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CARTAN'S BALAYAGE THEORY
FOR HYPERBOLIC RIEMANN SURFACES

par R. E. EDWARDS.

§ 1. — Introduction.

Cartan's general theory of balayage ([I], [2], [3]), as applied
to Newtonian and Rieszian potentials in R^ depends on
foundations which split broadly into two categories

(I) The theorem of Evans-Vasilesco-Frostman, Frostman's
Maximum Principle, Riesz's Representation Theorem, and
various corollaries of these.

(II) The positive definite character of the energy integral,
and the completeness of the space of positive measures of
finite energy.

In [2] the two categories are not kept entirely separate; for
example, the first part of (II) combines with the Riesz Theorem
to give the Maximum Principle in (I). However, we shall
find it convenient to make the separation, which is certainly
legitimate.

The first part of (II) amounts to the validity of the Schwarz-
like inequality

(S) (^vXIN.IMI
for positive measures y. and v, where

(y., v) = f U^v= / U" dy. = ff g{x, y) dy.(x) rfv (y),

llt^+V7^,
and g is the appropriate kernel.

In the cases mentioned, (S) can be proved at the outset,
independently of results of the category (I), by using the



264 B. E. EDWARDS

group structure and convolutions; concerning this, see also
Ohtsuka [4].

The possibility of extending Cartan's method has been consi-
dered by several writers. In particular, Bader [5] and Parreau
[6] assert that the theory can be extended to the case of
Greenian potentials on a hyperbolic Riemann surface. The
present writer feels the need for some details regarding this,
and it is to this question that the present paper is devoted.

Results of category (I) do indeed go over without essential
change. But it would appear that a fundamental change in
tactics is required to cope with category (II). There is now
apparent no method of establishing (S) at the outset. Failing
anything better, it has been found necessary to develop a
very primitive form of balayage theory, based upon (I) in
a manner similar to the earlier theories of Frostman and de
la Vallee Poussin, and to use this at the earliest possible
moment to yield (S).

Thus, it will be assumed that results in category (I) have
been established (see the beginning of § 2 for some comments
on this) and a bee-line is then set for a proof of (S). We
shall at no place turn aside to develop the initial balayage
theory, since it is certain that Cartan's theory, once obtained,
is more powerful.

For the case of quite general convolution kernels on R"1,
Ninomiya [8], [9] has given a complete and elegant discussion
of the positive-definite character of the energy integral in rela-
tion to results of category (I). There is apparent no reason
why his methods should not be adapted to the case of Greenian
potentials, thus deriving an alternative approach for this
case. I am grateful to Mr. R. F. HOSKINS for drawing my
attention to Ninomiya's work.

§ 2. — Preliminaries.

In all that follows, X denotes a hyperbolic Riemann surface
with Green's function g. The potential V^ of a positive
(Radon) measure (JL on X is the function.

W(x)=fg(x, y)^(y),
the mutual energy ((A, v) being defined as in § 1.



CARTAN'S BALAYAGE THEORY FOR HYPERBOLIC 265

Regarding results in category (I), we refer the reader to
the rapid survey in ([6], pp. 124-7); in relation to the Maxi-
mum Principle, see also Ninomiya's adaptation of Y. Yosida's
proof ([7], pp. 2-3), which may in turn be adapted to the
present case.

The minimising principles to which we revert depend only
on perfectly general results in integration theory. Into the
set of measures on X we introduce the vague topology ([2],
§ 1). It is well known that a set @ of measures is relatively
vaguely compact if and only if, for each compact K c X,

Sup^e@|^|(K) < + 00.

Moreover, since g is lower semicontinuous on X X X, the
mutual energy ([A, v) is lower semicontinuous for the product
of the vague topology on the set of positive measures.

The proofs (though not the statements) of Theorems A
and A' below involve mixed measures of finite energy. These
are handled with ease only after (S) is proved, prior to which
their manipulation is somewhat tedious. The definition we
work with initially is that a real measure X has finite energy
if and only if

|iX1|, ||X-||, (X-, X-)
are all finite, in which case we define

ii^ir-inr+iMr-s^, x-)
the positive measures X^ and X"~ being those obtained in the
minimal decomposition of X.

For our restricted purposes, we need only the concept of
interior capacity c(E) for Borel sets E c X:

c(E)=l/Inf||(x||2

p. ranging over all positive measures of total mass one which
are concentrated on E$ if this set of measures is empty, we
define c(E) ==0. A property of points of X is said to hold
p.p.p. if the set where it fails to hold has zero interior capacity.

§ 3. — Basic Theorems,

For the proofs of Theorems A and A.' we revert to Frostman^s
methods [10].
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THEOREM A. — Suppose Kc X is compact and c(K) > 0,
and suppose given a measure a ̂  0 with U01 continuous^ together
with a number m > 0. Then

(i) G^v) = ||v||2—2(a, v) realises its finite minimum g(a, m, K)
on (Ae 5e( W^K) of measures v .̂ 0 which are concentrated on K
and Aa^ (o^al ma55 m;

(ii) i/* we define

(3. 1) /c == /c (a, m, K) == m-1 |g (a, m, K) + (a, (x)j

pi feeing any minimising measure^ then

(3. 2) U^ < Ua + k everywhere
(3. 3) W == U01 + k p.p.p. on K.

