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SPHERICAL SUMMATION :
A PROBLEM OF E. M. STEIN

by A. CORDOBA and B. LOPEZ-MELERO

In this paper we present a proof of a conjecture formulated
by E.M. Stein [1], page 5, about the spherical summation operators.
We obtain a stronger version of the Carleson-Sjolin theorem [2] and,
as a corollary, we obtain a.e. convergence for lacunary Bochner-Riesz
means.

With A >0 let T),; denote the Fourier multiplier operator
given by

(TXF)(®) =1 — [EP/RP f(®) for fESR?), and let

{R,-} be any sequence of positive numbers.

THEOREM 1. — Given A\ >0 and <p<

4 4
3+2A 1—-2x
exists some positive constant C, , such that

IR R

there

Let T,f=sup IT:,- f|. The methods developed to prove
Jj

Theorem 1 yield, as an easy consequence, the following result.

THEOREM 2. — For A >0 and

<p< there

4 4
3+ 2 1 -2
exists some constant C, , such that

I Ta Fll, <Cy, IFH, .
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As a result we have, for f€ L? (R?)

f(x)=lm T, f(x) forae. x€R®.
]

As part of the machinery in the proofs of Theorems 1 and 2
we shall make use of the two following results, whose proofs can
be found in [3] and [4].

Given a real number N >1 consider the family B of all
rectangles with eccentricity N and arbitrary direction, and let M
be the associated maximal operator

1
— dx .
xesgga |R| Yr |7 ()l dx

Mf(x) =

THEOREM 3. — There exist constants C,« independent of N
such that
IMfll, <CllogNI|* | fll, .

Consider a disjoint covering of R" by a lattice of congruent
parallelepipeds {Qv}pezn and the associated multiplier operators

®, )" =xq, /-

THEOREM 4. — For each s> 1 there exists a constant C, such
that, for every non negative, locally integrable function w and
every f€ 8(R") we have

2 < 2
S 2 1P, fO)I o dx <C, S I A0 dx

where Asg=[M(g‘)]”’ and M denotes the strong maximal
functionin R".

Proof of Theorem 1. — Suppose that ¢ : R —> R is a smooth
function supported in [—1,+1], and consider the family of
multipliers S}s defined by

(S 1) ® =6 "Ry EI—1) f(®)
and also, for a fixed 6§ > 0, consider the family
(T} ) (&) = ¥, (arg () (S} /) (®)

where the ¥, are a smooth partition of the unity on the circle,
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v,

1

N
=z

n

Y. is supported on <1 and N =[6"1%], so that
n

N
29—
2w "

the support of (T” f)~ is much like a rectangle with dimensions
R;6 x R;8'7%.

There are three main steps in our proof.

a) The same argument of ref. [3] allows us to reduce theorem 1
to prove the following inequality

|| 21847, < Croe 8 | 24P, 0

b) With adequate decompositions of the multipliers and geo-
metric arguments, we prove

“ AR

¢) An estimate of the kernels of Ti”, together with theorems 3
and 4 yields,

" SITfI

12 ” <C'|log5|" D IT"flzlm “4 . (2)

1/2 “ < |10g E la 2: |f,|2 1/2 (3)
4 j

We refer to [3] for a) and begin with part b).

Fixed 8 > 0, we select just one dyadic interval 2¥ < R < 2*¥*!
out of each |log, 8| correlative intervals, and we allow in the left
hand side of (2) only those indices j for which RI lays in a selected
interval. Also we only take one T," for each 4 correlative indices
n, and only those supported in the angular sector |sin 8| << 1/2.
All these operations will contribute with the factor 24 |log, 6| to ’
the inequality (2).

The left hand side of (2) is less than the 4th rooth of twice

S| (s

and now we only have two kinds of pairs (j, k) : either R <R, <2R

or R; <O8R,. Let’s denote ="' and =" the two correspondmg
halves of (4). We have

4)

R1<Rk

n’
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Y (TP * (T f)
n,m

<43 [
Now an easy geometric argument shows that, for fixed 7, k,

the supports of (Tj" f;)" * (T;" f;,)” are disjoint for different pairs
n < m, so that we have

2
YT * (TR

n<m

<4 [ Y 1AL AL P <4A (5)
n<m
12 (|4
with A=l 1150
j,n 4

For the pairs (j, k) in =" we have
® = supp | (T, £;)" * (T, " £, Y1 Osupp [(T; 2 £)" * (T 2 £,)"|

if m, # m,, because R. < 8R,, sothat
=[R2 )T'"fk
l ]y w0

1/2
(? ITZ fi | ) ‘
f_ lzl EII 1/2 Al/2 . (6)

From (5) and (6) we obtain (2).
Now we come into part c).

First we observe that for each fixed j it is possible to choose
two grids of parallelepipeds as the one in theorem 3 and such that each
of the multipliers T,." is supported within one of the parallelepipeds,
let’s call it Q. If (P'f) = X! f is the corresponding multiplier
operator, we have

T h=T/Ff. |

Furthermore, an integration by parts arguments shows that

each of the kemels of the T} is majorized by a sum

1

c¥ 27" —
,§o IRI

where the Rj; are rectangles with dimensions 2" 87'x 2”8
and C is independent of n,j or 8 > 0. Therefore in order to

—1/2
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estimate A we only have to estimate uniformly in v the L*-norm of

\ 1 2112
Yl = X * (P}
o | TR Yo, " )

Or, what amounts to the same, the LZ-norm of its square.
If w>0 isin L>(R?*) we have

¥ Ly, 2
z/ ‘ R R E @) e dx
1
<y P} 2 n d
~ VL8] [IR:,,-| Xgn * w] (») dy

<X [ IBADF Mw)dy
J.n

<2¢,2 [ 15007 A,Mw) () dy
J

, . 121 2
<cl| Tise ”4||Mm||2
j
, Y2 2
<Cllogd*Cyll| X 1£P ! ,Nellz
j

by successive applications of theorems 4 and 3. This estimate
proves (3).

Proof of Theorem 2. — With the same notations of the preceding
proof, let now R, = 27 We have

L) <sup T} F(0)1 + sup |(T} T f(x)

<| IR + et (x

i

where T}‘ - i}t stands for a C” central core of the multiplier T,."
and f* is the Hardy-Littlewood maximal function.

By the same arguments of part a) in the preceding proof we
may reduce ourselves to prove
~ b op2| Y2
}I_IS,-fI

for some constants C, «, independentof 6 > 0.

\ <Cllogd|* Il fll, )
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We define the operators U; by
Ulf(x ,Y) = X{zi—l <x<2]} f(x :y) ’

and apply the methods in parts b) and c) above to obtain the
inequality

1

which yields (7) by the classical Littlewood-Paley theory.

12 1/2

< C|logé |*
4

YISST
)

LA
i
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