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THE CLASS GROUP
OF A ONE-DIMENSIONAL AFFINOID SPACE

by Marius van der PUT

Introduction.

The field k is supposed to be complete with respect to a non-
archimedean valuation. Moreover we will assume that k is algebraically
closed. An afflnoid space Y over k is the set of maximal ideals of an
affmoid algebra. The standard affinoid algebra is fc<T^,...,T^>= the
set of all power series SflaT^ • • • T^ converging on the closed polydisk

{(^....rJe^alllr.Kl}.

An affinoid algebra is a residue class ring of some fc<Ti,.. .,T^>. An
algebraic variety over k can be studied locally by its analytic structure over
k, that is by means of afflnoid spaces.

We show that a one-dimensional, normal, connected afflnoid space Y is
an afflnoid subset ofa non-singular, complete curve C over k (Thm 1.1). If
Y has a trivial classgroup then Y is in fact an afflnoid subset of P1

(Thm 2.1). A curve is locally a unique factorization domain (U.F.D.
for short) if and only the curve is a Mumford curve (i.e. can be
parametrized by a Schottky group). In general the class group of Y
can be expressed in terms of the Jacobi-variety of C (prop. 3.1).

Some examples show the connection between the class group of Y and
the class group of the (stable) reduction of Y. For fc-analytic spaces we refer
to [2], [3]. I thank A. Escassut for bringing the problem on unique
factorization on afflnoid spaces to my attention. Related questions are treated
in [1].

1. Affinoid subspaces of an algebraic curve.

A curve C (non-singular and complete) over k has a natural structure as
(rigid) analytic space over k. This structure is given by a collection
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of subspaces Y of C, called affmoid, and a sheaf 0 = (9^ with
respect to the Grothendieck topology of finite coverings by afflnoids.
For any Y, ^P(Y) is an affinoid algebra (1-dim. and normal) over k
with Sp((P(Y)) = Y. We want to show :

1.1. — THEOREM. — Every 1-dimensional, normal, connected affinoid space
Y = sp(A) is an affinoid subspace of a non-singular complete curve.

Proof. — Y is called connected and normal if the algebra A has no
idempotents ^ 0, 1 and A is integrally closed. We use the notations
A° = {/eA| 11/H <!}, A00 = {/eA| ||/||<1} and A = A7A00, where
11/11 = max {\f(y)\ \y e Y} is the spectral norm on Y. The algebra A is of
finite type over k = the residue field of k and the algebraic variety
Yc = Max (A) is called the canonical reduction of Y. There is a natural
surjective map R : Y -> Y^, also called the canonical reduction. A pure
covering of an analytic space X, is an allowed covering ^ = (U^) by
affinoid spaces, such that for every i + j with U, n U, ^ 0, the set
U; n \Jj is the inverse image of a Zariski open set V^ in (U^ under the
map U, -> (U^. The reduction X^ of X with respect to ^ is
obtained by glueing the afflne algebraic varieties (U^ over the open
sets V^.. The result is an algebraic variety over k. If X is separated
then the U^ n Uj are also affinoid, the V^ are afflne and equal to
(U^oU), and X^ is separated. If X is non-singular, 1-dimensional,
connected and if X^ is complete then X is a non-singular complete
curve over k (see [2] ch. IV 2.2).

Our proof consists of glueing affinoid spaces Y i , . . . ,Y , to Y
such that the reduction of X = Y u Y^ u . . . u Y, with respect
to the pure covering {Y,Yi,...,Yj is complete. Then clearly Y is
an affinoid domain of the algebraic curve X. The 1-dimensional
space Yc lies in a complete 1-dimensional Z such that F = Z - Y^
is a finite set of non-singular points. Suppose that we can find for
every p e F an affinoid space Yp with canonical reduction
Rp : Yp -> (Yp)^ <= Z where (Y^ is a neighbourhood of p and
such that

Y, ̂  R;1^ n Y,) ^ R-^Y;), n Y,) c Y.

