
ANNALES DE L’INSTITUT FOURIER

CHRISTIAN BERG

J. P. REUS CHRISTENSEN
Density questions in the classical theory of moments
Annales de l’institut Fourier, tome 31, no 3 (1981), p. 99-114
<http://www.numdam.org/item?id=AIF_1981__31_3_99_0>

© Annales de l’institut Fourier, 1981, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1981__31_3_99_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
31,3 (1981), 99-114

DENSITY QUESTIONS
IN THE CLASSICAL THEORY OF MOMENTS

by Ch. BERG and J.P.R. CHRISTENSEN

0. Introduction.

Let p. be a positive Borel measure on the real line having mo-
ments of all orders. The set ^ of polynomials in one variable is a
subset of o^(R , JLI) for any number p E [1, oo[. We are interested
in the following question:

For which p and JLI is ^ dense in ^p ( R , /x) ?
This question was answered completely long ago for p = 1

and p = 2, cf. Akhiezer[l] pp. 42-49:

Let V^ denote the set of positive measures on the line having
the same sequence of moments as /i. Then ^ is dense in J^1 (R , ^i)
if and only if /A is an extreme point of V^ (Naimark [5]), and ^
is dense in -^(R, [£) if and only if JLI is ^-extremal (M. Riesz [7]).
In particular ^ is dense in -^(R, fi) and a fortiori in ^^(R, ju)
for 1 < p < 2 if ft is determinate.

We prove below that if JLA is indeterminate then ^ is not dense
in ^(R , p) for any p >2. Furthermore, there exist indeterminate
measures fi for which ^ is dense in^^R, /x) for 1 <p < 2 but
not for p = 2. Finally there exist determinate measures fi for which
^ is not dense in ^^(R, /x) for any p > 2, and there exist deter-
minate measures for which ^ is dense m^p(R, p.) for every p > 1.

In the indeterminate case V^ is a compact convex metrisable
set in the vague topology and we exhibit two dense subsets: (a) The
measures having positive C°°-density with respect to Lebesgue measure.
(b) The set of extreme points of V^ which are continuous and sin-
gular with respect to Lebesgue measure.
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It is well-known that an indeterminate and N-extremal measure
is discrete with mass in countably many points, which are the zeroes
of a certain entire function. We prove that if the mass in a finite
number n of these points is removed, and if arbitrary positive masses
are added at n points different from the remaining points, the result-
ing measure is again indeterminate and N-extremal.

1. Preliminaries.

In the following we give a summary of some well-known facts
from the theory of moments, cf. [I], [8]. Let ^* denote the set
of positive Radon measures on R having moments of all orders and
let ^(\ be the subset of probability measures. The set ^* inherits
the vague topology from the set of positive Radon measures on R
and is metrisable, cf. [2]. Two measures J L I , ^ G ^ * are called
equivalent if

^ =fxnd^x) = fxndv(x) for ^ = 0 , 1 , . . . .

With each equivalence class of measures is thus associated a sequence
s = (S^\^Q of moments. The classical theorem of Hamburger states
that there is a one-to-one correspondence between the set of equi-
valence classes of measures and the set of positive semidefinite se-
quences, Le. real sequences (^)^>o ^or ^ich (^+y)o<,j^ is a
positive semidefinite matrix for all n > 0. For /x£^<* the equi-
valence class in jy* containing ^ is denoted V^. The set V^ is
clearly convex, and it is compact in the vague topology. For the last
statement cf. [1] p. 31-32.

A measure /n£^* (or the corresponding moment sequence)
is called determinate if V^ is a singleton, and indeterminate if V^
consists of more than one measure.