THEOREM A7. — Suppose K and a are a^ in Theorem A.
T/ien

(i) G^v) realises its finite minimum g(a, K) on the set ^(/c)
of measures v^O concentrated on K;

(ii) i/" (A 15 any minimising measure, (3. 2) and (3. 3) /io^d
provided we take k = 0 wAen a == 0 and otherwise k = A'(a,
m, K) wi(/i m == J dpi.

Proofs. Consider first the existence of minimising measures.
In either case, G^v) is lower semicontinuous for the vague
topology. ^(K) is vaguely compact. This suffices to
ensure the existence of a minimising measure in Theorem A,
and also the finiteness of g(a, m, K) and of ||(A[|2.

For Theorem A', if we put a == Sup^eK U01^) and N == |dv,
then

(3. 4) G01 (v) > N7c(K) — 2aN > — a/^K)

so that g(a, K) > — oo. Since also c(K) > 0, g(a, K) < + oo.
Thus g(a, K) is finite. Take now any sequence (v?) for which
G^Vp) -^ g(a, K). By (3. 4) it follows that Np = F dvp remains
bounded. Consequently (v?) admits a vague limiting point (A.
This (A is then minimising. Moreover, it is easily shown
that, if a =f=. 0, then p. =/= 0 and so m == j d(x > 0.

The proof of (3. 2) and (3. 3) is common to both theorems
and proceeds exactly as in Section 17 of [10]. As has been
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said, the arguments involve mixed measures of finite energy
and a little care must be taken to justify their manipulation.

The next step is to use Theorem A to establish a uniqueness
theorem, which will in turn reflect upon Theorems A and A'.

THEOREM B. — Let K be as in Theorem A, and let X be any
positive measure with U^ =/= + oo. Suppose that [ji,(i = 1, 2)
are positive measures of finite energy concentrated on K which
satisfy

(i) fd^=fd^,
(ii) there are numbers ki{i = 1, 2) such that

(3. 5) U^ = U^ + ki (i = 1, 2)

p.p.p. on K.
Then

^1 = ^2-

Proof. On the basis of Theorem A we select, for each
a ̂  0 having a compact support and continuous potential,
a minimising measure a', m being taken to be unity. (Actually,
it is enough to do this for countably many suitably selected
OL'S.) We write /Ca==A*(a, 1, K), m= ( d^i. Since Jrfa'^1,
(3. 3) and (3. 5) yield

fV^d^^fV^d^ + k^fd^, =fv^d^ + mk^
=JU^a' +k,+ mk^

all the integrals being finite.
By subtraction, this yields

^(UE1* — U^) da = k, — k,.]^

Choose a point a e X at which both U^< are finite, and take
a = s^r, the Greenian measure on the level curve with equa-
tion g(rc, a) == 1/r defined by

dt^ r = (2'n:)-1 ^g{x, a)/^v. ds.

As a corollary of the Riesz Representation Theorem one may
show that

JU^,—0 (r—oo).
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It appears thus that k^ = A-g, and so

Ju^—pi^o
for all a, and this suffices to show that (AI — (Xg == 0.

COROLLARY. — TAe minimising measure in Theorem A is
uniquely determined by K, a anc? m.

As another application of Theorem A we may introduce the
capacitary measure x of a compact K: if c(K) = 0, we define
x == 0; if c(K) > 0, we apply Theorem A with a = 0 and m = 1 to
derive a (unique) minimising measure pi, and we define
x==c(K).[j i . Thus in all cases x is concentrated on K,
U7*^ 1 everywhere, U7 = 1 p.p.p. on K, and [|x||2 = c(K) = j dy..
In terms of this y, the above three theorems may be supple-
mented by three more assertions :

(a) If in Theorem B the hypothesis (i) is dropped, the conclu-
sion is that pii—pig ls a multiple o/*x.

(6) Any minimising measure in Theorem A7 differs from that
in Theorem K by a multiple of x.

(c) In place of (3. 1) one may write

(3. 1') /c(a, m, K) = c^-^m—f^d^.

§ 4. — Balayage,

We shall need no more than the possibility of balayage onto
compact or open subsets of X of measures having continuous
potentials. The compact case is dealt with first, and this as
a direct application of Theorem A.

THEOREM C. — Let K c X be compact^ and let a be a positive
measure with V"- continuous. There exists precisely one positive
measure a7 == a& with the following properties:

(Bi) y! is concentrated on K and I j a ' l ) < + oc ;
(Bg) 11^= U01 p.p.p. on K;
(83) fdw! = JU^a.
This a7 satisfies also
(84) U^ < L^ everywhere.
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PROOF. — If c(K) == 0, the only possible choice is a7 == 0.
Otherwise, apply Theorem A with m taken equal to jV^dos.
and recall (3. I'). Uniqueness is settled by Theorem IB.

