

A<p+x<ar

The proof of Lemma 6.2 shows that

(6.29) J dx dE < (a"m-D—1) dx dE
A<p+x<ak

p+xk<A
and (6.22) follows from the equivalence of W(A) and V(A) and the
equivalence of V(L) and j dx dt. The statement about W(L)/W(A) is

p+x<h
finally proved along the same lines.

7. Karamata’s Tauberian Theorem.

It will be useful to recall also a proof of Karamata’s theorem, since similar
techniques will be used in the next section.

THeoreM 7.1 (Karamata [2]). — Let a(t), b(t) be increasing functions on
[0,+ oo, with a(0) = b(0) = 0, b(t) > + o, T = + o0, such that

(7.1) There is a constant C > 0 such that
b(kt) < Ck®b(7), k=1, t>1.

(7.2) There is a positive function h(3), & € ]J0,1] with h(d) - 0, § - 0,
such that for every d€]0,1], there is a 15> 1 such that
b((1+8)t) — b(t) < h(d)b(t), when T = T15.

(7.3) af(x) is of temperate growth at infinity.

@ a0

e~ "da(t), B(¢) =J‘ e~ *"db(7),

0

Let A(t) = j

0o
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for t > 0. Thenif A(t)/B(t) - 1, when t — 0, we have a(t)/b(t) —» 1,when
T + 00.

Proof. — The space L of all finite linear combinations of functions
t - e ™ with © > 0, isdensein S(R,). Infact, otherwise there would be an
element 0 # u e S'(R) with support in [0,+ oo[ such that {u,e™ ) =0,
VYt > 0. Thusthe Laplace transform #(t) vanishesidentically for Ret > 0,
since it is holomorphic for Re 1 > 0, and we conclude that ¥ = 0, which s
a contradiction.

Let %(1)eCP(R,) satisfy, 0<yx <1, x(t)=1 for 0<1t<1,
x(t) =0, t =1+ &. y is not a Laplace transform, but for every N > 0,
there exists ¥, € C7(R,) (depending on &, N) such that

(7.4) X0 — x@ < 31+7)N, >0,
if y, denotes the Laplace transform.

Notice that the Laplace transform of Ay, (At) is x,(t/A). We have the
identities

(71.5) r 2, OA(D) dt = j "3 (%) da(v)

0 0

(7.6) j " o OB dt = J ) ;21<3> db(x).
0 0 A’

The difference of the two integrals to the left can be written

[ oot oo

Since A(t)/B(t) > 1, t - 0 and %, has compact support, we have

® t t ® t
L Xx(ﬂ(A(x) - B(X)) dr| = o(1) L le(t)lB<i> dt,

A— + 0.

(7.7)

LemMA 7.2. — Let f(z) be a positive decreasing continuous function on
[0,00[ and let 0 < a,(t) < a,(t) be functions of locally bounded total
variation, such that for some N, > 0, the total variation of a; on each interval
[t,t+1] is O((1+7)No) and f(xr) = O(1)(1+1)~No—2. Then

(7.8) J J(@) da,(v) < f(0)(a,(0)—a,(0) + J f(¥) da, (7).
0 0
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Proof. — Put ¢(t) = a,(t) — a,(r). By adensity argument it is enough to
prove (7.8) when f e S(R,). Then

r F0) de(x) + f0)e(0) = — rf’(r)dt) de> 0
0 0

and (7.8) follows.

Now, if 0 <t <1 we have

1/t ©
B(f) = J e‘"db(r)+J e~ db(1)
0 1

Jt

1 ©
= j e—cdb<9-) + f e—odb(3>
0 t 1 t
1 @ c
o)+ [ e-af)
t . t
Here we apply (7.8) with a,(c) = b(o/t), a,(c) = Co®b(1/t) and get

(19) B() < (1+C)b(%> +C j ) e—od(o%@ < cw(%).

Applying this estimate to B(t/A) in (7.7), we get

[, mo(a(i)-2())

so in view of (7.5), (7.6) :

(7.10) =o()b(}), A- + oo,

(7.11)
©. (1 PO 4
L xl(x>da(t)—j0 x1<x>db(t)

Here we want to replace x, by % so we have to estimate

012 NGRS
. . X1 )\ X N

and the corresponding (less troublesome) term with a replaced by b.

1 T
A(—) = J e~""da(t)
U 0

=o()b()), A — .

da(t)

From the inequality
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a(t) < eA{-).
T

Thus by (7.9) and the fact that A(¢)/B(t) - 1, t - oo, we get
(7.13) a(t) < Cb(1) for t sufficiently large.

