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THE ORDER STRUCTURE OF THE SPACE
OF MEASURES WITH CONTINUOUS

TRANSLATION

by Gerard L. G. SLEIJPEN

Introduction.

Let S be a stip; this is a locally compact semigroup with identity
element 1 of which the topology is induced by a neighbourhood base of 1
[cf. (2.1)]. In view of the results in e.g. [I], [3], [15] one may state that the
algebra L(S) of all bounded Radon measures on S with continuous
translations [see definition (2.3)] is the natural analogue of the group
algebra L^G) of a locally compact group G. Therefore, it is tempting,
now, to look. for an analogue on S of the L^G^module L^G). For this
purpose, since L(S) is essentially a measure algebra and not a function
space, we look among the measure spaces for a candidate.

If, for instance, S is compact, the space of all bounded Radon measures
u for which the collection of all translates |u| ^ x [where x is the point
mass at x] (xeS) has an upper bound in L(S) seems to be suitable; if,
moreover, S is a group this space « coincides » with L^S). However,
simplicity of a definition only is not a sufficient justification for a study;
many other generalizations of L°°(G) are conceivable [see for instance § 7
of [19]]. Therefore, in order to deepen our understanding in the structure of
L^G), we listed a number of properties that the least a proper analogue
of L°°(G) sould have. Thus, we came to the notion of « pseudo L°°-space »
[these are Riesz ideals of L(S)i^ with a Banach lattice structure that has
certain completeness properties [cf. (2.5.1-2)]]; furthermore the unit ball is
vaguely bounded [cf. (2.5.3)], and it «contains » all its translates [cf.
(2.5.4)]. In the case that S is a group, these spaces are [or, to be more
precise, can be identified via the Haar measure with] invariant solid Banach
function spaces as have been studied in e.g. [6] and [7]. By studying the
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properties of the pseudo L°°-spaces, and to observe how they work in the
induced spaces, we hope to establish those that are essential for the L°°(G).

In [19], we paid some attention to the L^-spaces, induced by a pseudo
L°°-space in a way as described by J.-P. Bertrandias in [2]. In the present
paper, we concentrate on the subspace of a pseudo L°°-space consisting of
all measures of which the translation is [uniformly] continuous with respect
to the norm of the pseudo L°°-space. To be more precise : let L°°(S,B) be
a pseudo L00-space with norm || 1^. The collection of all HeL°°(S,B)
for which r^[r^(x) : == [i ^ x (x e S)] is a continuous map from S into
L^S.B) is denoted by LRuc(S,B). The closure of {^ e LRUC<S,B) I support
of H is compact} is denoted by LRuc(S,B)oo. If S is a group with right
H a a r - m e a s u r e m and L00 (S ,B) ^ L°° (S ,m) [i.e.
L°°(S,B) = [fm | / e L°°(S,m)}] , then L^c(^B) ^ {f\f : S ̂  C
uniformly continuous} and LRuc(S,B)oo ^ C^(S).

The problems we solve here, mainly have to do with the order structure
of the spaces in question. We show how certain order-continuity properties
of || l l®, are related to the conditions « LRuc(S,B) [or LRuc(S,B)oJ ls a

Riesz ideal of L°°(S,B)» and «LRuc(S,B) [or LRuc(S,B)oJ is a Riesz
subspace of L^S.B)». The main result we obtain is new and of interest
also in the case that S is a group. If S is a non-discrete group with right
Haar measure m, this result runs as follows :

1) LRuc(S,B)oo is a Riesz ideal if and only if \\ \\^ is order continuous on
{/w|/eL°°(S,m), the support of f is compact} [cf. (4.14)].

2) Lpuc(S,B) i5 a Riesz ideal if and only if \\ \\^ is order continuous on
{/m|(sup [f^\x e U})w e L°° (S,B)}, where U is a compact neighbourhood of
1; [see (5.10) and (5.11.2)].

In § 2, we explain our notations and conventions. Further, we give the
definitions and properties that are basic to the theory of stips, and we
introduce the pseudo L°°-spaces.

We consider the Banach-module structure of LRuc(S,B) in the next
section. In § 4, we discuss the case that LRuc(S,B)oo ls a ^lesz id^l- Next, in
§5, we generalize the obtained results to Lpuc(S,B). In the last section, we
study the conditions under which LRUC(S,B) is a Riesz subspace of
L°°(S,B).