Possession of Theorem C alone is sufficient to enable us to
prove (S). However, the proof of completeness of the set
of positive measures of finite energy has not been made inde-
pendent of the concept of balayage onto an open set. The
minimum requirements in this connection will now be given.

Let Q be any non-empty open set in X, and let a be a posi-
tive measure with a continuous potential. We shall define
(XQ, the result of balayage of a onto Q, by the requirement
that U^ shall be the upper envelope of U^s. as K ranges over
all compact subsets of Q. This definition is justified by use
of the Riesz Representation Theorem: any positive super-
harmonic function which minorises a potential ^+ oo is
itself a potential. Moreover using properties (Bg) and (84),
together with elementary mean-value properties of super-
harmonic functions, it is seen that

U^ <; U01 everywhere, L^a ==11°' on Q.
It is also clear that, for a fixed a, U^ is increasing with Q.

The only other properties of the balayage process we shall
need relate to regular points. If A is either compact or
open, a point p of X is said to be regular (for the balayage
onto A) if and only if

U<(p) = U^p)
for all a. It is easily seen that the regular points necessarily
belong to A, and that each interior point of A is regular.
Local criteria for regularity of frontier points (Wiener) may
be established, whence it appears that all frontier points are
regular provided the frontier is sufficiently smooth. In this
case, assuming still that L^ is continuous, it follows that U^ will
be continuous.

§ 5. — Proof of (S).

Let § denote the set of positive measures of finite energy,
£(K) the subset of those concentrated on a given compact set
K c X .
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The following proof of (S) is dependent on the possibility
of balayage onto compact sets only.

Let K be any compact with c(K) > 0: the emphasis is
in fact on « arbitrarily large » K. We apply Theorem A',
denoting by a* any one minimising measure so obtained.
According to (b) of § 3, a* == on' + cv. for some number c.
We begin by verifying that: if a e 8, then a* == a7. For one
may now write G^)^^—a[|2—jla||2, so that a* minimises
||v —a|| as ^ ranges over §(K). Since a' e 8(K), it follows that

1^—air^ll^—all2.

The right hand side here is ([a7 + ^—a[|2 , which can be
verified to equal

ll^—all^^—a, ^)+W
Thus

2c(a/-a,x)+c2|jx||2<0.

Now (Bg) shows that (a7—a, x) = 0. Hence ^[Ixll^O and
so c == 0. Thus a* = a'.

It appears then that

[|v — a]] > [[a7 — a[| for ^ e 8(K).

Thanks to (B4), [[a' —a|| ̂ 0. Hence

||v-a||>0

if a ,ve8(K) and U* is continuous. Replacing a by aa
(a= a number ^ 0), this gives

|j,]F_2a(a,v)+a2 | |a|[2>0,

and this is trivially true for a < 0. Accordingly

(a, ^OlalMMI2

Thus (S) is established for measures in §(K) having continuous
potentials, K being any sufficiently large compact set. Both
restrictions are easily removed by approximating a general
W (pi e= §) by a monotone sequence of potentials V^ which are
continuous and generated by measures pi^ having compact
supports.
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§6. —- Completeness of 8.

Having proved (S), we now know that the space § of
mixed measures of finite energy is a pre-Hilbert space with
the scalar product (pi, v). The cornerstone of Cartan's theroy
is the theroem that § is complete, even though § is not gene-
rally so. To prove the theorem in the present case, one may
modify the arguments given by Cartan (see especially § 5
of [2]). Of these arguments, all save perhaps one require
only verbal changes. The miscreant is the assertion that
the pi e 8, for which U^ is continuous and has a compact support,
are dense in 8. Cartan's proof of this depends on the fact
the appropriate kernel function tends to zero nicely at
infinity (loc. cit., passage preceding the converse of Proposi-
tion 3). This is no longer true in general for the Green's
function of X. Nevertheless, the result remains true. The
following proof uses the possibility of balayage onto non-
relatively-compact open sets, and it would be desirable to
have a more direct proof.

Cartan's Proposition 4 remains true, the proof being exactly
the same. It will suffice to show that any (Xo e §ls ̂ e (strong)
limit of (JL e= 8 for which U^ is continuous and has a compact
support. Now, by Proposition 4 just cited, pio is certainly
the limit of p. having compact supports and continuous poten-
tials. Hence it will certainly suffice to show that if (A e 8
and U^ is continuous, then [x is the limit of p^ e 8 for which
U^ is continuous and has a compact support. For this,
exhaust X by an increasing sequence of compact sets K,,
with smooth frontiers, and put Q^ = X — K^. Let v^ be the
measure obtained by balayage of p. onto Qn, (x^ = (JL — v^.
Then U^ is continuous (see end of § 4 above). Since U^ == IP"
on Q^, W" has a compact support. It remains only to show
that [[v^l-^0, i.e., in view of Cartan's Proposition 4, that
U^-^O. Now ¥==1^1}^ is harmonic and positive on X,

7l->oo

and it is clearly majorised by W. It follows that V = 0
([6], Theoreme 1 bis), and the proof is complete.
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