Assume that /iE^^ has infinite support and let s be the
corresponding moment sequence. Let ^ denote the vector space
of polynomials with complex coefficients and let L: 9 —> C
denote the linear form uniquely determined by

L(x")=^ for n = 0 , 1 , 2 , . . . .
Putting

(p.q^^^W} tor p . q ^ y ,
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( • , • ) is an inner product on ^, and (^, ( . , . )) is isometricaUy
imbedded in the Hilbert space L2 (R , a) for all measures a E V .
The associated orthonormal polynomials (Pn)n>o (cf- I1! P- 3)
depend only on s or V^ . The function

h n ( x , y ) = ^ P^)P^), x , ^ E C (1)
fc=0

is the reproducing kernel for the space of polynomials of degree
< n, i.e.

PW = f p ( y ) h ^ x \ y ) d f J t ( y ) , x^C (2)

for all polynomials p of degree < w .
If p. is indeterminate the series

00

h ( x , y ) = ̂  P^)P,,00, x , y ( E C
k=0

converges uniformly on compact subsets of C x C to an entire
holomorphic function. For x G C and a G V ^ the function
h(x , • ) ism^2(R, a) and

n

lim ^ PfcWPfc = ^ ( ^ , « ) i n J ^ ^ R , ^ .
"-'00 fc=o

This implies that for all p G ̂

PW = j " p(y) h(x , y) da(y) for x E C , a G V ^ . (3)

The function h is called the reproducing kernel associated with
^ (or V^).

For an indeterminate ^x G ̂ ^ we recall Nevanlinna's para-
metrization of V^i , cf. [1] p. 98:

There is a one-to-one correspondence ^ ^—> a between func-
tions (^ E *^U {00} and measures a^ G V^ established by

r. da^x) A(z) (^(z) - C(z) , , ,
jT"T-=-B(z)^)-D(z)? Z £ C V R ? <4)

where A, B, C, D are certain entire functions, and ^ is the class
of Nevanlinna-Pick functions. A function ^ belongs to ^ if it is
holomorphic in C\R and satisfies </?(T) = ^(7) and I m ^ ( z ) > 0
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for Imz >0. On ^ we consider the topology of uniform conver-
gence on compact subsets of C \ R . This topology is extended to

^"U{oo} by defining a subset GC^TU{oo} such that oo e G to
be open, if G n ̂  is open in ̂  , and if there exist a compact subset
K C C \R and a number L > 0 such that

{^E^T[ V z G K : |<p(z)| >L}CG.

Then it is easy to see that ^TU {00} is a Hausdorff space and that
the correspondence ^ <-^ a^ is SL homeomorphism between ̂ U {00}
and V^ . It follows that ^ is locally compact and that v^U {00}
is the one-point compactification of^T.

The N-extremal measures in V^ are precisely the measures
Of for ie R U {00} ^ when t is identified with the constant t func-
tion in c^*. A measure a^, E V^ is called canonical of on^r m > 0
if (^GJ^is a real rational function of degree m. The N-extremal
measures in V^ are the canonical measures of order zero and Ooo.

Concerning the density of 9 i n^^R ,^ ) , where JLIG^T*,
we first remark that if ^ is dense in ^(R , ^i), then ^ is also dense
in -^(R, /x) for any rE [1, p]. This is an immediate consequence
of the fact that ( J l /MF d^O))1^ is an increasing function of
re [1. °°L when /i is a probability measure. We next remark that
if ^ is dense in ^(R, ^i) then also in .^(R, ^) for v = fd^ if
/^-^:(^).

The following fundamental result is due to M. Riesz [7]: The set
^ is dense in if^R , ^) if and only if the measure (1 + x2)-1 dfi(x)
is determinate. Cf. also [3] p. 84.

In the following we need certain dense subsets of V^ in the
indeterminate case.

THEOREM 1. - Let fi G ̂  be indeterminate.
a) The set of measures a G V^ w/»c/z ^e canonical of some

order is dense in V^ .

b) The set of measures a G V^ of the form a = f(x) dx , where
f is a positive C00-function, is dense in V^ .