I wish to express my gratitude to dr. G. Groenewegen for stimulating
discussions on the subject of this paper.
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2. Notations, definitions and elementary properties.

In this section, we explain notations and conventions. Furthermore, we
collect some elementary properties. Conventions that are not explained in
the text are the same as the ones in [15]. Related properties can be found in
[15], [19] and [20]. For some background information concerning Riesz
spaces we refer the interested reader to [9] and [14].

S is a locally compact semigroup [the topology is locally compact
Hausdorff and the multiplication is jointly continuous] with an identity
element 1.

Jf denotes the collection of all compact subsets of S. For any subset
A of S, ^A denotes the characteristic function of A. The collection of all
locally Borel measurable functions / from S into C [i.e. /^p is Borel
measurable for all F e Jf] is denoted by m(S). For each /em(S),
[|/||̂  : = sup {|/(x)||xeS}. The subspace of the bounded continuous
functions in w(S) is denoted by C(S). Coo(S) : = { /e C(S)| there is an
F e Jf such that f(x) = 0 (x e S\F)} and C^(S) is the closure of Coo(S)
with respect to the ||-||^-norm.

The space of the [not necessarily bounded] Radon measures on S is
denoted by M(S). We will identify M(S) with Coo(S)*, the topological
dual space of Coo(S) [the topology on Coo(S) is given by the seminorms
/ -> ll/^lloo (feCQo(S)), where h is any continuous function on S].
M(S) is a [complex] Riesz space under the obvious ordering.
Ma(S) : = {n e M(S) | H is G-fmite}, while M(S) : = {^ e M(S) | ^ is
bounded}.

For a |i e M(S)4" and a v e M^S)^ we will write ^ * v e M(S) if for
each /eCoo(S)'1' and each xesupp(v) the bounded continuous function
f^ : y -> f(yx) (y e S) is ^i-integrable and the function H O / : x -> [i(f^)
(x E S) is v-integrable : in this case [i ^ v is given by

f
H*v(/):= Ho/dv for all feC^(S)\

J

By splitting the measures into their Jordan components it will be clear what
we mean by [i ^ v e M(S) for a ^ e M(S) and a v e M^(S). If both H,
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v e MJS) and ^ ̂  v e M(S) then

^ * v(/) = JJ^^^M^^) == ff/(^)dv(^)d^(x)

for every / e m(S) that is |̂ i| ^ |v|-integrable.

If B c M(S) is a Banach space under a certain norm p, then B^ is
the collection of all [i e B for which supp (^) e Jf and B^ := p-clo(B^).

2.1. DEFINITION [cf. [15], (2.1), (2.3)]. - A stip S is a locally compact
semi group with identity element 1 for which for each neighbourhood U of
1 :

(1) xeintCU-^Ux) n(xU)U-1] for all x e S

[where A-1 B = {y\AynB^=0} (A.B^S)];

(2) 1 eint [U~1 ynwU"1] for some r , w e U .

Put § := n^l*1 c S, J = S, JS n SJ c J}, [where J is the closure
cloJ of J].

2.2. PROPOSITION [cf. [15], (2.4), (2.7)]. - Let S be a stip.

Then clo(§) = S, S§S = S = §§.

For each x e S, for each open set U and V of S and each u e U n §
we have that the sets U'^Vx), (xV)U-1, (UnS)-^ and x(Un§)-1 are
open and

x e int [^((U n§)x) n(x(U n§))M~1].

2.3. DEFINITION. — Let S be a stip.

L(S) 15 the collection of all pe M(S) for which one of the maps r^ or
l^[r^{x) := [i ^ x, l^{x) := x^p, (xeS)] /rom S into M(S) is weakly
continuous at 1. L(S)ioc: = {[i e M(S) | ̂ IK e L(S) /or ^« K e Jf}. The
collection of all Borel subsets A of S for which ^i(A) = 0 for all [i e L(S)
15 denoted by ^V.

