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THE LAGRANGE RIGID BODY MOTION

by T. RATIU and P. van MOERBEKE

In this paper, we discuss the three-dimensional rigid body motion
about a fixed point under the influence of gravity; the main emphasis
will be put on its symplectic structure, its constants of the motion
and the origin of these from a group theoretical point of view. It can
be expressed as a Hamiltonian vector field on the 6-dimensional space
SO (3) x so (3). The in variance of the problem under rotation about
the direction of gravity and about the axis of symmetry, leads to
conservation of angular momentum with regard to the gravity axis.
This invariant together with a trivial extra-invariant leads to a reduc-
tion of this problem to a smooth manifold symplectically diffeomor-
phic to a four-dimensional submanifold of so (3 ) x so (3). The
Hamiltonian vector field in this reduced manifold leads precisely
to the customary Euler-Poisson equations M = M x f t + r x x
and r = r x Sl, where M, i2, F and \ denote respectively the
angular momentum, angular velocity, the coordinates of the unit
vector in the direction of gravity and the coordinates of the center
of mass, all expressed in body-coordinates.

Another description of the situation comes from considering
generic coadjoint orbits of the Lie algebra of the semi-direct product
group SO (3) x 50 (3); this is to say the four-dimensional manifold
considered above appears among these orbits; according to the
Kostant-Kirillov-Souriau method, these orbits have a natural sym-
plectic structure, which turns out to coincide with the one before;
the invariants characterizing these orbits are exactly the ones dis-
cussed previously. This will be the object of section 1.
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The symmetry, about the axis through the center of gravity and
the fixed point (Lagrange top), leads to conservation of angular mo-
mentum with regard to the axis of symmetry. Moreover it commutes
with all the previous invariants. Carrying out another reduction pro-
cedure given by this new invariant, one obtains a Hamiltonian system
on a 2-dimensional manifold diffeomorphic to R2 which linearizes
on a cylinder S1 x R , the S^part of the flow being given by
Lagrange's classical solution in the form of an elliptic integral.

As will be discussed in section 2, the Euler-Poisson equations
can for the Lagrange top be written as a single polynomial equation
in an indeterminate h:

<T + Mh 4-C/z2)^ (F + Mh +C/z2) x (?2 +Xh)

for some multiple of the center of mass x - This equation ties up
with a Kac-Moody extension of so (3). The same Kostant-Kirillov-
Souriau method of orbits, leads to the construction of a symplectic
structure on a specific orbit; a theorem of Adier, Kostant and Symes
yields Hamiltonians in involution with regard to this symplectic struc-
ture on the orbit; the Lagrange top flow in the form above appears
among one of these Hamiltonian vector fields, although the symplectic
structures are different. The complete integrability follows at once
from these considerations. This somewhat roundabout approach
has the virtue that the linearization can be carried out at once: the
expression F + Mh + Ch2 defines naturally an elliptic curve,
whose Jacobian, i.e. the curve itself, linearizes the Lagrange flow.
This will be explained in section 3.

1. The Euler-Poisson equations.

This section derives the Euler-Poisson equations of the rigid
body motion about a fixed point under the influence of gravity
as a reduction of the physical equations on the phase space
SO (3) x so (3). It is also shown that these equations are Hamiltonian
on coadjoint orbits of a semi-direct product.

1.1. Consider a rigid body that is moving about a fixed point, the
origin of an orthonormal coordinate system (^i,^'^) °^ ^3?
with £3 collinear to the vector gravitational acceleration. Normalize
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units such that the gravitational force exerted on the body is one.
Assume that the mass distribution of the body is given by a positive
measure ^ on R3 and let x = (X i , \z, Xs) be its center of mass.
Denote by f ( t , x ) the position at time t of a particle which at
time zero was at x . "Rigidity" means that f ( t , x ) = A ( t ) x
where A(r) is an orthogonal matrix. Assuming the motion to
be smooth, A (0 ) = Id yields A(r)ESO(3). Denoting
S2(r) = A(0-1 A(t)Cso(3) (the left translate of the tangent
vector A(r) to S0(3) at A(0), the kinetic energy is

K(r) = 1 / || /O, x)||2 dfji(x) = 1 <n(r), n(r)>
z R3 z

where
< S , ^ > = f $X .7?XdjL l (x ) , f ,7?G50(3) .

R
The map

0 -^3 x^
x= (x^x^,x^)C.R3 ^—^x= ^3 0 -;cJ G5o(3)

L-^2 ^i 0

is a Lie algebra isomorphism with inverse $G.yo(3) *—> { E R3

satisfying for x , y€ R3 , the relations

(x x y f = r x , y ] , x - y = - ^ Tr(xy) = /<(x , y), (Ad^F = A?,

where Ad^^ is the adjoint action for AGSO(3) on ^so(3).
Since K is non-degenerate there exists a unique K-symmetric

positive-definite isomorphism I of 5-0 (3) such that /<(!$, 17) = < { , 77) .
Let 61, e^, 63 be a basis of eigenvectors of I with corresponding
eigenvalues I^ , 1^, 13. If J = diag(Ji, J^, 13), Ii = J^ + ] ^ ,
^ = J! + -^ ^ = J! + J2. then ^S) = U + JS and the kinetic
energy becomes K(r) = — K(M, S2), M = I(S2).

The potential energy V(r) is given by the height of the center
of mass A(r)5< = (AdA(r)Xr above the (^ .^-plane, i.e.
V(r) = A C O X ' - S S = / < ( A d A ( f ) X , £ 3 ) . Thus the total energy E :

S0(3)x 50(3) —> R is E(A,i2) = -jj- /c (M,i2)+ ^ (AdAX,^) .