Then we can glue Yp to Y. The space X = YU u Yp has reduction Z
which is complete. So the glueing has to be done locally on Y and Y^. The
component C of Z on which p lies can be projected into P^k) such that
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(the image of) p is still non-singular. A good projection onto P1 maps p
onto o and o is an unramified point for the projection. Replacing Y and
Y^ by neighbourhoods of p we may therefore suppose :

W) = d)(^) = feEr.Mrr^JAP),
where

1) e(t) = (t-a,) . . . (t-a,) with ^, .. .,^ different points of ^ ;they
are the residues of ^4, . . . , a, e fe°.

2) P is a monic irreducible polynomial of degree n with coefficients in
~k[f}.

. dP
' d~~ ls mvertlble as Cement of H[_t,(e(t))~1,5]/(P).

4) the point « p » corresponds to t = 0.

Then ^(Y)° has the form fe°<T,U,S>/(TE(T)U-l,Q) where

E(T) = (T-ai); . . (T-a,) and Q = P.

Since Q is general with respect to the variable S, we can apply Weierstrass-
division and assume that Q is a monic polynomial of degree n in S with
coefficients in fe°<T,U>/(TE(T)U-l). Suppose that we can find a monic
polynomial Q* of degree n in S and coefficients in fe°<T,V>/(E(T)V-l)
such that

fe°<T,U,S>/(TE(T)U-l,Q*) ^ ^(Y)°.

Then Y^ = Sp(fe<T,V,S>/(E(T)V-l,Q*)) has the required properties. So we
have to get rid of the negative powers of T in the coefficients of

C^S^^S"-^ ... +^.

1.2. - LEMMA. - If Q* = S" + a;-^-1 ̂  . . . + a? ^5
coefficients in A = fe°<T,U>/(TE(T)U-l) ^ Q* = Q = p, then

a) Q* i5 irreducible
b) Q* /ia5 a z^ro in ^(Y)°
c) fe<T,U,S>/(TE(T)U-l,Q*) ^ (P(Y).

Proo/ - a) Let Q* be reducible over the quotient field of A.
Since A is normal, Q* is a product of monic polynomials with
coefficients in A. This contradicts the irreducibility of Q* = P.
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f ^Q*1b) First we show that \Q*,——^ generates the unit ideal in A[S]. Let
I rfS J

dQ*
m be a maximal ideal containing Q* and ——. If m n k° ^ 0 then m

dS
induces a maximal ideal of H^t,(te(t))~^][S] = A[S] containing P and
dP
—. This contradicts our assumptions on P. So m corresponds to a
aS
maximal ideal m^, of fe<T,U>/(TE(T)U-l)[S], containing Q* and
dQ*
~dS~'

If mi nk<T,U>/(TE(T)U-l) + 0 then m^, is the kernel of a
homomorphism in k given by T i—> ̂  e k, S i—> ̂  6 k with

|?4|^ 1, P4E(5iO|= 1, |̂ 1 < 1

/ dP\
since Q*^) = 0. Ffom P.— = ^[^(^(O'^S] it follows that

\ »S/

dO*
Z,(S)Qalt+Z,(S)-^=l + S ^S1

"^ i>o

for certain Z^, Z2 e A[S] and ^ 6 A with ||flf|| < 1. The substitution

T i—^ ^ i ; S i—> ^2 makes 0 = 1 + ^ ^Ai)^2» which is impossible. So
i>o

m and m^ correspond to an ideal of L[S] with L the quotient field of A.
dQ*

Since Q* is irreducible, this means that —— = 0. This is obviously in
dS

contradiction with (P,—) = K[^?(0)~1].
\ ^S/

We conclude the existence of Z^, Z^ e A[S] with

dQ*
1 =Z,(S)Q*+Z2(S)——.

aS

By Newton's method we will show that Q* has a zero in ^(Y)°. Let
T| e ^(Y)° satisfy IIQ^rOII < 1 (e.g. TI is the residue of S mod Q in

dO*W). Then 1 - Z,(Ti)Q*(ri) = Z^) -^ (TI) and since
aS
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dO*
l|Zi(ri)Q*(il)|| < 1 it follows that ——(r|) is invertible. Put

aS
/d0* \~1

Th = TI - Q*(^)(-^-(Ti)t . Then ||Q*(Tii)|| < ||Q*(Ti)||2. The usual

procedure and the completeness of (P(Y)0 show the existence of a root of Q*
in (P(Y)°.

c) The quotient field of A[S]/Q* is contained in that of A[S]/Q,
because of (b). Both fields are extensions of degree n of the quotient field
of A. So they are equal. The rings fe<T,U,S>/(TE(T)U-l,Q*) and ^P(Y)
are both the integral closure of k<T,U>/(TE(T)U-l) in that field. So they
are equal.