Proof-By the homeomorphism between V^ and ^TU {00}
the results follow if we prove that the corresponding sets of func-
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tions (^EJ^U {00} are dense in ^U {00}. The functions ^Gc/r
are given by the integral representation

/•°° tz + 1
^p(z) = az + j8 + / ——— rfr (r),

J-oo t — z

where a > 0, j8 G R and r is a positive finite measure.
The set of functions ^ G ^V corresponding to (a, j8, r), where

r is a finite measure concentrated in finitely many points, is easily
seen to be dense in ̂ U {00} ^ and this gives (a).

We next consider the set of functions ^ E ̂  corresponding
to ( a , ^ , r ) , where r = g ( t ) d t and g ^ y such that g(t) >0
for all t E R , y being the Schwartz space of rapidly decreasing
C°°-functions.

This set is dense in ^ U {oo}^ and we prove that a G V^
corresponding to such ^ E ̂  is of the form

(^ = f(x) dx ,

where / is a positive C°°-function, and (b) follows.
Suppose therefore that

^(z) = az + ^ + f -z——— g( t )d t ,

where ^G^ and g ( t ) >0 for aU r £ R , and let o^eV^ be
the corresponding measure such that (4) holds.

The Poisson kernel and the conjugate Poisson kernel for the
half-plane Imz >0 are denoted P and Q respectively, so we have
(cf. [9])

^(^ 1 7^-2 5 Q^O- -1- ———2 for rER^ >0.' T[ f + y~ y TT t2 4- y2

We can write ^? in the form

^ (z )=az+^+ f^dt,

with I t ^ P-f tg(t)dt and ?(0 = (1 4-^)^(0 G^, and hence
for z = x + iy , y > 0

^p(z) = az + j8- TrQy * ̂ (x) + ZTTP^ * ̂ g(x)
= az 4-^-7rP^*(®?'- zr) (x),
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where
„(,) » lim 1 / ^±-"1. „„

6^0+ 7T ^IM^S M

denotes the Hilbert transform of ]f. Since ]T^^, $f is a C00-
function tending to zero at infinity. Therefore P y * ( S i F — ^ T )
tends uniformly to § "g — ig as y —>> 0, and we find

^(x): = lim ^p(x 4- j» == ax + j3 - TT^OC) + ZTT^) . (5)
^-»o+

The functions A, B, C and D are entire functions, real on the
real axis, and they satisfy

A(z) D(z) - B(z) C(z) = 1 for aU z G C. (6)
Since

Im ̂ (x) = Tr^Cx) > 0 for aU x E R ,

we conclude that
B(;c) ^(x) - D(;c) =^0 for all jc G R ,

and therefore
_ A(z) ^ p ( z ) - C(z) _^ __ A(x) ̂ (x) - C(x)

B(z) ^(z) - D(z) ~^ B(x) ̂ (x) - D(x)

as y —^ 0, uniformly for x in compact subsets of R .
It follows from the Stieltjes-Perron inversion formula that

1 , A(x) ̂ (x) - C(x)
^^•^"BW^W-DW^^

is density with respect to Lebesgue measure of the measure a^, i.e.
(^ == f(x)dx.

Using (5) and (6) we find

________gw_________
jw [B(x) (ax + ̂ - Tr{Qg(x)) - D(x)]2 + ^BCx)2 g(x)2 )

which is a C°°-function > 0 for all x £ R . a

Remark. — A similar but simpler calculation leads to the follow-
ing expression for the measure a^^ corresponding to the constant
function </?(z) = P 4- ry G^T, where <3E R , 7 >0 :
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°^iv = ^ {(Wx) - D(x))2 + 72B(x)2}-l Ac,

which has a positive analytic density with respect to Lebesgue measure.
The set ^ is not dense in ^(R , a^) for any j3 G R , 7 > 0.

To see this we notice that

^ 7i (MW - DOc))2 + 7JB(x)2

^1+<71 72 (^B(x)-D(x))2 +7^B(;c)2 0^+^29

and the density function is bounded on R as is easily seen. The next
lemma then shows the assertion.

