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INTERPOLATION BY BOUNDED FUNCTIONS
par W. HAYMAN.

1. Let D be a domain in the plane or more generally a
Riemann surface, which admits bounded analytic functions.
In a recent lecture R. C. Buck raised the following problem.
Do there exist infinite sequences z^ in D, such that an arbi-
trary bounded sequence w^ can be interpolated at z^ by a
function f (z) regular and bounded in D, and if so does every
sequence z^ which approaches the boundary of D sufficiently
rapidly have this property? Although the existence and uni-
queness problem for fixed sequences w^ and z^ has been
extensively treated by Pick, Schur, Grunsky, Carath6odory,
Denjoy, Nevanlinna and others (1), Buck's questions does not
seem answerable by the classical methods.

We shall in this paper supply an affirmative answer to both
problems in case D is the unit circle. A sequence z^ n= 1, 2, ...
will be called a universal interpolation sequence, (u.i.s.) if

|^|<1, n=l, 2, ...

and given any complex sequence w^ satisfying
j^|<l, n=l, 2, ...

we can find f(z) regular and bounded in \z\ < 1 and such
that

A^)-^- (I.I)
(1) See e. g. R. Nevanlinna, Uber beschrankte analytische Funktionen, Annales

Acad. Sci. Fenn. 32, nr. 7 (1929), for a good account of the problem.
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The conditions evidently imply that the z^ are distinct and
have no limit point in \z\ < 1. We write

Zm———Zn
• m, n — ,1 —

|1——Z^

We shall denote by C, Ci, Cg, ... positive constants independent
of m, n not necessarily the same each time. The letter A
will denote positive absolute constants and A(e) constants
depending only on £. Our main result can now be stated as
follows.

THEOREM I. — A necessary condition for a sequence z^ to
be a u.i.s. is that

00n^n^.^^ a11 n- (L 2)rm,n^^ all n.
m=l
m-^-n

A sufficient condition is that there exists \ <^ 1 and C^ > 0 so
that

^nW=tl[l—^—^n?]>C^ all n. (1.3)
m==l
m^-n

We note that (1. 3) reduces to (1. 2) if we put X == 1. Thus
the necessary and sufficient conditions are not too far apart.
It seems quite possible that (1. 2) is in fact sufficient as well
as necessary, but I have been unable to prove this.

From Theorem 1 we shall be able to deduce

THEOREM 2. — A sufficient condition for a sequence of distinct
numbers z^ in \z\ < 1 to be a u.i.s. is that

iim1——^-^!. (1.4)
n•>oo ± —— pn

If z^ is positive increasing, the condition is also necessary.

2. PROOF OF THEOREM 1, NECESSITY. — Suppose that z^
is a u.i.s. and that (1. 2) is false. Then we can find an increa-
sing sequence of integers n?, p = 1, 2, ..., such that

11^—0, as p-oo. (2. 1)
Since |^j is a u.i.s. ^j has no limit point in \z\ < 1 and so

r»,.-^l, as m—^oo for fixed n.
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By choosing a subsequence of our sequence rip if necessary,
we may therefore suppose in addition to (2. 1) that, given
HI, yig, ..., Hp_i; rip is chosen so large that

r^^exp^-^], k=i, 2, ..., p—1.
We deduce that

Q^rK^^p -fs2"p=i p=i
p^fcP^c

•ip-/ci
>exphM ^-2. (2.2)

Suppose then that our sequence n^ satisfies (2. 1) and (2. 2).
We choose w^ so that

w^=l, p=l, 2, ...,
w^ == 0, if n^=- rip for any p,

and suppose that there exists f(z) regular in \z\ <; 1 and satis-
fying (1. 1) and \f{z)\ < M there. Let N be a positive integer
and set

y(^) = /W IT j-
where the prime denotes a product over integers not belonging
to the sequence rip. Then <p(z) is regular in \z\ < 1 and

iim|y(^|<M.
\z\-^l

Thus the maximum modulus principle gives |y(z)(^M in
\z\ < 1, and so

I^KMII'^I-
n=l ± —— ^n2

Setting z == z^ for a fixed k and making N —>- oo we deduce

^Mn'^n^M"-^]^2!^.
n=l ^Cfc

This contradicts (2. 1) and so proves the necessity part of
Theorem 1.