End of the proof of 1.1. — We choose Q* with coefficients in
k°<T,V>/(VE(T)-l) and Q* = P.

1.3. — COROLLARY. — Let Y be as in (1.1); then Y is affinoid in a curve X
(complete non-singular} such that X — Y^. is a finite set of non-singular points.

2. Unique factorization.

We want to show the following :

2.1. — THEOREM. — Let Y = Sp A be a 1-dimensional connected affinoid
space. Then A has unique factorization if and only if Y is an affinoid subspace
ofP^k).

Remarks. — 1) Since A has dimension 1 the condition « A has unique
factorization » is equivalent to « A is a principal ideal domain ».

2) It seems that this theorem has also been proved by M. Raynaud.

A connected affinoid subspace Y of Pl(k) has clearly a U.F.D. as affinoid
algebra. Before we start the proof of 2.1, we like to state its algebraic analogue.
It is :

2.2. — PROPOSITION. — Let A be a finitely generated algebra over an
algebraically closed field k. Suppose that A is 1-dimensional and a U.F.D.
Then A is isomorphic to the coordinate ring of a Zariski-open subset of Pl(k).

Proof. — A is the coordinate ring of a Zariski-open subset X of some
non-singular complete curve C; put X = C — {pi , . . .,^J. Let D be a
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divisor of degree 0 on C; since A is a U.F.D. there is a rational function /
f s

on C with D = (f) on X. This means that the map ^ ^ n,p.|n.6Z andi..
£ Hi = 0 > ——^ J(C) = the Jacobi-variety of C, is surjective. If C is not a

rational curve then its Jacobi variety (or better its points in k) is not a finitely
generated group. Hence C ^ P^k).

We prove the theorem in some steps.

2.3. -J.EMMA. - Suppose that ^(Y) 15 a U.F.D. and that Y is irreducible,
then H^Y,^) = 0.

Proof. - Y denotes the canonical reduction of Y. An element
^eH^Y,^*) corresponds to a projective, rank 1, ^(Y)- module N; let F
be a free ^(Y)-module, a : F ——^ F an idempotent endomorphism
withim a = N. Then F, a lift to similar things over (P(Y)° since d?(Y)°
is complete and ^(Y) = ^(Y)° ®L So we find a projecture, rank 1,
^(Y)°-module M with M ®^ = N.

Further M (g) (P(Y) ^ ^(Y) since ^(Y) is a U.F.D. There exists a
Zariski-open covering of Y such that N is free on the sets of this covering.
That implies the existence of f^ ...,/, e 0(\)° such that

a) each ||y,|| = 1 and C/i, .. .,/^(Y)° = ^(Y)°.
fc) M®<P(X)°<S>/(Sy,-l) is a free ^(X)°<S>/(Sy;.-l)-module.

We identify M with M ® <P(Y)° c ^?(Y) and we may suppose that
M c= <P(Y)° ; max {||w|| \m e M} = 1 and M =3 W(Y)° for certain A, e fc°,
K ^ 0. Then

M ® ^(Y)°<S>/(S/,-1) c ^(Y)°<S>/(Sy,-l)

is generated by one element h. This element has norm 1 and it has no
zeros is {^eY||/,(Y)| = 1} =_Y,. So h is invertible in ^(Y.). Its inverse
h~1 has also norm 1 since Y, is irreducible and the norm on ^(Y;) is, as
a consequence, multiplicative. Hence M^(Y,.)° = ^(Y,)°. It follows that
some power of /, lies in M. Since C/i, ...,/,) = C?(Y)° we find that
M = (P(Y)°. So N is free and ^ = 0.