Bearing in mind that SO (3) x so (3) is identified with the tangent
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bundle T(SO(3)) via left translations which in turn is isomorphic
to the cotangent bundle T*(SO(3)) by the left-invariant metric
< • » • > on S0(3), the canonical one-form 0 has the expression
0(A, r? ) (^ ,? )=<TAL^i ( i ;A)^> , 7?,?e^(3), A ,BESO(3) ,
^A ET^(SO(3)), L^(B) = AB, and a? = - dO is the symplectic
form on S0(3) x so (3). E defines thus a Hamiltonian vector field
on S0(3) x so(3) whose trajectories describe the rigid body motion.

The physical interpretation of the above data is :
a) ( 6 ^ , 6 ^ , 6 3 ) are the principal axes of inertia of the body;

it represents an orthonormal frame fixed with regard to the body;
b) I i , I^ , 13 are the principal moments of inertia of the body

corresponding to e ^ , e^ , 63 respectively;
c) ^c E R3 is the center of mass of the body and it will be

expressed from now on only in the body frame (e^ , e^ , 63).

1.2. To obtain from the above physical energy function the classical
Euler-Poisson equations of motion, a reduction of the above Hamilto-
nian system by a momentum map will be performed; see Abraham-
Marsden[l], § 4.2, § 4.3,orMarsden [8].

Let H ^ S1 denote the isotropy subgroup at £3 of the adjoint
action of S0(3) on so(3) and define the H-action

$(A, (B, S)) = (AB,S) on S0(3) x ^o(3).
The Lie algebra 3€ of H coincides with the centralizer of £3 and
is isomorphic to R £3 . If f G 96, the infinitesimal generator is
d
— $ (exp ̂ , (A, 17)) = (TR^ (S), 0) (where R^ is right trans-
dt t=o
lation by A in S0(3)). It is easy to see that the canonical one-
form 0 and the Hamiltonian E are H-invariant. Thus by Noether's
theorem the H-action has a momentum map

g : S0(3) x 50(3) —> ge* given by
9 ( A , 7 ? ) - S = 0 ( A , 7 7 ) ( T R A a ) , 0 ) = / c ( A d A l ( 7 ? ) , S ) ,

(A,7?)G S0(3) x 5o(3), S^ge, which is a constant of the motion
of the Hamiltonian system defined by E (see [I], theorems 4.2.2,
4.2.10). Since H acts freely and properly on S0(3) x so(3) and
3 has no critical points, the Marsden-Weinstein reduction theorems
([9], [1] theorems 4.3.1, 4.3.5) give a symplectic form c? on the
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quotient manifold ^~\K.{a^, .))/H, with K(ae, .)Ege*, aC R ,
and a Hamiltonian system on it oaturally induced by E.

THEOREM 1.1. - The reduced symplectic manifold
©-10<(fl£3,.))/H,a;), o E R ,

is symplectically diffeomorphic to the following ^-dimensional sub-
manifold of so(3) x so(3)

oic, = { ( r ,M)E5o(3)x ^(3)| / c ( M , D = = f l , / c ( r , r ) = = i }
whose tangent space at (T, M) equals
T(r.M)^a={(- [^ H, ?)E5o(3) x so(3)\ /<(?, D = /c(M, [a, F])} .
The symplec tic form p on 0^ ^
p(r , M) ((- [a, r], $), (- [j8, F], ?)) = - ̂  , ̂ ) + ^(? , a)

+ / < ( M , [ a , ^ ] ) .
The reduced Hamiltonian F defined by E ^

F ( r , M ) = ^ - / < ( M , n ) + /c(x,n, i ( f t ) = M =m +jn
a^d rt^ corresponding Hamiltonian vector field equals

X F ( r , M ) = a r , n ] , [M,^] + [r,x]),
i.e. F defines the Euler-Poisson equations

r = [r,n], M = [ M , n ] + [r,x], M = n j + jn.
Afom?iw, z/3l = SO(3)/H= Adso(3)®3 ^S2, (3r^,p) is symplec-
tically diffeomorphic to (T*9l, 0:0), coo rA^ canonical sym-
plectic structure of T*9l. 2^ rte pull-back to T*9l o/ r/ze pro-
jectionto 91 of the H-invariant one-form

^ (A) = a (TR^ £3 , . > / < AdA 1 £3, Ad^' & 3 >
Afl5 Z^A-O differential. Under this isomorphism the Hamiltonian F goes
over into a Hamiltonian on T*9l, the sum of the kinetic energy
of the induced metric from T*SO(3) and the potential

VJD = K(T , x) + a212 < r , r > , r e Adsoo) £3,
which is the projection of the effective potential

V , ( A ) = E ( S , ( A ) ) = / < ( A d A X , £ 3 ) + ( ^ / 2 ) < A d A l £ 3 > A d A l i 3 >
onSO(3).
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Proof. - The map V/ : S0(3) x 50(3) —> Adso(3)&3 x so(3)
defined by 0(A, ^) = (Ad^^, I(S)) is H-invariant; therefore
it induces a smooth map
^ : (S0(3) x 5o(3))/H = (SO(3)/H) x so (3) -^ Adso^^ x 5o(3)

which is easily seen to be a diffeomorphism satisfying
V/ o TT = V/ , for TT : S0(3) x 50(3) —> (SO(3)/H) x 5o(3)

the canonical projection. Using the transitivity of the SO (3 faction
on the 2-sphere in R3 , it is straightforward that

^p(<3~l(K(a^,.)))= ^(g-1^^,.))/!^ ̂ .

Since ^~\^a^, .))/H is a submanifold of (SO(3)/H) x 5o(3),
this proves that JH^ is a submanifold of so (3) x 50 (3).

Since

T(r,M)^. ^^^(Adsoo) £3X^ (3 ) )= {(-[a, F], ?)G5o(3)
x 50(3)] a, ?E 50(3)},

the formula for T^M)01^ follows by differentiating the defming
relations for OIZ^ .