3. PROOF. OF THEOREM 1, SUFFICIENCY. — Let z^ be a
sequence of points in \z < 1 satisfying (1. 3), or more gene-
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rally (1. 2) and suppose that we can find a sequence of func-
tions /,(z) regular in lz| < 1 and satisfying

\fn(Zn)\>C, all n
and

(3. 1)

(3. 2)SI^KC", |2l<l.

We write
Zm——Z Z^^)=/^)n r^-i tm=i ( 1 ——^Z Z,m==l

m^n

(3. 3)

Then the condition (1. 2) implies that g^{z) is regular in
\z < 1,

gn(^m) =0, 771 =^ 71,
and

|g^)|=|^)|lL>c.
We now put

gn(^)
hn{z)=

5n\

?»(*"/gn(Zn)
(3.4)

Then we have for |z <^ 1
!/^)|<jte)l<imIgn(z))

and so by (3. 2)
c"SI^^K^' ^<i.

Also by (3. 3) and (3. 4) we have
A,(zJ = 1, A,(z^) =0, n ̂  m.

Thus if W,, is any bounded sequence we set
w

^^=2^^).

(3. 5)

(3. 6)

It now follows from (3. 6) that f{z) satisfies (1. 1) and from
(3. 5) that f(z) is bounded in \z < 1.

In order to complete the proof or Theorem 1 it therefore
remains only to construct the sequence /^(z) satisfying (3. 1)
and (3. 2), given a sequence z^ satisfying (1. 3) and this we
proceed to do.
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3. 1. In order to construct our sequence fn(z) we shall
construct functions Un(js) positive and harmonic in \z\ < 1
and such that for some positive £

U.^XC,, (3.7)
maxtU^U^j^l—r^n m^n, \z\<l. (3.8)

We then define fjiz) by the equation
s/^)i =<>-w.

Then (3.7) shows that (3.1) holds. Also (3.8) shows that
n^ll^U/nOOJ^exp^—r,,,,.)-6, z|<l, rn^n.

For any z in [z| <; 1 let
t(z)=SUp|/,,(z)|=/M(z),

m

say. Then if
exp^l-rM.nPK^), (3.9)

we have
/^^exp^l-rM..)-6]. (3.10)

Now if N == N(r) is the total number of indices n for which
^•M.n ̂  r it follows from (1. 3) that

[l—^—r^^C,
and hence

N(r)<C(l—r)-\
We choose r so that

exp [- (1 - r)-6] = t{z\ (1 -r)-6 = log [l^(z)].
Thus in this case

N<qiog[l/^)]^6. (3. 11)
We see that the number N of indices n for which (3. 9) is

false satisfies (3. 11) for any z in \z\ < 1. For all other values
of n we have (3. 10). Thus

2i^ (z)|<Nt(z)+ ^exp^l-r^,,)-']
71 ==1n==l n==l

ny£Mn^M
00

< Q(z) {log [l/((z)] jx/6 + A (e) ̂  (1 - rM, „) < C,
n=l
n^M
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in view of (1. 3). This yields (3. 2). Thus our problem of
constructing the regular functions f^{z) is reduced to the
construction of the positive harmonic functions Un(z) satis-
fying (3, 7) and (3.8).

4. CONSTRUCTION OF THE FUNCTIONS V^{z). — For any
pair of points z, z' in the unit circle we set

( / \ z ——— j^
^^r^

We shall need a number of lemmas.

LEMMA 1. — Given £ > 0 and p such that 0 < p < 1,
there exists u(z) harmonic and positive in \z\ < 1 and such
that u(p) == 1,

ITu(z)>sin^£ ^ 1 + P i — z
4-p'l+z

> ! — £

\z\ < 1.

Choose

and write
1—z

u=3t<

l+^=Tei?'