LEMMA 1. - Let At ^ ̂  be indeterminate and suppose that
°i' °2 e v^ ^ different measures such that a^ = ^rfa^ w/7z
^ GJ^R , o^). r/z^ ^ ^ not dense in JSf1 (R , a ^ ) .

Proo/ - If we assume that ^ is dense in .^(R, a^) we get
immediately that ^ is also dense in j^1 (R , c^) and in

^(R, l/2(a, +^)) .
By Naimark's theorem (cf. [1] p. 47)(*) this implies that a, , a^
and 1/2 (04 + a^) are all extreme points of V^. This is however
in contradiction with 04 ^ a^ . D

2. Density results in the indeterminate case.

Let p. G ̂  be indeterminate and let a G V^ . By the theo-
rem of M. Riesz [7], cf. [1] p. 43, it is known that ^ is dense in
^ (R,o) if and only if a is N-extremal, and by a theorem of
Naimark [5], cf. [1] p. 47, ^ is dense in J^(R, a) if and only if
o is an extreme point of V^. The set of N-extremal measures
a e V^ is a compact subset of the set of extreme points of V
which by Theorem 1 (a) is dense in V^ since canonical measures
are extreme points of V^ , cf. Corollary 2 below.

Our first main result is that there are no measures a E V
such that ^ is dense in ̂ ^(R , a) when p > 2. "

(*) The formulation in [1] contains a misprint: L^ shall be replaced by
4.
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THEOREM 2. - Let fJiEJSf^ be indeterminate and let p >2.
Then ^ is not dense in ̂ (R , p) .

Proof. — Let q be the dual exponent of p , i.e. — + — == 1.
Then 1 < q < 2. For arbitrary x £ C fixed, y ̂  (x - y) h(x , y)
is a function in-^(R, JLI). In fact, by Holder's inequality we have

f \ ( x - y ) h ( x , y ) \ ( ' d ^ J i ( y )
J 2q 2^-

<(f\h(x,y)\2 d^y))^2 (^f\x - y\^ d^y)) 2 < oo .

The reproducing property (3) of h gives

f (x - y ) p ( y ) h ( x , y ) d^(y) = 0 for all pE^,

so assuming 8P dense in-Sf^R, jii), we necessarily have
(x - y) h(x, y ) = 0 jn-a.e..

Since the function is continuous we get

(x - y) h ( x , y ) = 0 for x e C, y £ supp(jLi),
in particular

h ( x , y ) = = 0 for x C C \R , y e supp(jLi),

and by continuity
00

h(y , y ) = S Pfc(^)2 = 0 for y E supp(jLi),
fc=0

which is a contradiction, a

THEOREMS. — Let juG^^ &^ indeterminate and let h be
the associated reproducing kernel. For all ^-extremal measures
a G V^ and all x £ supp(a) the set of zeroes of the entire function
y ^ h(x, y ) is precisely the set supp(a)\{jc}. In particular
h ( x , y ) ^ 0 for x€C\R, y ^ R .

Proof. — Let a be a N-extremal measure. It is known that
00

a has the form a= ^ a^e^ and a ^ h ( x ^ , x ^ ) = 1 for all ^ E N ,
n= 1

cf. [ 1 ] p. 114. For p E ̂  we have



DENSITY QUESTIONS IN THE CLASSICAL THEORY OF MOMENTS 107

p(xn) = f ^n^Y^P^ ̂ ^ = ̂ n^n) P^n) ̂

+ f h ( x ^ y ) p ( y ) d a ( y ) ,
so that "R^}

^}/^(^^)^)da(;;)==o•
This shows that the function

0 for y = x^ ,
g(y) =

h(x^, y) for y ^x^ ,

is orthogonal to ^, which is dense in .^(R,^, and hence
h(x^, x^) = 0 for all m ^= n .