Since
G } = - d e , c < j ( A , S ) ( ( ^ , ? ) , ( w , 7 ? ) ) = - < ? , T A L ^ - i ( w ) >

+ < ^ » T^A^-iW + < $ , [TAL^I;), T^L^w)]),
for AeSO(3),S,7?,?^o(3), i;, w G ̂ (SOO)),
cj is characterized by the relation 7r*c<3 = i * ( ^ , where ^':
^~l (K(ai^, .)) c—> SO (3) x 50 (3) is the canonical inclusion.

Defining p = V/^c5, it follows that p is uniquely characte-
rized by V / * p = z * c < ; . Let (F, M) = V/(A, ft) = (Ad^.i^ , I(ft))
and put t ;==TLA(a) , w = TI^^T^SOO)), a, j3E5o(3).
An easy computation shows that

T(A,n) ^ (^S)= (-[TAL^(r),Ad^i£3], !($)).
Thus using the above formula for a? we have :
p(r,M)((-[a,r],s),(-[^r],n)

= (v/*p) (A, n) (o;, r1^)), (w, i- ̂ n)
=-<^ la),TAL^(w)>+<^ l(n,TAL^(t;)>

+<n,[TAL^_i(t;),TAL^(w)]>

= - /<a^) + /<(?, c0 4- /<(M, [a,j3]).
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Since E o ^ [ 3-l (K(ai^, .)) = F, the formula for F follows.
To check the formula for Xp it is enough to observe that

XF is tangent to OTI ,̂ and that
p(r, M) (XF (r, M) , (- [ p , r], ?)) = d F ( r , M) (- [ p , r], n

for any (- [j3, F], ?) G T^M)^ » which is easily verified.
The last part of the theorem is an immediate consequence

of theorems 4.3.3. and 4.5.5. in [1]. The formulas for the effective
potential and its projection appear already in lacob [6], though not
in the context of reduction, o

1.3. We shall prove below that the reduced manifolds OTta are among
the generic adjoint orbits of the semi-direct product so(3)^ x so(3)
where so (3) denotes the vector space underlying the Lie algebra
so(3).

If G is a Lie group with Lie algebra ^ , let @ denote the
vector space underlying ^, regarded as abelian Lie group. The semi-
direct product G^d x ^ is the Lie group with underlying manifold
G x §, composition law (^ , ^) (^ , ̂ ) = (^ ̂  , ^ + Ad^ ^),
identity element (e, 0), and inverse ( g , {)~1 = ( g ~ l , — Ad _ ̂ ).
The Lie algebra of G^ x g is the Lie algebra semi-direct product
Gad x ^ with bracket

[Oi, r?i) , ($2 , ̂ )1 == (tSi - ̂  - tS i , ̂ ] + hi , ̂ ]). (1.1)
The adjoint action is given by

Ad^(S,7?)=(Ad^,Ad^ + [?,Ad^D. (1.2)
If ^ is semi-simple and /< denotes the Killing form up to a constant
factor, define the bi-invariant, symmetric, non-degenerate two-form
KS on G^d x § by

^((Si. 7?i). (^2 . ̂ 2)) = ^(Si , ^2) + ^(Si ̂ i) • (! -3)
Remark that K x /< is not bi-invariant. If 5grad denotes the gradient
with respect to K y , then 5grad= (grad^, grad^), where (grad^ ,
grad^) is the usual gradient with respect to K x K .

By the Kirillov-Kostant-Souriau theorem, the adjoint orbits
of a semi-simple Lie algebra are symplectic manifolds; for G^ x ^
the orbit symplectic form is
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o(€,^)([a,7?),(?i, ri)L [a,r?),(?2^2)i)
=-^(a^),[(^,ri),(?2^2)D. d.4)

If /, ^ '• G x G —^ R , the Hamiltonian vector field on the orbit
equals
X^ 0, r^) = - ([grad^ /(£, r?), SL [grad^ /0, T?) , r?]

+ [gradi / (^ ,7?) ,{]) (1.5)
and the Poisson bracket is

{/» g} 0, ^7) = - /<(£, [grad^ /0, T?), grad^ ^0,7?)])

-/<a,[gradi/a,77),grad^a,77)])

- K(rf, [grad^ /O, r?), grad^ ^0 , r?)]). (1.6)
All these formulas follow easily from the general ones displayed in
e.g. Ratiu[l l ] , [12].

THEOREM 1.2. -All adjoint orbits of SO (3)^ x so (3) ^
•yo(3)ad x so (3) are given by

a) { ( r , M ) G 5 o ( 3 ) x 5o(3) | /<(r ,M) = constant,
K;(r, F) = constant},

i f r ^ O ; this orbit is four-dimensional ;
b) {(0, M) E ̂ 0(3) x 5:o(3) | K(M , M) = constant} ; this orbit is

t^o-dimensional, unless M = 0 in which case it reduces to a point.

The symplectic structure of these orbits is

a) a(T, M) ((- [a,, F],?,),(- [a, , F], ?,)) = - /<(^ , a,)
+ ^(^^i) + ^C^. ^i.^D. for ^c^?!,^ ^0(3) satisfying
/<(?,, D = / < ( M , [a,, F]), ^ = 1 , 2 ;

b) a(0, M) ((0, [ai , M]), (0, [^ , M])) = K(M, [a,, aj).

In particular, the manifolds 011^ are orbits of type a).

The proof is a straightforward verification using (1.!)-(!.4).
Formula (1.5) shows that the Euler-Poisson equations can be

considered on all orbits of 5o(3)^ x 50 (3), not only on OTZ^ . The

Hamiltonian is F(F , M) = ^ K(M , ft) + K(T , x), M = m + J^ ,

with gradi F(r, M) = x, grad^ F(F , M) = M, and Hamilton's
equations on the orbit are the Euler-Poisson equations

r = [ r , n ] , M = [ M , n ] + [r,x]
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with the invariants /<(M, F) = constant and K(T , F) = constant
corresponding to the momentum along ^3 and the intensity of the
gravitational field respectively. The fact that the Euler-Poisson
equations are Hamiltonian on adjoint orbits of so (3)ad x so (3) has
been independently observed by lacob and Stemberg [7].