1+? l—z^^
l-p'l+^

l±fT< cos [(1—s)?].'i-p
Then [<p[ < — and so

2i

COS [(1 —— £)9] > COS [~(1 —— £) -̂ 1 sin

and this proves the Lemma.
We have next

LEMMA 2. — Let D be a subdomain of \z\ <; 1 bounded by
an arc of a circle orthogonal to \z\ == 1 and an arc of \z\ == 1.
Let ZQ be a point of \z\ < 1 outside D and such that for every z
in D we have r(z, Zo) ^> To.

Then, given £ > 0, we can find v{z) harmonic and positive
in z\ <; 1 and such that v(zo) = 1 and

.(,)>,,n(-̂ )(̂ )-;nD.
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We may suppose without loss in generality that ZQ is the
origin and that D is bisected by the positive real axis, since
these results may be achieved by a conformal map of |z| < 1
onto itself, which leaves r{z, Zo) invariant. It now follows
that D is the domain given by

1+z where>R,1—z

We now set

R> 1+r,
l—r»

P(Z)
^/1+zy-6

yt( ,—— '\ l—z/

and note as in Lemma 1, that

1+zl1-6
, .. . V, \ 1 + ZP(z)>sm(^-e) ,——_

\ •" / -••—z
^sin| it

~2
'l+'-oV-6

for z in D, and this proves the Lemma.
4. 1. In order to make use of Lemmas 1 and 2 in our cons-

truction we need some inequalities for r(z, z').

LEMMA 3. — Suppose that z^, z^, 23, 24 are points in \z\ < 1
and that 0 <^ z^^ z^ <^ 1. Suppose further that

1+z, <

Then we have
\i-z.

I—r(z,, Zs)<A

Write

1+z.^
1——22^ 1——23

^ „ l—r(zi, z,)

1+Z,

Z. = ̂ -±z! = R.^, l=z.= R2'1 ——Z^

Z,=p^=R3^, =R.
1——Z,

•r{z^ Zt)

l+z.
1—z,
l+z^

where by hypothesis 2R,-^ Rg ̂  Rg, Rg ̂  R^ and also
TT

|T.<^ l?3l<
Tt Then

Z,-l
^Z.^^'

Z,—l
Z ^ + l '
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and

Also
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Z< —— Za Z,-Z3r(z^ z,) =
l—^sl |Z,+Z

^ |Zi + Zs|2—|Zj—Z3|2_4R^R3Cos9^cos<p3l—r(zi, z,Y=

Similarly
Z.+Z3 IZ^+Z,!2

1 r^ T ^ 2 ^RjR2COS9,l—r(z,,^) = - .7 ^
1̂ + ^2|

4 / \2 "tll-s11^l-r(z,,z,) =^^^,

1 rfz .^_4R,R,cosy.
— — v " ^ ~ \~, -J_ R |a

I2! + "4|

Now we have by hypothesis 2Ri -̂  Rg ̂  R3, R^ -̂  R(, and
so

^R^-^RKlZ.+Z,!1,

R!<(R.+R4)2,
|Z.+R»f<-l-Rt

Thus

1—r(z,, 24)^ 1 1—r(z,, z,)2 4R,R^cos9i R^
ll / \ ^^ f\ A 7 ^ ? -^^ /^ * / •»-» ITl—r(z2, Zi) 2 l—r(z2, z^) . 9 02 4R,R,^S.-^K,

^ ĵ  R, cos 9, ̂  j_ RiRg cos <pi ̂  1 R,R, cos 9,
~ 9 R, -^9 Ri ^18"Z,+Z,|2

>-[l-r(z„z.)2]> l[l-r(z„z,)].72'72

This proves the Lemma.
4. 2. The key result in our construction is

LEMMA 4. — Suppose that p, u(z) are defined as in Lemma 1,
4

that 0 < X < 1, and E = — (1 —>.), /urtAer (Aa( z' = p ' e " f where
0<p'<p. Let *

.=^,p)=^.
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Then there exists c(z), positive and harmonic in |z| < 1, and
such that p(z') = (1 — r)^ and

u(z) + P(z) > A(e) (1 — r)-', \z\ < 1.