2.4. PROPOSITION [cf. [15], (3.13) and [20], (12.7), (6.9)]. - Let S be a
stip. L(S)ioc is a Riesz ideal of M(S). L(S) 15 an L-ideal in M(S). If
[ieL(S) then both r^ and l^ are norm-continuous. A neM(S) belongs to
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L(S)î  as soon as ^(F) = 0 for all Fe^T n Jf. If Z <= S SMC/I ^a?
ZS <= Z or SZ c Z r^n Z\Z 15 ^-negligible for all ^ieL(S).

Throughout this paper S is a stip \vith the additional properties :
1) clo{suppOi)|neL(S)} = S;
2) the identity element has a countable neighbourhood base.

A stip S with property (1) belongs to the class of the foundation
semigroups [cf. [15], (2.2)]. In [18], the reader can find a discussion whether
each stip has property (1).

We require S to have property (2), only in order to avoid a number of
rather technical complications. Most of the results in this paper can also be
proved without this topological restriction, by exploiting the 8-isolated
idempotents e [i.e. e2 = e, and [e] is a G§-subset of
{/eS|/2 = /, ef = fe = j}~] and the compact subgroups of S that are On-
sets [cf. [20], ch. XI].

Furthermore, throughout this paper :

2.5. DEFINITION [cf. [19], (5.3)]. - L°°(S,B) is a pseudo L00-space under
the norm || H®, : i.e. L^S.B) is a Riesz ideal of L(S)ioc and the norm
|| I I ® , on L°°(S,B) has the following properties :

1) L°°(S,B) is a Banach lattice under \\ ||^;
2) || 11°, has the ^extended] Fatou-Levi property [i.e. if V c L°°(S,B)

such that (i) for each v', v" e V there is a v e V for which v' ^ v,
v" ^ v [we write Vf] and (ii) \\v\\^ ^1 for all v e V , then V has a
least upper bound ^eL^S.B) [we write Vfu] and \\\JL\\^ ^1];

3) B := { p e L^S.B)! ||p||^ ^ 1} is vaguely bounded [_i.e.
sup{|p(F)| |peB} < oo for all F e Jf] ;

4) The modular function A from S into [0,oo] defined by
A(x): = sup {||p ̂ x\\^ | |p e B nL(S)} (x e S) is locally bounded [_i.e.
IIA^Iloo < °° ^ all Fejf].

In case S is a group the pseudo L°°-spaces can be identified, via the
Haar measure, with invariant solid BF-spaces having property L.4 as
defined in [6].,

2.6. Examples [see also (3.3) and (5.4) of [19] and in this paper (3.7),
(4.1), (4.16), (4.18), (5.7)].
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1) Let S be a group with right Haar measure m^ and left Haar
measure m^ For each pe[l,oo], the space LP(S,my) is a pseudo
L°°-space with modular function equal to 1. The space L^S^)
is also a pseudo L00-space. In this case the modular function is 8179,
where q e [l,oo] such that 1/q + 1/p = 1 and 8 is given by
8(x);= ml(Kx~l)/ml(K)(x€S) for some K e Jf with w^(K) 7^ 0.

2) L(S) is a pseudo L°°-space with modular function identically 1.
3) Let U be a compact neighbourhood of 1.

For each neL(S), let \Wv : = ||̂ ||, whenever {|n|^x|xeU} has a
least upper bound nij in L(S), otherwise ||p[|Sj: = oo.

The space L[y(S) : == {n e L(S)| ||H||!y < 00} is a pseudo L°°-space under
the norm || ||^j [cf. § 7 of [19]].

In case S is a group and U~1 = U, m(U) = 1 for a right Haar
measure m, we have that m(UxU)/w(UU) ^ A(x) ^ w(UxU)(xeS).

The space {n 6 L(S)| ||sup [x ^ |p| \x e U}|| < 00} is a pseudo L°°-
space as well. The modular function is equal to 1. For the case where S is
a group, this space has been studied in [12], [5], [8].

2.7. PROPOSITION. — a) For each KejT, there is an M^e(0,co) such
that

llHJKll ^ MK|NS> for all HeL°°(S,B).

b) For each /ew(S), put

l / ir^supMOHneB}.
A n € L(S) ioc belongs to L°° (S ,B) 05 soon as
c : = sup{|H(/)||/6w(S), |/|?^1} < oo, in ^hich case M^ = c.

c) The modular function A is lo\ver semicontinuous [i.e. A'^O^]) ;5
closed (a>0)] and A(xy) ^ A(x)A(y) for all x , y e S .

d) With 8 = I/A, for each HeL°°(S,B), veM(S) we have that

p^(8v)eL°°(S,B) and ||H*(8v)||^ ^ ||^C||v|l.