2. The Lagrange top and its complete integrability.

A Lagrange top is an axially symmetric rigid body with center
of mass on the axis of symmetry, moving about a fixed point
(the origin of R 3 ) under the influence of gravity. Hence
Ji = J^ = X , J3 = = J L I , x = ( 0 , 0 , X j ) in the body frame (e^ . e^ , 63).

2.1. A strictly three dimensional method of finding one additional
conserved quantity for this problem (besides E and 3) is the fol-
lowing (lacob [6]). Let K ^ S1 be the isotropy subgroup at 63
of the adjoint action of S0(3) on so(3). Define a new left-action
of K on SO(3)X50(3) by ^(C, (A, ̂ )) = (AC~1 , Adcft).
The Lie algebra 3< of K is the centralizer of 63 in so (3) and
is isomorphic to R ® 3 . The infinitesimal generator of ^ given by
^E9<. is (A, ft) ̂  (-TL^ ($),[£,"]). The relations

I o Adc = Adc ° I
(n,,^)= ( X + M ) /<("i, "2)- (M - \)K(.&l,,e^)K^,e^)

for any Sl^, Sl^ € so (3), C € K, prove that < . , . > is K-invariant,
which in turn shows that E and 0 are K-invariant. Thus by Noether's
theorem applied to the action ^ of K, there exists a momentum
mapping K : S0(3) x so(3) —> 3€*,

^(A, f t )a )=-<^n>= -2\a^

which is a conserved quantity ([1] theorems 4.2.2, 4.2.10). The
Lagrange momentum K represents the momentum of the body along
its symmetry axis 63.

Remark that the actions ^> and ^ commute, i.e.

^B ° ^c = ^c ° *B
for any B E H , C£3C, that K is H-invariant, and that 3 is K-
invariant. Thus regarding K, 3 real valued we conclude {J?,3} = 0
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([1] theorem 3.3.13). Since J?,9 are integrals of the motion
{g^E} = 0, { -@,E} = 0. Therefore K induces a function ^ on
the manifold 01̂  which Poisson commutes with F , the Hamiltonian
on ^ induced by E([ l ] , §4.3, [ I I ] , §2). The K-action ^
induces a K-action on JTZ^ given by

(C, (F, M)) —^ (Adc F , I (Adc I-1 (M)))

whose momentum mapping is ^ ([I], § 4.3, [9]).

Since F = Ad^i €3 , the trivial relation || A"1 £3 || = 1
becomes K : ( r , r ) = l and we recovered in this way the four
classical integrals of the Euler-Poisson equations for the Lagrange
top on so (3) x so (3) :
K ( r , r ) = r ^ + v\ + rl == i , K ( r , M ) = = r i M i + r 2 M 2 + r 3 M 3 ==a
^(r, M) = — M3 = constant

F(r, M) = (M^ + Mp/2(X + JLI) + Mi/4X + ^F, = constant.

From theorem 1.1 we see that their geometrical significance is distinct:
the first two define the reduced manifold OTI^ as a submanifold of
so (3) x so (3), whereas ^ and F are genuine constants of the
motion for the Euler-Poisson equations on the 4-dimensional sym-
plectic manifold JII^, , F being the Hamiltonian.

In this three dimensional case the solution of the Lagrange top
problem can be obtained "by hand" ([14], chapter 4, ?71). We
shall explain below the group theory underlying these classical
computations. If b G R , e^(K.(-be^ ,.)) = {(F, M) G Olc^ | M3 = b} ,
where K(—be^,.)G.9<*. On the open, dense K-invariant set
S = {(F, M) (E^\K(-be^, .)) | F^ M^ - F^ Mi ^ 0} , the action of
K is free and thus one can form a new reduced symplectic 2-manifold
S/K diffeomorphic to (- 1,1) x (0, oo) by the diffeomorphism in-
duced from the smooth K-invariant map <^(r,M) = (1^3 ,-^/M^+MJ)
of S onto (-1,1) x (O.oo). Taking ( x , r ) as coordinates on
(-1,1) x (0,oo), ^ is given by x = I\ , r = y/M\ 4- M^ and
since the Hamiltonian R on ( — 1 , 1 ) x (0, °°) induced by F is
characterized by R ° ̂  == F | S, we have

R(;c, r) = /-^(X + JLI) + xxa + b2/4\.
But the Hamiltonian vector field XR on (— 1,1) x (0, oo) is uniquely
determined by the relation T</? o XR = Xp o ^; so putting
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(x, r) = (^(F, M) and observing that
T(F,M) ̂ (- [<^ F], S) = (- [a, F]3 , (Mi $1 + M^ ^V^-)

for M=(M, ,M^M3) , [a , r r == ([a, F],, [a, F], , [a, F^),
£ = (Si ? $2 ' ^3)' ''2 = M2 + M 2 , a short computation gives

XR(^, r) = (F^ - F^) (1/(X + ja), - ̂ /r).
We shall express now F ^ M ^ - F^M^ only in terms of Qc, r ) . Since
F ^ M ^ + F^M^ =a-xb (because / < ( F , M ) = a , M3 = b on S),
F^ + r^ == 1 - ̂ 2 , M? + M^ = r2, it follows

I\ = {M,(a - xb) ± ̂ (r2 - M2,) [^(1 - x2) - ( a - xb)2}}!^
r^ = {(a-xb)^r2 -M? T M i ̂ (1 - x2) - (a - xfr)2}/^
M^ = ̂ /r2 - M?

whence ____
F^M^ - F^Mi = ± ^2(1 -jc2)- (a -^6)2

and so
XR(X , r) == ± ^/[r^l - x 2 ) - (a-xb)\\l(\ + Ai), - X3/^).