We distinguish two cases. Suppose first that

14-^
1—z72 <1+t

1̂ ?
where

(1— <)=(!— p)(l _,.)-".
Let D be the set given by

(4.1)

(4.2)

1+2
1—z >.1+t

!—('
Then if z lies in D we have by Lemma 3, with Zi, z^, z^, z^
replaced by z', (, z, p

1-^ ^/)<A^^)

_A(l-r)(l-,p) A(l-r)(l-^) ^
(l-p)(l+() < (l-p)(l+() -A(1-^) •

Hence by Lemma 2 we can construct a positive harmonic
function ^ (z) such that ̂  (z') = 1, and for all z in D

^(z^A^l—r^-^-^A^l—r)-1*36.

Also outside D we have by Lemma 1 and (4. 2)
, l - f l+ >A(£)(l—r)-2(<l-£>u(z)>A(e) /!+( i _o<

(^,3)>A(e)(l-r)-S

since e -̂  ---•^
Choose now

P(z) = (l-r)^(z) = (l—r)1-^).
Then

^^(l-^,
and in D we have

^z^A^l—r^—^A^l—r)-2,
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while outside D (4. 3) holds. Thus Lemma 4 is proved in
this case.

We next consider the case in which (4. 1) is false. Suppose
first that

1—p'OyK^.
In this case

^ ,. ^ ^ ̂  ii-pp^l2-!?^-?!21 r -1 r(z,p}- |l_pp^
(l-p^l-p") A^-pKl-pQ>(i-ppT+app^i-cosy)

while
i+z? l+2p /cosy+p /2 <4.1—z' (l-pQ^^l-cosy)'^2

Since (4. 1) is false, we deduce

A^ A ^(l-r)^ A r(i—p)(l-p^
^^(1-^ (l-p). ^(l-p)^ y2 J '

j<p]2(i-^ ̂  A(I — p)2-46 (1 — p7)-46 < A(l — p')^-^,

and so, since X = 1 — 4e > 0,
ryKA^d-p').

This inequality thus holds in any case if (4. 1) is false.
Thus in this case

(l-p^(l_p^) A(e)(l-p)
(l-ppr+app^l-cosy)^ (1-pQ ^^

We now put
,, W/I+ZV"^ • /TCXI+ZJ1-6

^=^(1=-^ >csmy^^| )

where c is so shosen that
^)==(l_r)\

Then we have for |z| < 1
^ij^pY-61u(2)+^)>sm^J-£n^-±-£

1+z

1-£

+c 1+21 1 - 6

1——Z

^ sin | it •i<m'
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We have

(l—r^^Xc l+zT-6

i—zf

>>

<c /l+W-6

Vi-W >1—1
so that

.^-e/i-PV-"^-(i-pQ-^i-^^A^-pr-^1^)1"*2,"' \ 1 —p/^ ^ o ^ ' r / v ^ — ' / ^-"-\^—vi \-A——-,
~ \ - 1 -—?/

by (4. 4). Thus

u(z)+P(z)>A(£)[(l-pr(l-p)l-t£(l—p)£-T>
'\-A(£)(^/)2£>A(£)(l-r)~fs'>A(£)^__

again by (4. 4), so that Lemma 4 follows also in this case.

5. COMPLETION OP PROOF OF THEOREM 1. — We can now
construct our harmonic functions Ua(z) to satisfy (3. 7) and
(3. 8). Let z, = p,,̂  be the members of our sequence and
suppose that

Pn-^Pn+l? n==l, 2, ...