Now fix N > C, + 2, where C, issuch that a(t), b(t) = 0(t%), T - o0.
Then (7.4), Lemma 7.2, (7.13) give when A is sufficiently large :

J, sG) =il ) e <o e
. Xi\y ) x5 a(t) < . W a(t)
1+
A
< 8a(h) + & f —I—T_da(r)
<1+x>
@ 1
< da(h) + & J; T da(A1)

1
(1+7)N

we get

o

< C8b(\) + CB f ) d(19b ()
< C3b(A). 1

Applying this to (7.11) gives :

(7.14) j ) x(i) da(t) — J ) ;Z(i) db(1)| < (C3+0(1)b(),
o \A o \A
A — 0
so recalling the properties of x :
(7.15)  a(X) < b((1+0)A) + (Cd+0(1))b(A), A - o,
A A
(7.16) a(») = b(iﬁ) — (C8+o(1))b<m), A—> .
A
Now b((1+3)A) < (1+h(8)b(A), and b(1+8> > 1+ h®) b(») for A

sufficiently large so we get

1 —Cé + o(1)

17— o

b(A) < a(M) < (1+h(B)(1+Cd+o0(1))b(R),
A— + o0,

so b(A)/a(A) —» 1 and the proof is complete.
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8. Study of the trace.

We shall first only study the order of magnitude of tr e~** when t — 0,
t > 0. After a partition of unity we are then reduced to the situation of
Section 5 (i.e. where X isanopensetin R"”) and we have to study the integral

x dg
(2 n"’

(8.1) L@) = ﬂ’e'(‘"“"i’ &a(t,x,E)x x)

where e Cy(X), x =0, and ¢ and a are given in theorem 5.3. Put
Yy =Imeo.

LemMA 8.1. — Let F(a,B) = O be arapidly decreasing continuous function
on R, x R, . Then there is a constant C > 0, such that

(82 HF(‘W x,8), tlE" ™ x(x) dx dE < H x(x) dx dg.

(%) + €™~ '<~

Proof. — Put F,(t) = sup F(a,B) so that F, is decreasing, rapidly

a+B>t
decreasing and F(o,B) < F,(x+pB). Since by lemma 1.4 and the
quasihomogeneity

V(tx,8) > 7 P(x.0)

t
C+egm™)

we have

(8.3) ﬂF (U tlE[™ ™ )y dx dE

JI (C(l -ftrglém) 1)4 t|é|m—l>x dx d& .

Now a/C(1+B)* + (1+B) is homogeneous of degree 1 in

(@”B+1)eR, x R,,
$0

a 1 1 1
Ciapr TUTPE G @B > @B

Thus

_L(X’Q— mot —1‘ m—1\1/5 __
C(1+egm~h* e 2 C, (tp(x,E)+tlgm~Hvs — 1,
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1
F,(x) =F, (max (—— x5 — 1,0>),
G,

tp m-—1 m—1
Fl(————cmmm_,wl&l )st(t(pHan )-

so if

then

The integral to the left in (8.2) can therefore be estimated by

(8.4) H Fo(t(p+1E" " (x) dx d&

= J " Ey0)dv,0) = jw F,(s) dv,((;),

0 0
where

V.M = ”‘ x(x) dx d§ .
pHEM <

By lemma 6.2. and its proof, we have V(alA) < a¥™-VW(), for a > 1,
A =1, so applying lemma 7.2., we get

J TFy) de<i> = f "Ry de<i) + f " Fy00 dv1(5>
0 t 0 t 1 t

<F z(O)V,G) + J . F,(s) d(shv,((%)
1

<CV<1>
B PA N B)
t

and the proof is complete.

Lemma 8.1. can be applied to estimate I,(t), since
a(tx,n) = O(1)(L+tn™ 1)~

for every N. We immediately get the estimate from above in

THEOREM 8.2. — Under the assumptions of theorem 0.1, there is a constant
C >0, suchthatfor 0 <t <1:

1
8.5 — ” dxdf <tre-®" < C ﬂ dx d§.
C g +em-1<u peE) +EM L1yt
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Since we shall compute the trace more precisely below, we just indicate
briefly how to prove the left half of (8.5). The first observation is that
e P = e~ F2(e-P2)* ' 50 the operator e~ can be expressed locally with the
« selfadjoint » phase function ©(t/2,x,n) — @(t/2,y,n) and with amplitude
a(t/2,x,n)a(t/2,y,n). Thus the trace can be studied, by looking at the integrals

(52

For 0 < t|E"~! < 1, wecan estimate |a| from below by 1/C and | from
above by Ctp(x,£), so

dx d§
@ny

(8.6) Lo = H 2Dy (x)

(8.7) x(‘ JJ e~ Ctlp(xg) +[gm~ I)X(X dx d&
fem =<1

>1 1t e gy > 1 V<1>
Zclh ¢ W Ee L)

and the left half of (8.5) follows.