Thus Hamilton's equations on (— 1,1) x (0, oo) are

x == ± ̂ (l-x^-da-xb)2/^ + ^)
(2.1)

r = ? X3 ^(l-jc2)- (a-xb^ir

with the energy integral ^^(X + ju) + ^^3 + &2/4X == constant, i.e.
r2^^ + ^) + ^Xa == ^ = constant. (2.2)

Since (I\ , 1̂  , Fg) is on the unit sphere, one has \x \ < 1 and thus
we must have c - x\^ > 0, i.e. c > | Xa I . From the first equation
(2.1) we get r2 = [(X + fi)2^ + (a - ;c&)2]/(l - x2), which to-
gether with (2.2) gives

(X + ̂ 2 x2 == - (a - xb)2 - 2(\ + ^) X3 (x - x3)
+2c(\+^(l-x2), (2.3)

i.e. the time t is an elliptic integral in the variable x and the
Hamiltonian system (2.1) is thus linearized on the circle S1, the
real part of the complex one-dimensional torus defined by the
elliptic curve

y^ =-(a-xb)2 - 2(X + fJi)x^x -x3) + 2c(X + ^) (1 -x2) .
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Formula (2.3) is identical to the one in Whittaker ([13], chapter 4,
Nr. 71, page 157), obtained there by different means.

Let us return now to the Euler-Poisson equations for the
Lagrange top on d^a. By the Liouville-Amold theorem its solution
is a linear flow on that part of the level surface ^ (F, M) = — b,
F(F , M) = c + b2/4\ in OTZ^ , i.e. M3 = b,

i.e. M3 = b, M2 + M2 = 2(X + jix) (c - Xa I^) ,
where K a and F are independent. We will show in 2.3. that this is
the case whenever F^ - F^ ^ = 0 . Since F2 + F2 + F2 = 1,
let F3 = cos 6 and then F2 + F2 = sin2 0 . If

52 = M 2 + M 2 = 2 ( X + ; x ) ( c - X 3 r 3 ) ,

then 0 < 52 < 2(X + jLi) (c + | Xa I) and we see that the parameters
( 0 , s ) on the cylinder S1 x (0 , v/2(X + fi) (c 4- ] Xa I)) determine
uniquely (F, M) on the level surface for F^ M^ — F^M^ ^= 0.
Thus the flow of the Euler-Poisson equations for the Lagrange top
linearizes on a 2-dimensional cylinder; the S^part of the linearization
is given by (2.3). We shall recover this last result in § 3 by an applic-
ation of the van Moerbeke-Mumford linearization procedure [10].

2.2. Proposition 2.1. below, which has been generalized by Ratiu
[12] to n dimensions, is the first step towards proving complete
integrability of the Euler-Poisson equations

F = [ F , n ] , M = [ M , n ] + [F.xL M = n j + J f t (2.4)
for the Lagrange top on the generic adjoint orbit of so (3)^ x so (3).

PROPOSITION 2.1. — // x ^= 0 the Euler-Poisson equations (2.4)
can be written in the form

(F + Mh + Ch2)9 = [F + M/z + C/z2 , ft + \h} (2.5)

for some constant C^.so(3), h a formal parameter, if and
only if (2.4) describes the motion of a Lagrange top. In this case
C = ( X + j n ) x .

Proof. - It is straightforward to check that if in (2.4) J^ = J^ = X ,
h = M , X = (0, 0 , Xs), (2.5) holds with C = (X + jn) x. Conver-
sely, if (2.5) holds, then necessarily [C, Sl] + [M , x] = 0, [C, x] = 0,
for any ft E so (3). The first relation implies
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C, = ( J i + J 2 ) X l = ( J i + J 3 ) X i ,

C2 =(h ^3)X2 =0l + J 2 ) X 2 ,

C 3 = ( J l + J 3 ) X 3 = ( J 2 + J 3 ) X 3 ,

whence J 2 X i = J 3 X i , J 3 X 2 = J i X 2 , J i X 3 = = J 2 X 3 - Since x = ^ 0 ,
assume e.g. \^ 0. Then J^ = J^ = X , \Xi = M X i , Xx2 = MX2 ,
where we denote J^ = JLI . If X =^ then Xi = X2 = 0, and
C = (X + jn) x; we recover the Lagrange top. If X = /x, C = 2Xx
and we get a symmetric top. But due to the transitivity of the S0(3)-
action on the two-sphere in R 3 , there exists an orthogonal change
of the body frame ( e ^ , 63,63) to one in which X = ( 0 , 0 , X 3 ) ,
Xa ^= 0; since J = XId , this change of frame does not affect the
form of the equations (2.4) and we showed that a symmetric top is a
special Lagrange top. In n dimensions this is no longer true (Ratiu
[12]). D

The function ^ Tr(F + Mh + Ch2)2 is conserved by the flow

(2.5) and hence also the coefficients of h in the expansion of

^ Tr(F + Mh + Ch2)2 . The expressions -^ Tr(F2) and Tr(FM)

are by theorem 1.2 orbit invariants, and — Tr(C2) is a constant;

these coefficients define thus identically zero Hamiltonian vector
fields. The two remaining coefficients are

f, (F, M) = ^ Tr(M2 + 2FC), ^ (F , M) = Tr(MC)

with gradi / i ( r ,M) = C, grad^ ^(F, M) = M, grad^/^F, M) = 0,
g r a d 2 / 2 ( F , M ) = C . By (1.6), {f, ,/,} (F, M) == 0, defining on
the four-dimensional generic orbit two constants in involution.