For x , z £ C\supp(a) the function

, . (^ - y) h(x, ̂ )^ z(^) = ———————z - ^
belongs to ̂ 2 (R , a). Writing p £ ̂  as

P<j0 = P(^) + (^ - z) /"(Y)
with r£^, we find using (3)

/ gx^^y) p(v) ^(v)== ^^a ̂ .z.
where

^ =/^,z^)^00-
The constant fe^ ^ is non-zero, because otherwise gy ̂  would be
orthogonal to ̂  and hence zero a-a.e., so that

h(x , x^) = 0 for ^ = = 1 , 2 , . . . .

By the reproducing property this implies that p ( x ) = 0 for all
p E SP which is absurd.

Therefore the function
( x - y ) h(x,y)

Y '—> ————————— — ^c,z h(z, y ) ,

which is in .^(R,^, is orthogonal on SP and thus zero for
y = x ^ , x^ , . . . . This shows that

(x - x^) h(x, x^) = k^(z -x^) h(z , ̂ ) for ^ == 1 , 2 , . . . .
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If h ( x , x ^ ) = 0 for some ^£C\supp(a) and some n, we there-
fore get h ( z , x ^ ) = = 0 for all zGC\supp(a), and letting z tend
to x^ we get h(x^ , x^) = 0, which is a contradiction.

The last assertion follows from the fact that for every y E R
there exists a N-extremal measure a G V^ such that y G supp(or).

D

COROLLARY 1.-Let ae^f^ be ^-extremal and let h be
the associated reproducing kernel. For x , z E C\supp(a) the function

^ ^ ( x - y ) h ( x , y )
y ( z - y ) h ( z , y )

is constant for y £ supp(o) with value

/• ( x - t ) h ( x , f)
k^= J ———^——^—— da(t).

THEOREM 4. — Let fiE^y^ be indeterminate and canonical
of order m > 1. Then ^ is dense in ^ p(f\, ^i) for 1 < p < 2
but not for p = 2.

Proof — Since a canonical measure of order m > 1 is not
N-extremal, ^ is not dense in.^^R , ju) .

Let Z i , . . . , z ^ be m different numbers in C \R and define
anew measure or by

a = ( n? Ix-zJ-2) d^i(x).
' k = l /

It follows by [1] p. 121 that 9 is dense in .^(R, a). To see that
^ is dense in ^^'(R,^) for p E [ l , 2 [ , if suffices to show that

given a continuous function /: R —^ C with compact support,
there exists a polynomial R such that

f 1/00- R(x)|^ rfjii(x)

is arbitrarily small. However, by Holder's inequality

f\f(x)-R(x)\pd^Ji(x)=f\f(x)-R(x)\P S \x -z^2do(x)

<(/ |/Oc)-R(x)|2 rfa(x))7 (/ ^ l^-zj^^ ^(x))"2",
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which can be made arbitrarily small since ^ is dense in ^(R , a). a

COROLLARY 2. - Let jnE^^ be indeterminate. A measure
a G V^ , which is canonical of some order > 0, is an extreme point
ofV,.

Remark. — A canonical measure p. of order m > 0 is discrete
and its support is the zero-set of an entire holomorphic function,
hence a countable discrete set. This follows from Nevanlinna's para-
metrization. However, for the case m = 0 the discreteness property
is a consequence of ^ being dense inJ^2 (R , p.) .

In fact, suppose jn is indeterminate and such that ffl is dense
m ^ f ^ R , ^ ) . For a continuous function / with compact support
the function

F(x) = f f(y) h(x , y) d^y), x E C

is entire, and /-F is orthogonal to^. Therefore f(x) = F(x) for
all x £ supp(jLi). Since any continuous function with compact sup-
port equals an entire function on supp(^i) we conclude that supp(^i)
is a discrete subset of R .

It would be interesting to know if a similar result holds for
1 < p < 2, i.e. if ^ being dense in ^P(R, p.) for an indeterminate

JLA implies that supp(jn) is discrete. Such a result can definitely not
be true for p = 1, as the following shows. We recall that a measure
JLI is continuous if p({x}) = 0 for all x E R .