2.4. — LEMMA. —Z^( L beaffine, 1-dimensional and irreducible over H. If
H^L,^;") = 0 then L 15 rational and non-singular.
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Proof. - Let K : L^ ——*- L be the normalization of L. We have an
exact sequence of sheaves on L : 0 ——^ (P^ ——*- ^^^ ——^ F ——»- 0
where F is the sky scraper sheaf with stalks, Fp = S^p/^tp an(^ ^L,p ^Ae
integral closure of (9^p.

One finds an exact sequence

0 ——. ^(L)* ——- 0(L^ ——- H°(F) ——. H^L/P?) ——. H^Li,^) ——- 0.

So clearly (by 2.2) Li = P^k) - {pi , . . .,pj and the group ^(L^)* is
isomorphic to H* ® N where N is a subgroup of 7f~1.

So we find that H°(F) is a finitely generated Z - module.

If L has a singular point p then H°(F) has S ^ p / ^ t p as component. The
last group has H or H* as quotient group. It is not finitely generated. So we
conclude that L is non-singular, and hence a Zariski-open subset of P1^).

2.5. — Continuation of the proof of2.1.

We have to consider the case where Y, the canonical reduction of Y,
has more than one component. Let L be a component and L^= L- {the
intersection of L with the other components} ; Yi = R'^Li). Then Y^ is
affmoid, also a U.F.D. and with canonical reduction L^. We know by 2.3 and
2.4 that Li is Zariski-open in P1^) and so Y^ must be an affinoid subset of
P^fe) of the form

{zek\\z\ < 1, |z-a,| ^ 1 ( f= l , . . .,s)}.

Let f ld+ i , . . .,fls correspond to the points of intersection of L with the
other components of Y. Let Y^ = {z e k\ \z\ ^ 1 and |z — a,\ ^ 1 for
f = d -h 1, . . . , 5}. Then we glue Y^ to Y over the open subset Y^ . The
resulting analytic space Y u Y^ has as reduction with respect to the
covering {Y^} the space Y u \^' From [2] ch. IV (2.2) it follows that
Z = Y u Y^ is also affinoid and its canonical reduction is obtained by
contracting the complete one of Y u Y^ to a point. If we can show that Z
is also a U.F.D., then (2.1) follows by induction on the number of
components of Y. Since

HW?) = H^Yi,^) = H^,^ = 0

we can calculate H^Z,^) = the class group of Z, with respect to the
covering {Y^Y}. That Z is a U.F.D. is equivalent with H\Z,Of) = 0
and will follow from the following
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2.6. - LEMMA. - The map ^(Y)* C ̂ 2)* ——^ ^(Yi)*, given by
(fiJi) ——^ fifi1» fs surjective.

Proof. — The norm on ^P(Yi) is multiplicative. So any /€ ^(Y^)* has
the form f = eg with ce fe* and ge((P(\^)°)*. Further the analoguous
map ^(Y)*®d?(Y2)* ——> ^(YO* is clearly surjective. So g = 7 J z 1

for certain /, e(^(Y)°)* and /2 ^(Yz)0)*. We are reduced to consider
/e6?(Yi)* of the form 1 + h with Ae^Y^) , ||/i|| < 1. We want to write
/ as (l+^)(l+/i2)~1 with h,e(P(Y), h^OfY^) and \\h,\\ < 1,
P2ll < 1. This amounts to showing that P : ^P(Y)° © ̂ 2)° i—^ ^(Y^)0,
given by (h^h^) \—> h^ - h^, is surjective. By [2], ch. IV (2.2), we know
that the cokernel of P is a finitely generated k° - module M. Moreover
M (x) k = 0 since 0(\) ® (P(Y^) ——> 0(\^ is surjective. So M = 0, P
is surjective and the Lemma is proved.

2.7. — COROLLARY. — Let X be a complete non-singular curve over k.
Then X is a Mumford curve (i.e. can be parametrized by a Schottky group) if
and only if X ;5 locally a U.F.D.