On the reduced manifolds OTI^

A = - 2 ( X + M ) F + M ^ X ^ 2 ,

/2 = 2 ( X + M ) X a ^ ,

where ^ is the real-valued function on OTI^ induced by /?. The
above expressions show { F , ̂ } = 0 on OTI^, which has been ob-
tained already in 2.1 by a different method.
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2.3. We shall prove that on every generic orbit the vector fields
X ^ ( r , M ) = ( [ M , r ] , [ C , r ] ) , X^(F^) = ( [C , r ] , [C ,M]) (see
(1.5)) are independent for almost all (F, M). Consider the dense set
on the orbit for which I\ M^ - 1̂  M^ ^ 0. If

X^(F,M) = aX^ (F ,M) f o r s o m e a G R ,

then M^ - M3l\ = -o^I^, M^r^ -M^ = 0^31^,
F^ = aM^ , r\ = aMi , whence a = 0. The Euler-Poisson equations
for the Lagrange top are a completely integrable system on the Lie
algebra so (3)^ x so (3).

Since X^ = - 2(X + ^i) Xp + -^—— ^ X^ ,

X .̂ = 2(X 4- jn) \3 X^ if follows that Xp and Xj; are generically
independent on each reduced manifold JIZ^ and hence Xg , X ^ , Xj.
are generically independent on SO (3) x so (3). Hence the Lagrange
top is a completely integrable system.

2.4. We shall prove that equation (2.5) is Hamiltonian on certain
invariant submanifolds of the Kac-Moody extension so(3) of so (3)
and exhibit its Hamiltonian function.

S^ +°°
If ^ is a Lie algebra let ^ = ^ ^ hn \ the sum is finite

yi=—oo

denote the Kac-Moody extension of ^ with bracket

f ^ ^h\ 'f ^"1 = 1 ( 1 : [S.,^])^.
Lfc=—00 »=—<» J p=—oo \jc+n=p /

If K denotes a bilinear, symmetric, non-degenerate, bi-invariant two
form on ^ , then Tc given by

^(Z s.^, s ^^) = ^ /<(^,^)U^ ̂ k,^ n^
v k n / k+n=—}v fc w / k+n=—l

is a bilinear,^ symmetric, bi-invariant, and weakly non-degenerate
two-form on ^. Remark that

^ == 1 ^w , 31= S S.^
«=0 yj=—oo

are both Lie subalgebras, ^ = W. C 31, 3K:1 = 3<:, 31i = STC ,
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where orthogonality is taken with respect to ^. Regarding 3<1 as
the dual of 91 via 1c , the formal Lie group Id +31 acts on S^C1

and hence defines a Hamiltonian structure (e.g. Ratiu [11]). If
/, g '- % —^ R are functions having gradients with respect to 1c ,
the Hamiltonian vector field and the Poisson bracket are

X^i (?) = - n^, [lygrad /) (?), ?], ? G 3C1, (2.6)

{/l^gl^——^an^grad/KO,
n^(grad g) (?)] J), ? GSC1. (2.7)/^^ '̂ / ^^/

Moreover, if f,g are ad-invariant on <®, i.e. [(grad /)($)-, S] = 0
for all ? € H, then {/13C1, g |3<:1} = 0 and (2.6) becomes

X ^ (?) = [ILc (grad /) (?),?], ? e 9C . (2.8)
J IcX

For the proof see Ratiu [11]; the last statement is known as the
AdIer-Kostant-Symes involution theorem.

In the general considerations above take ^ = so (3) and consider
the submanifold Qc = { S + 'nh + Ch2 \ ̂ , T? G 50(3)} C 3<:. A
straightforward computation shows that if f: so(3)—> R ,
(grad /) (£ + r]h + CA2) = ^ /„ A" , formula (2.3) yields

n

X^i^O + r^h + Cft2) = [r?,/_J + [C,/_J
+[C,/_JACT^^^^(Qc).

i.e. Qc is an invariant submanifold of S^^SC. Note however
that the vector representative of [C, /_ J has zero third component
and that /c (C,[ r? , /_J + [C,f_^])+ K([C, /_J, T?) = 0 which
proves that Q^ is foliated by lower dimensional invariant submani-

folds of the form {$ + nh + CA2! ^- /<(T? , T?) + K(C, S) = cons-
tant, 17 3 = constant}. These manifolds are generically 4-dimensional;
if 17 ^ = 173 = 0 they are 2-dimensional, unless {; = 0 in which
case they reduce to a point. They are the orbits of Id + Sft acting
on Qc ; compare this to theorem 1.2.

Fix now such an arbitrary manifold

^ + rih + Ch2 | ̂  K^ , T?) + /<(C, ^) = constant, r?3 = constant!

By (2.8) the Hamiltonian of (2.5) must be an ad-invariant function
H such that 11̂  (grad H) (F + Mh + CA2) = - (S2 + \h). We have
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S2 + XA = ——!—— (M + Ch) + (l - -2^-) ———M3———— C
X + / x ' ^ \+^ 2 X ( \ + M ) X 3

'r^"^^^2^'1^1-^)

^^n,((r+M^c^)^)

which suggests choosing H as

HO) = - l 1c (^ ,—1- Id h-1 + (l - -27-} ——M3 h-2 \
2 ^ ' X + j u V X + ^ i / 4X(X+jLi)X3. / )

Se%)

which is clearly ad-invariant and satisfies the required condition,
thus proving that (2.5) is a Hamiltonian system on the invariant

submanifolds {$ + r\h + CA2 | ^ K . ( r ] , T?) + K(C , f) = constant,
r?3 = constant} C 3<:.

^Smce the integrals /i(Z) = ^(Z, ZA-3), /^(Z) = ^(Z, ZA-4),
ZE5o(3), /i, /2 are ad-invariant and thus by the AdIer-Kostant-
Symes involution theorem, their Poisson brackets are zero on the
above invariant manifolds. Note however that the symplectic struc-
ture is different from the usual one (1.6), namely identifying Qc
with 50(3) x 50(3) by S + r^h + Ch2 »—> ($ ,T?) , the new Poisson
bracket is

{/, g}c ( ^ r ] ) = - K ( C , [grad^ /($, r?), grad^ g^, 7?)])

- K(C , [gradi /($, T?) , grad^ ̂ , T?)])

- /<(77, [gradi /(^, T?) , gradi g ( ^ , r?)]).