THEOREM 5. - Let [i^Jt\ be indeterminate. The set of mea-
sures a £ V^, which are continuous and for which ^ is dense in

J^1 (R , a) , is a dense G^-subset of V^ .

Proof. — The set of measures a £ V^ for which ^ is dense
in JSf^R, a) is equal to the set ex(V^) of extreme points of V^,
hence a dense Gg-set, cf. [6].

We claim that the set c(V^) of continuous measures in V^ is
a dense Gg-set. By Baire's theorem then follows that ^c(V^) H c(V^i)
is a dense Gg-set.

To see that c(V^) is a Gg-set we choose a decreasing sequence
of continuous functions ^ : R —> [0, 1] such that ^(0) = 1,
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supp(^)C - ̂  ? ^ and define

$^(a) = max a*^(x), $(a) = inf ^(o) for a E V « .
;cGR MEN

It is easy to see that $^ : V^i —^ [0, oo[ is continuous and that
$ is upper semicontinuous. It follows that

c(V^)={aGVJ$(a) =0}

is a Gg-set.
That finally c(V^) is dense follows from Theorem 1 (b). o

Remark. — The set ^(V^) of measures in V^i which are sin-
gular with respect to Lebesgue measure is a dense G^-set. By Baire's
theorem follows that

^c(V^nc(V^n5(V^
is a dense Gg-set in V^i, i.e. the set of continuous singular extreme
point of V^ is a dense Gg-set.

The density of s(V^) follows from Theorem 1 (a). To see that
^(V^i) is a Gg-set we choose a probability measure r on R with

a positive density, e.g. r = — (1 - ^ - x 2 ) ~ l d x , and define
7T

^ :V^-^R by ^(a) = Ha-r l l ,

the norm being the total variation. Then ^ is lower semicontinuous
and s(y^) = {a E V^ | ̂ (a) =2} is a Gg-set.

3. Density results in the determinate case.

Let juG^* be determinate. By the theorem of M. Riesz [7]
^ is dense in .^(R , JLA) for 1 < p < 2 . There are of course many
examples of measures jn for which ^ is dense in .Sf^R,^) for
all p^ [ l , ° ° [ . The following simple general result in this direc-
tion is stated and proved for the sake of completeness.

THEOREM 6. — Let jnE^* and suppose that there exists a
number a > 0 such that

f e^ d^(x) < oo .
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Then SP is dense inJ^R , jn) for all p E [1, oo[.

Remark. — By Theorem 2 we see that jix is determinate. This
is also a simple consequence ofCarleman's criterion, cf. e.g. [3] p. 80.

The following proof of Theorem 6 is inspired by [4]. Let

P E [1 , °°[ 5 define q £ ] 1, oo] by — + — = 1 and assume that
P Q

/GJ^(R, p) satisfies

fxnf(x)d^l(x) = 0 for n = 0 , l , . . . .

It suffices to show that f= 0 /x-a.e. Defining

F(z) = f e^2 f(x) diJt(x) for z E Sl = j z = u + h; | 1 1 ; | < a j ,
J ( P }

we see by Holder's inequality that F is holomorphic in ^i, and
F^CO) = 0 for ^ = = 0 , 1 , 2 , . . . . This shows that F is identically
zero and hence / = 0 ju-a.e. a

It is perhaps surprising that there exist determinate measures
^ for which 9 is not dense in ^^(R, p) for any p >2 . This
follows from the next theorem.

THEOREM 7. - Let ^e^^ be indeterminate and ^-extremal,
hence of the form

00^= s ^,-
The measure "=°

00

^^-^s" s a"^n= 1

is determinate and ^ is not dense in o§^(R, p . ' ) for any p > 2 .