Proof. — Locally a U.F.D. means that X has an affinoid covering (Xf)f= i
such that each ^(X,) is a unique factorization domain. According to (2.1) this
implies X, <= P^k). According to [2],ch. IV (5.1), this is equivalent with X
is a Mumford curve.

3. Class groups.

X will denote a normal, connected, 1-dimensional affinoid space. The
class group of X (i.e. the group of isomorphy-classes of projective, rank 1,
(P(X) - modules) is equal to the analytic cohomology group H^X,^). This
follows from the bijective correspondance between projective, rank 1, (P(X) -
modules and invertible sheaves on X.

3.1. — PROPOSITION. — Let X be embedded in a complete non-singular
curve C. Then H^X,^) ^ J(C)/H \vhere J(C) is the Jacobi-variety of C
and H is the subgroup consisting of the images of the divisors of degree zero on
C with support in C — X. The group H is an open subgroup in the topology
of J(C) induced by the topology of k.

Proof. — The restriction map Divo(C) ——^ Div(X) induces a
surjective homomorphism Divo(C)/P(C) ——^ Div(X)/P(X) where P(C)
denotes the principal divisors on C and P(X) = {(/) on X|/
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meromorphic on X}. It is easily seen that H^X,^) = Div(X)/P(X).
Let DeDivo(C) have image 0 in H^X,^), then there exists a
meromorphic function / on X with (/) == D on X. As one can
calculate (see [2], ch. Ill (1.18.5) and on) any divisor of a holomorphic
(or meromorphic) function on X is the divisor of a rational function on
C restricted to X. So there is a rational function g on C with
(g) = D on X. Then D — (g) is a divisor of degree 0 with
support in C - X. This proves the first assertion. The map

g
C x . . . x C ——> J(C) given by (x^, . . .,Xg) i—^ ^ x, - gxo (where

1=1
XQ e C — X is fixed) is surjective and induces the algebraic structure
and topology on J(C). The map is almost bijective and open. So the
image of ( C — X ) x . . . x (C-X) is open and H is open.

Remark. — In general it seems to be rather difficult to calculate explicitely
H ̂ X,^). However using (3.1) one can work out the following special cases.

3.2. — Example. — Let the curve C have a reduction R : C ——*- C
such that C is rational and has one ordinary double point p . Take
Pi» • • - , P s points in C - {p} and put X == R'^C - {pi , . . .,pj). Then
X is afflnoid and its canonical reduction is C — {p^ . . .,pj. The curve
C is a Tate-curve and ^ fc*/<^> with 0 < \q\ < 1. The points pi, .. .,ps
correspond to open discs of radii 1 around points 1 = a^ a^ . . . , a, e k
with all \0i\ = 1 and 1^—0,1 = 1 if i ^ j . Using (3.1) one finds an exact
sequence :

1 —— fc*/<02, .. .,o;>—— HW^) —— \k^\K\q[> —— 1

where (a^,.. .,a,> is the subgroup of fe* generated by a^, . . . , ̂  ; |fe*| is
the value group of k and <|^|> its subgroup generated by \q\. Note further
that fe*/<^,...,^> ^W^).

3.3. — Example. — Let C be a Mumford curve of genus g ^ 1 and let
R : C ——^ C be its stable reduction. (The components of C are rational,
the only singularities are ordinary double points.) The Jacobi-variety of C is
a holomorphic torus (k^Y/A where A is a lattice in (k*)9. Take ordinary
points p i , . . . , p , eC and put X = R-^C - {p^...,?,}). Then X is
afflnoid and using (3.1) one calculates an exact sequence :

1 —— (^/S —— H^X,^) —— I^MA] —— 1
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where

|A| ={(|^|,|^l-.-J^!)l(^...^)eA}

and S is a finitely generated subgroup of (k*)9. The group (fe*)8 is in fact
the Jacobi-variety of C and the subgroup S is the subgroup of the
divisors of degree 0 on C with support in {pi,...,?,}. So (k*y/S is
again H^Xs,^*) where X§ denotes the stable reduction of X.
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