In the generalization to n dimensions, the interplay between these
two symplectic structures plays a crucial role in the proof of complete
integrability and also gives rise to Lenard relations; see Ratiu [12].

3. The linearization of the flow for the Lagrange top.

From equation (2.5) it follows that the algebraic curve
p ( z , h ) = det(F + Uh + Ch2 -zld) = - z q ( z , h ) = 0
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is isospectral, i.e. it is conserved under the flow of the Lagrange top.
In this section we show in two ways how to linearize this flow on
the one-dimensional invariant complex torus (elliptic curve) defined
by q ( z , h) = 0.

3.1. The infinite band matrix
n ^ \

J1Z=
0 'r 'M 'C 0 0 0
o o r M c o o
o o o r M c o

\ Y \

, ̂ i : (R3)2 —^ (R3)2

and the shift operator S : (R3)Z —> (R3)2 , S(F,) = F,^ F, G R 3 ,
f G Z commute and their common spectrum {(z, h) \ OTc(F) = zF,
§(F) = h¥} is thus given by the solutions of

p(z, h) = det(F 4- Mh + Ch2 - zld) = 0.

In fact we have F, = A'FQ , (F + Mh + CA2) F^ = z F ^ , so that the
components /i , /^ , /3 of F^ , normalized by /i = 1 , as a solution
of a homogeneous linear system, are given by

A \
A.

1k , ^=1 ,2 , (3.1)A = A,"n "u
where Ay denotes the O',/)th minor of the matrix

r + Mh +Ch2 - z l d .
The matrix

'0 (/v/T IVT
U = 0 1/v/T iV^/7

1 0 0

diagonalizes C and we have

A = U-^r +Mh + CA2)U
0

_^

if!

P ift*
-co 0

0 co
(3.2)
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with

P = y + hx, P* = y + hx, x =—_=(Mi - »M,)
V2

= -^ ("i - '"2), y = — 0\ - /r,) (3.3)
^ = - f(r3 + M^h + C^h2) = - i(r^ + 2\^h + (X + ju) ̂ h2).

The equation p(z, A) = — z(z2 - <y2 + 2ft?*) = — z q ( z , h) = 0
essentially defines the elliptic curve X :

z2 =w1 -2^*=f^(h), (3.4)
?4 (h) being a quartic polynomial in h. Let P, Q cover A = oo.
The divisor structure of z , h on X is

(h) = - P - Q + Pi + R,
(z) =-2P-2Q + 4 zeros.

To find the divisor structure of the eigenvector (/i, /, , f^), /, = 1,
remark that by (3.1)

A, ,_^ (^ -z )^ ^ _ q , - z
J2 A,, o?2 - z2 ^ + z 2/5 (3•5)

=-^13-= ^(^ + ̂ ) fj3 co + z
73 A,, - (y2 - z2) ~ w - z ~ 2^*

so that /2/3=-</2, i.e. (/2)+(/3)=0. Expand z=±^co2-2^
about P and Q

,-t,C.f(l+^.-+0(*-')) (!:̂ )

so that by (3.3)
( 0(1) , at P0(1) , at P

-2iC^h2 + OW, at Q.
G} +z =

Hence by (3.5) f^ has a simple pole at P and a simple zero at Q
and /3 has a simple zero at P and a simple pole at Q.

On the affine part of X, (3.5) implies that f^ has a pole at
the point v given by o ; + z = 0 , P = 0 , i.e. A = — ^/^,
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z = — o?|^_^ . Similarly f^ has a zero at ~v defined by co — z == 0,
|3*=0, i.e. h = — y / x , z.==a;|^_^. This combined with
(A) + (^3) = 0 yields

( A ) = = - P + Q - ^ + i 7 , ( / 3 ) = P - Q + ^ - ^ . (3.6)

THEOREM 3.1. — rAer^ exf5^ a one-to-one correspondence
between points on the curve X and matrices of the form
F + Mh + Ch2, for F, M and C as above, modulo rotations
( x ^ y ) l—> ( e ^ x ^ e ^ y ) .

Proof. — The map associates to each F + Mh + Ch2 the divisor
v C Jac(X) = X, v = (a; |^=_^ , -^/x). By (3.3) changing (x , >')
to ( e ^ x . e ^ y ) does not affect v .

The inverse of this map is constructed in the following way.
z2 = co2 — 2j3j3* determines uniquely the coefficients of A ; in
particular €3 , M3 are known (see (3.3)). The divisor v determines
— y / x and a?!^_^. Therefore by (3.3)

r^a^-M.h-c.h2)^^
is determined. This uniquely defines co as a polynomial in h. But
then z2 - a)2 = 2^* = - 2(|^|2 + (yx + y x ) 4- \x\2 h2) is
defined, i.e. \y\2, \x\2, y~x + ~yx, and xy = y \x\2/x are known.
This implies that x, ^ are determined up to a rotation

( x , y ) «—»- (e16 x .e19 y ) . n

3.2. The linearization of the Lagrange top flow on Jac(X) = X can
be established by a direct computation which is strictly three dimen-
sional, or by a modification of a general method of Adier and van
Moerbeke [4] which can be extended to higher dimensions. First
we show the direct method.

Equation (2.4) is equivalent to the following system in (x, y )

\ x = ~ l ^".^ ^ ̂  + i ̂ ~y ̂ 3^3, Tr(F2) = constantJ ZA^A ~r fJ.) A ~r fJi

( ^=f^-.^-^r^3-^,^23=- lT^(^2)- l|y|2. (3.7)
^ 2A AT^LI z ^-
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In particular

xy -yx = ———— (C^y2 - M^xy + F^x2). (3.8)
A. T yi

Any linear How on Jac(X) = X is of the form h = cz for some
constant c, where the divisor v = ( A , z ) . But since h = — y / x ,
z = a; 1/,=_^ , this linear flow is (use (3.3))

h = c^ 1/,=_^ = cfx-^- F3^2 + M^xy - C^y2)
== x-2(xy - y x ) .