In order to study tre~** more closely, we take a partition of unity

1 =y, + 2% on T*X asinsection 6. For each y, with v # 0, we have
1

some choice of local coordinates x in X near the projection of the support of
%y, and somewhat incorrectly, we assume that the same is true for y,. For
X = %, we then have to study

The first case is when x = X,.
ProposiTION 8.3.

dx d 1
L0) = ﬂe-"’“@xo(x,&) (;n)f + o(l)V<;),

t—-0, t>0.

Proof. — On the support of x, we have p(x,£) = C™!|g"~1+%. Set
€3 = &/2 and split the integration in (8.8) into two regions.
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First region : t|lg["~1 < [E[~%. Let I;,(?) be the corresponding integral.
In this region (3.24) gives the approximation

(8.9) P(tx.8) — <x8> = (1 +0(Ig|~*3)itp(x.8),
while the amplitude satisfies :
(8.10) a(t,xt) =1+ 0(g|=%).

Put @ = ¢ — (x>, @, =it p(x,§), D, =sP + (1-5)P,. Then for
0<s<1,

d ) _L
= e%a = i(®—Dy)ae® = 0(1)|§| e 27>
s

so the corresponding integral is o(1)V(1/t) as t - 0. Thus

— S +ov(3)
- e 1)V|-
L) = J‘Lglm . 53 a(t,x,5)xo(x, }’;) (2 . + o(1) :

dx dg (1)
= —tp(x.E) NVl =).
.U:m"‘"@&res %oCo8) Gy (2n)" +ol) t

Second region : tlE""! > |E|-%. Let I},(t) be the corresponding
integral. As in the proof of lemma 8.1, we can estimate I} (1) by

(8.11) _U F,(tp(x,8) + €[~ )xo(x,E) dx dE,
ggm=1>1g-83

where F, > 0 is rapidly decreasing. Now
tp(x,8) = [E[f0~" = [E[0?,

so it follows that Iy (¢) is bounded when ¢ — 0. The same argument shows

that
J .f ~PRy 60 (X,8) ———- dx dg ;
tlél"“lzlil_‘3 (2n)"

is bounded as t — 0, and the proposition follows.

We now study I, () for v #0, so we put y =%, B=B,,
ro =7, =T"g, D =D + gs. Let @g(t,x,n) be the phase corresponding to
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ps. Applying proposition 3.4 and (6.12) we get

812)  lIx — @il + Il — @il < CeC+ry "p(x,E)12,
cDeyEl=y,
(8.13) @(txE) — <xE> = itp(x.8) + O(1)t%e +7ry “'p(x,E),
(X,E‘,) € EB'

Proposition 3.5 and (6.11) show that

€1

(8.14) 0" (6.%,E) — Pa(txE)l < CeCl+vpry ™,
(x,E) € Zp.

Now put @p = itqg + @ and choose coordinates 6 = (60',8”) on S$*X
as in the beginning of section 6. Let I' be a leaf 8’ = const., intersecting Xg
at p° : Then the above estimates give on T :

(8.15) (@ — @a)l - ®pO)|| < CeCt+Ptry “Ip(p0)12
(8.16) (@ — @) (POl < CeCu+Pe2p; *1p(p0)
(8.17) 11 — @aPOI| < CeCu+iipry 1,

We now modify @y without changing the derivatives up to second order on
£5, so that @z — (x,n) becomes quadratic in 6" — h(§"). Applying
Taylor’s formula, (8.15)~(8.17) and the fact that ¢ is of temperate growth as
t - + oo, we get for (x,£) e B(E|]=1),

(8.18) |p— @l < CreC'+(ry “'gn+ra "gi18" ~ h(®)]
+ 1 10" — h@)F) + Ci(1+0M%6" — @)

In B wehave [0” — h(0)] < Crg *1 50 the last term can easily be absorbed.
We also have the estimate

—€ ” , —€1/2 —3¢1/2, n )y ,
ro 'qu’l8” — h(®) <ro “gs +rs (0" ~ h(®)?
-5

rs (ga + s 10" — hO®)).
By proposition 2.3,

t
Imeg 2 tqp + ———5ps 2

—E&nn _ "2
ST (aa s 10 = HOP),

t
C,(1+8?)

so by (8.18),

€

819  Jo—@pl < CeCl+?rV Im @5, (x,E)€B.
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Thus there is a function N(rg) - + o0, rg —» + oo such that

820) |o—05 < Crs " Imey, for  (x£)eB,
0 <t < N(rp).