Proof. — It follows from the proof of Theorem 3.4 in [1] that
JLI' is determinate. For the sake of completeness we include the follow-
ing proof which seems to be new:

Suppose that fi' is indeterminate and let h ' ( x , y ) be the re-
producing kernel associated with jLi7jLi'(R). The function / defined
by , ,

( h (XQ , x) for x ^ XQ
fW =

a o - 1 for x ^ XQ
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defines a non-zero element in ^ (R,^) , and for any p £ ^ we
have

f P(x) f(x) dix(x) = floP(^o) A^o) + /POO ̂ o » ^) ̂ W

= = ( f l o - l ) p ( X o ) + ^ ( R ) p ( ^ o ) = 0
since ^'(R) = 1 — OQ . This contradicts the fact that ^ is dense
in^R,^).

We next show that SP is not dense in .^(R, JLA') where p >2

is fixed. Let q denote the dual exponent such that — 4- — = 1 .
P Q

We choose z £ C \ R and define

g ( y ) = (z - y) (XQ - y ) h(z , y ) , y G R ,

where h is the reproducing kernel associated with jn . Then
^e.^(R,^i) and a fortiori ^Ej^(R, jn ' ) , as is easily seen by
Holder's inequality, cf. the proof of Theorem 2. For p £ 3^ we have
by (3)
0 = f p ( y ) ( z - y ) ( x ^ - y ) h ( z , y ) dfJL(y) = f g ( y ) p ( y ) dfJi\y),

and since g is not equal to 0 jn'-a.e. (Theorem 3), it follows that
^is not dense in ^(R , JLI') . n

4. On the support of N-extremal measures.

Let p. be an indeterminate N-extremal measure. By Theorem 7
we obtain a determinate measure when all the mass is removed at
one point of the support of jn . By removing further the mass at
a finite number of points the measure remains determinate. If we
only change the mass at a finite number of points of supp(ji0,
we obtain again an indeterminate N-extremal measure. This is an
immediate consequence of the fact that the original measure and
the new measure have bounded densities with respect to each other.

We shall now see that if we move a finite number of points
of supp(^x), then the measure remains indeterminate and N-extremal
(but associated with a different sequence of moments). This foUows
from
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THEOREM 8. - Let 11 G^^ be indeterminate and ^-extremal,
hence of the form

^ = Z ^ S •
n=0

For y G R \supp(AO the measure
v = ̂  ̂ + s ^ ̂

r t= l "

is indeterminate and ^-extremal.

In the proof of Theorem 8 we need

LEMMA 2. — Let /xE^* &e determinate and suppose that
XQ G R satisfies ^({x^}) = 0 .

TT^z ^ ^ dense m-Sf^R , /i + ae^ ) for all a >0.

Proo/ - Without loss of generality we may assume that p. is
a probability measure, and we may assume that p. has infinite sup-
port, the case of finite support being trivial. From [1] p. 60-64 or
[8] p. 45 follow that

inf f\p(y)\2 d^y) \ p E^, p(x^) = 1 j = ^{x^}) = 0 . (7)

Let / be a continuous function with compact support and let
e > 0 be given.

There exists p G ̂  such that

^-^'^i-
and because of (7) there exists q £ ffl satisfying

<7(^o) = A^o) - POo) ' II ̂ 2 )̂ < f '

hence

l l /-^-^^^)=^-P-^(,)<e•

Pwo/ of Theorem 8. - Since (/ - a^Gy is determinate by Theo-
rem 7, we get by Lemma 2 that ^ is dense inJif2 (R , v) .

We prove that v , is indeterminate by contradiction. If v was de-
terminate, we get by Lemma 2 that ^ is dense in S'1 with respect to
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^ ^ ^ S == ^ +fl0^ ?

which is indeterminate. (For r^ , T^ £^* such that r^ < r^ we
have: If T^ is mdeterminate then r^ is indeterminate.) Having
seen that JLI 4-^ e^, is indeterminate and N-extremal we get by Theo-
rem 7 that ^i is determinate, which is a contradiction, o
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