Choosing c = —— , the Lagrange-top is seen to be a linear
A + fl

flow on the elliptic curve Jac(X) = X ; it can be expressed as

_1__ ^ /^ dh
X + ̂  r J^ (c^2 - 2^*)172 ' (3l9)

This formula is modulo a change of variables the elliptic integral
defined by (2.3).

3.3. We linearize now the Lagrange top flow with the aid of a general
procedure which can be used for the ^-dimensional case (Ratiu [12]).
The method of van Moerbeke and Mumford [10] is to be adapted to
this singular problem. Therefore consider the curve Xg given by
p , ( z , A ) = deKA6 - z l d ) = ~ z 3 + eh2 z2 + (oj2 - 2j3^)z

-eh2^2 = 0 ,
where

~eh2 ft i p * '
A'= -^ -G} 0

iP 0 co_

In the limit e —> 0, X^ tends to the reducible curve p(z, h) = 0.
Apply the theorem of Adier and van Moerbeke [4] to X^ and obtain
a Lax equation with linear flow on Jac(X^); finally it will be shown
that in the limit e —> 0 this flow converges to the Lagrange top
flow (3.9).

The curve X^ has genus 4, is a six-sheeted covering of the com-
plex A-line and is non-singular. At z = oo, A = oo, there are three
branch points P ^ , P^ , P^ where the following asymptotic estimates
hold
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^ , at P^
- O C 3 ( X + ^ ) , at ?2 (3.10)h2

i\3^ +^) , at ?3
(see theorem 1 in Adier, van Moerbeke [4]). The holomorphic dif-

ferential a;00 = z (— ^(z, A))"1 dA on X, tends to a holo-
morphic differential on X given by

z(-3z2 + co2 - 2ft3*)-ldA =~z(2z2)- ldA == - dA/2z.

By Adier and van Moerbeke (see [4]), the meromorphic function
(X + ^)~1 zh~i defines the isospectral deformation

A e =[A e , (A C / r l (X+^) - l ) J (3.11)

where "+" means taking the polynomial part; it is linearized on
Jac(Xg) as follows

S /^^^I Res ((X+^-^A-1^)^ f e = 1,2,3,4,
1-1 • 7=1 (3.12)
where {^ \ 1 < k < 4} is a basis of holomorphic differentials
on Xg. As € —> 0, Xg tends to the reducible curve p(z, A) = 0,
P^ and P3 go over to P , Q respectively, A6 —> A and

^A-^X + fji)-\ —^ (AA-^X + ̂ )-\(A6 /r*(\ + M)-'^ —^ (A/T^X + jii)-1)^

f 0 ^ i x 1
X + jLt \+^

^ i 2X n o
X + ^ x ^/i"3 0

0 , 2X i2x+^i x+jn 3

+
" 0 0 0 '

0 ?X3 0
0 0 -;Y

• *̂ .

h

Thus conjugating (3.11) by U and letting e —> 0 we get the
equation (F + MA + C/z2)' = [F + MA + Ch2, S2' + xA] , where

_ 2X \
> "2 > ,̂ — "3} • Since t^ = Mi ̂  - M^ ̂ i = 0,"''("-"-i-^

2X \defining M' = ft'J + Jft', we get M' = ( Mi , M, , —— N(3 )

also (F + M'h + Ch2) = [F + M'A + Ch2, Sl' + y.h} which is the
equation of the Lagrange top. Hence we proved that the limit of

M, ) and
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(3.11) is, modulo a change of variables, the Lagrange top equation.
To this limit there corresponds (3.12) with e —> 0. Take

o?^ in (3.12) and remark that by (3.1) the expressions of f^, f^
for Xg are

<?* . ̂  US
^ = = — — - Aco 4- z " a? - z

These do A2or depend on e and thus lim v ^ ( t ) exists and we proved
that the limit of the left-hand side of (3.12) is a sum of Abelian
integrals in the holomorphic differential - dh/2z on X.

Using the expansion (3.10) of z and the formula for c^ in
(3.3) we have

lim Resp (o^z/z" (X + ^)~ )

1 „ „ z^h-^dh-——— lim Resp ——;————=—————————
X + ̂  e-^o t! - 3^2 + 2e/T z + ex;2 - 2|3j3*

1 ^^ ̂  _______e2/;3^_______
X+^i 6"% es -3e2/!4 + 2e2A4 -^(X+M)2^2

lim Resp (^ zA-1 (X + ^)-1)

= J I™ Res (:F ̂ 3^ + ^) ^) (^ 1X3^ + M) ^2) ̂
X +^ e-.o - 3x| (X + ^i)2 A4 ? 2e(X + fi) A4 - x|(X + ^i)2

- 1 dARes—X + / z A
1

2(X + ̂

the last equality being obtained taking h = l / t as local parameter
at oo. Thus the limit of the right hand side of (3.12) equals ———t

\+ fi
and we proved once again that the Lagrange top /7ow linearizes on
Jac (X)=X.

Recall that the flow of the Lagrange top lives on
p ( z , h) = — z q ( z , h) = 0 and the above procedure linearizes it
on the X-part only. However p ( z , h) = 0 is a complex 2-dimensio-
nal cylinder with generator the line z = 0. Thus the flow of the
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Lagrange top problem linearizes on the real part, i.e. on a cylinder
in R3 ; this result was obtained directly in 2.1. by computing the
regular part of the energy surface ^ = constant, F = constant.

Note added in proof. - For an alternate proof of Theorem 1.1.
using momentum maps, see Holmes, Marsden: "Horseshoes and Arnold
diffusion in Hamiltonian systems with symmetry", Indiana Journal
of Math. (1982). This paper also contains the following result: a heavy
rigid body which is almost a Lagrange top, i.e. \ — \ is small, has
horseshoes in its phase portrait.
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