The same arguments applied to the transport equation show that if a, is
the leading quasihomogeneous part of a, and ag is the quasihomogeneous
symbol of degree 0 obtained by solving the first transport equation on X
with p replaced by pg and then extended to be independent of 0”, then

821) lap — agl < Cro agl, 0<t<N(rp, (xE)eB.

We say that a quantity y(t,v) is negligible if it can be estimated by an
expression

fr) ﬂﬁ F(t(p+[g"™") dx dg

v

where F > 0 is a rapidly decreasing function on R, independent of v,
and f(r) = 0, f(r) » 0, r —» co. A finite sum of negligible terms is negligible.
If y(t,v) is negligible, then

2r(y) = 0(1)V<%>, t—0.

Lemma 8.4. — Modulo a negligible term, we have

o e dx dg
(8.22) L= J]e""B “ag ¥y o

Proof. — First notice that

J\J‘ ei(¢—<x‘§>)axv dx dé
g™~ 1> N(p)

is negligible, and similarly if ¢ is replaced by @g or a by a, or az. Also
Jjei‘¢‘<”'5>’(a —ay)x, dx d§ is negligible.

The problem is then to show that

J]‘ (ei('PB— x8) — ei(‘P - <X‘§>))aoxv dx dé
o< g~ 1< N(p)
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and

-[[ '@~ Nag —ag)x, dx df
0<dg™—1<Nep)

are negligible. For the first integral, this is easily done by introducing
¢, = s¢ + (1—s)¢y and noticing that in view of (8.20),

d .
Bull i~ x0)q iy dx dE
ds JJo<yem—1 <N(p)

is (uniformly) negligible, for 0 < s < 1. The second integral is negligible, in
view of (8.21).

Let €5 = €,/2, where &, was defined in section 6. We shall express I, (¢)

. . . . . . - —€
in intrinsic terms, in the two complementary regions trf~! < rp ° and

_ —&
trpl > g .

In the region tr§~! < rg >, the same argument as in the proof of

proposition 8.3, shows that modulo a negligible term :

dx dt
@m)

(8.23) L) = H e PRty (x,8)

In the region trg~' > rp ">, we first apply lemma 8.4. Let r, 6 be the

polar coordinates introduced in section 6 so that X (and £,) takes the form
0” = h(0), and dx d§ = r"(dr/r) d6. Passing to these coordinates, we shall
first show that y,(r,0) can be replaced by %, (r,0',h(8")) in the integral in (8.22).
(Somewhat incorrectly we write x,(x,£), x.,(.9), x,(r,0) etc. in order to
express the same function in different coordinate systems.) Now

1(r.8) — X,(r,0,h(8)) = O(rg18” — h(®)))

so we have to show that

(8.24) re H €'@B=<x)q,10" — h(0')| dx d§
(r9,h(®)eB
is negligible. This expression can be estimated by

. d
(8.25) roo ﬂ F(&p, "~ 10" — h(®)r" — de,
(r8.h@®)ecB r
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where F > 0 is rapidly decreasing on R, x R, and

~ 1 ~
p(r,0) = q5(r,8) + 5<p3"e~(r,9’,h(9’))(9”*h(ﬂ’)), (0" —h(®))> = g5 + ps.

In the region under consideration we have tr3~!>r;” and

1 m—¢

P> cr 16” — h(0")]?, so we deduce that

0" — h@)| < Crs" ™ " ()2,

and hence with a new decreasing, rapidly decreasing function F, it suffices to
estimate

P - d
826) TR ﬂ F(t(G+rm )" = do.
r9h@)eB r

Here g, — (1—¢,—¢€,)/2 <0, and the o‘nly trouble is that the
integration in 6" is over an unbounded domain. We shall therefore estimate
the integral in (8.26) by a similar integral over 2B. Put

o(r,0,A) = j do”
pp(r0.07) <A

so that v is homogeneousin A ofdegree d, ifcodim Xy = 2d. Thenfor r,
0 fixed,

J‘w F(t(gp(r,9)+r™" ! +5)) dv(r,9',s)