Set
V M - w^+Pn l—ze-'"")1-6

w-^i^r+^i •
Then after a rotation of the unit circle we can deduce from
Lemma 4 that we can, for m < n, construct a function ^,n(z),
positive and harmonic in |z| < 1 and such that

^.n(^)==(l—r^)\
and

^n(^) + V^) >A(e)(l-r^)-S |z| < 1.
Set now

00

U^z)==V^)+ S M'».'>(z)•
n=m-+-l

Then

U^)=l+ J; (1-r,,^
n=m+l

<1-S log[l-(l-r^^]<C (5.1)
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by (1. 3). On the other hand if m < n and |z[ < 1

max tU,(z), U,(^ >-|-[U,(z) + U,(z)]

>-|- [u^(z) + V,(z)] >A(£)(l—r^)-6. (5. 2)

If Iwe write A(£)U^z) instead of U^(z) in (5. i), (5. 2) we
obtain (3. 7), (3. 8) as required. This completes the proof of
Theorem 1.

6. PROOF OF THEOREM 2. — We proceed to deduce Theorem 2
from Theorem 1. We prove first the sufficiency part of Theo-
rem 2. Suppose that z = pe18, z' == p'e16*, where p <; p'. Then

l-r(z .T- (l-p^l-p-)r^ z ) (l-p^^p^l-cos^-OO]

î̂ ^-^)2.
Thus alsoi_^)<i_^^i_j^(»-^+p)<j^i

M T / ^——pp/ ^——pp/ -- ^ — — p

Suppose now that z^ = p^10" is the sequence of Theorem 2
and that we have for n^yio>

l-|z,J <K(l-|zJ)

where K -< 1. Then for n > m ̂  no we have
1 _|y | <- 'K"-'"^ [7 h•i- —— Fn| ̂ ; -tY (,1 —— IZmj;

and hence for n > yio» m ̂  ̂
l—^,<2Kl n-m l . (6. 1)

Similarly it n > no? m ̂  ^o
l-r^^K—. (6. 2)

Finally since r^^ n =/= 0, for m <^ n -^ n^ we have for m <^ n ̂  n^
^_

rm. n)l-^-r^^^C. (6. 3)
This inequality remains true for general distinct m, n. In
fact if m ̂  riQ < n we have

^ m Z n ^ Pn——POT ^ Pno^i—— PHQ _ p
1 Z « ^ 4 ^ ^ ^ 4 ^ ^ — ^?1 —— Z^zJ ̂  1 —— p^p^ ̂ 1 —— Pn^pn,^
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and if n > m ̂  rio, we have

r ^ P m ^ l — — p m ^ ( l——Pm)——(i——Pm^)

^^l——P.P^l (l——Pm)+Pm(l——Pm.i)

(l-K)(l-pJ_l-K
^ 2(l-pJ 2

Thus (6. 3) holds in all cases.
Let now t^ be the smallest positive integer, such that 2 K4 < J—

Suppose first n <; rio + <o- Then z

n/^nh-o-^)^ n n =^/^ff,
\ ^ / m=l m^no+2(o m>no+2(o

wHsU m,£n

say. Here IP > C by (6. 3) and by (6. 1), (6. 2)

ir> fl [i-(2Kr]=c>1-
(==to-M ^

Thus in this case II/1 ̂ >C in (1. 3).
\ 2t /

Similarly if n > HQ + ^o

".(4)>n , n n ri-d-r.,.)7]
\ A / m^n, j^jm—nl<$(o l"—mj>(o

m>no>c».c2<.S n [i-^Kvj^c,
(t=to+l )

j[
and so (1. 3) holds again with X=-^-. This completes the
sufficiency part of Theorem 2.

To prove necessity if the ^ are all positive, suppose that
they are arranged in order of magnitude. Then (1. 2) must be
satisfied and it follows that

r^m.^^^^ >C>0, m==l to oo,
1 —— ^m^m + 1
C+z^

^•^l+Cz,/
(i-^.x^^^^^^a-cKi-^).

Since this holds for all m, we have (i. 4). This completes
the proof of Theorem 2.
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Since receiving the proofs of this paper, Prof. L. Carleson
has kindly shown me the proofs of a very elegant jpaper of
his, to be published in the American Journal of Mathematics,
in which he proves that the condition (1.2) is sufficient as
well as necessary for Zn to be a u.i.s. However his proof is
nonconstructive, so that the present paper, in which an
interpolations series is actually constructed, may still have
some interest.