0o

= f F(tgg+tr™ 1+ o) dv <r,9’, %) <

0
1 B c ) . . 1
F(tgg+tr™ ' +0) dv r,O’,? + F(tgg+tr™ ! +0) d(c%v r,9’,;
0 1

1
< Fege+tr™ Y <r,9’, ;)

where F > 0 is decreasing and rapidly decreasing. The last expression can be
bounded by

1
f Ft(ge+r"1+5) dv (r,0.s),

0
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for a suitable rapidly decreasing function F, so the expression (8.26) can be
estimated by a similar expression where the integration is restricted to :
r9,h®)eB, py<1/t. Since pg=(1/C)rzg 10"—h> we have
10" —h(®) < Cre** ™" in the new domain of integration, so this domain is
contained in 2B. This means that (8.26), (8.25), (8.24) are negligible, and

summing up, we have proved :

LEMMA 8.5. — In the region try~! > rg

negligible term :

, €3 = €;/2, we have modulo a

) dr db
(8.27) L (t) = || e~ *Dagy (r,0,h(0)r" — .
v r (2n)"

The 0”-integration in (8.27) can be eliminated, using the stationary phase
formula. This is a pure case, since ap is independent of 6", and
@ — {x,£) = itqgy + H, where H = @5 — (x,£> is a quadratic form
in 8” — h(0'). With the usual convention, about the choice of branch of

1 .

(det - H8~9~)1/2, we get modulo the same negligible term as in lemma 8.5 that
i

. agy,(r,9,h(@))  dr

—_— r —_—
det 1 q 12 r
e -l— -
_ p
when trf~! > rg °.

The density (ap/(det(1/i)Hiye)dr" (dr/r)d®’ on £ was effectively
computed in [7, lemma 5.3]. With f(0') defined as in section 6, we get

(828) L (1= (2m)~ =9 -”e"q deo’,

2 - de - txv(r,e’)(g tuj(r’e )

—d / —f "—mdﬂ ’
T (I—CXp{—tpj(r,G’})t ﬂe)) (1+0(rg "™ —db'.

Here [d] is the integer part of d. Inthe case when codim Zj is even, we get
modulo a negligible term from (8.28) :

(8.29) Ilv(t) = (Zn)‘nj Z e~ tlap+xy+kp)

keN*

19

= TP d
x 0 h@) B T gy
r r

(when d' of the p;'s are0, the sum over N¢ can be given a meaning as a sum
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over N4~ ofintegrals.) A similar formula holds in the odd-dimensional case,
and we obtain :

LEMMA 8.6. — Inthe region trf ™! > ry ™, &, = €,/2, we have, modulo a
negligible term :

(830 L ()=Q@m)" Je"“"*"”xv(r,e',h(f)'))ﬂs (dx dY),

(where B = B,).

It remains to prove

ProposITION 8.7. — Modulo a negligible term, we have

(8.31) L) =(@2m)™" ﬂ e ey, (x,6)Qg (dx dF).

Proof. — We split this into the same regions as before.

First region : tr§~! < rg . Up to a negligible error the right-hand side
of (8.31) is

(8.32) Q2n)~" J:[e—r(p‘q-xv)xt dx dt

where p*, x* denote the pullbacks of p, ¥, under the projection nn = mg,
used in section 6, to define the measure Q4. In the present region
tp — tp* = O(rs ),

X =1 =008 = 06 ),
so up to a negligible error the integral (8.32) is

(8.33) 2r)~" er““’*"v’xv dx dg,

and (8.31) follows in this case from (8.23).

Second region : trF™! > ry . We now write the integral in (8.31) as

&9 e H e“‘”’*‘?’xtf(e)r"i—rdw,
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(where the coordinates ® = (®'®w”) were introduced in section 6). The same
argument as in the proof of lemma 8.6, shows that x¥ may be replaced by
Xv(r,0’,h(0") and then (8.31) follows from (8.30).

Propositions 8.7 and 8.3 give

CoROLLARY 8.8. — Under the assumptions of theorem 0.1,

1 + o(1)

any e " dW(1), t-0, t>0,

tre-? =

where W(t) is defined in section 6.

Applying proposition 6.4, theorem 7.1, we get the main result of this
paper :

THEOREM 8.9. — Under the assumptions of theorem 0.1, let Q (dx d€) be a
measure on T*X\0, constructed as in section 6. Let x(x,£) >0 be a
continuous function on T*X\0, homogeneous of degree m — 1, and equal to

1.
Sp + Etr on p~1(0). Then

NQ) = (1+0(1) ﬂ QdxdE), A- + .
p+x<h
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