(e) Put Q : = do U {supp (p)|p e L°°(S,B)}. If [ie L(S) such that
|H|(S\Q) == 0 then ^ « p for some p e B. For each F 6 JT, there is a
p e B such that ^ « p for all ^eL^S.B).
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Proof. — (a) Is a trivial consequence of the vague boundedness of B.
(b) By an adaptation of the proof of theorem (13.5) in [20] [see also theorem
(4.8) in [16]], for each compact subset F of S, we can find an m e L{S)+

such that
^IF « m for all ^ e L00 (S,B).

Therefore, locally, L°°(S,B) can be viewed as a Kothe function space. Since
|| H8, has the Fatou property, we locally have (b).

Finally, the [extended] Fatou property now implies (b) [see also
prop. VII and theorem IV of [2]].

The proof of (c), (d) and (e) can be found in [19], (5.5), (5.9), (5.8),
respectively.

2.8. Remarks. - (1) The proof of (b), as suggested above, depends on
the fact that {1} is a Gg-subset of S. However, by an adaptation of the
arguments in § 4 of [19], one can also prove (b) without this countability
restriction for {1}.

(2) Let (L(S),®) be the Banach space endowed with the product ®
given by

^1 ® v = A - H * -v Oi,v e L(S)).
LA A J

Then (L(S),®) is a Banach algebra, a so-called Beurling algebra [cf.
e.g. [6], p. 142] and L°°(S,B) is a right (L(S),®)-module under the module
operation suggested in (d) [cf. [6], lemma 1.5].

3. B-uniformly continuous measures.

In this section, we introduce the B-uniformly continuous measures and
we prove some elementary properties.

The notion of « B-uniformly continuous measure » can be viewed as a
generalization of the notion of « uniformly continuous function » on a
group; in case S is a group with right Haar measure m, the measure fm
(/eL°°(S,w)) of which the right translation r^ from S into M(S) is
continuous with respect to || llooCIL/Noo := ess su? {I/MI l-^ e S}] can be
identified with a uniformly continuous function [cf. [4]].
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3.1. DEFINITION. - A H6L°°(S,B) is said to be B-uniformly continuous
if the map r^ from S into L°°(S,B) 15 continuous with respect to the
|| \\^-norm. The collection of all B-uniformly continuous measures is
denoted by L^cC^a).

Recall that LRuc(S,B)jr = {n e LRuc(S,B)|supp(^) 6 Jf} [not to be
confused with

and
{H[p|ueL^c(S,B),Fe^}]

LRuc(S,B)oo = I I ll'o-clo^Ru^B)^.

The spaces LRuc(S,B) and LRuc(S,B)oo obviously are closed subspaces
of L°°(S,B). However, it is far from clear whether these spaces are Riesz
subspaces or Riesz ideals. Before we concentrate on these problems in
§ 4, 5 and § 6 we give some « properties of Banach module type ».

If the space LRuc(S,B) is considered as a generalization of RUC, the
space of uniformly continuous functions on a group, then Lpuc(S,B)^ and
LRuc(S,B)oo are generalizations of Coo(S), respectively of Coo(S). The
correctness of the view, suggested here, is emphasized by the following
property, for whose proof we refer to [19], (5.12).

As in [2] has been explained, L^S.B) introduces L^'-spaces [see also
[19], § 3]. As in the group case, these B-uniformly continuous measures with
compact support form a dense subset in any of these Lp-spaces.

3.2. LEMMA. - Put 8(x);= A(x)~1 for all x e S .

Then 8 is locally bounded.

Put y := sup{l/||A^jl|JU c S, 1 eint(U)}, and let V be a compact
neighbourhood of 1.

Then for each veL(S), e > 0 there is a peI^S)'^ [or if

S = do u {supp^lHeL^S.B)}

there is a peL(S)+ n L°°(S,B)] such that

supp (p) c V, ||p|| ^ 2/y and |[v ® p - v|| < e

[where v®p=A(8v^8p)]. In particular, we have that the Beurling algebra
(L(S),®) has an approximate identity with bound 2/y.
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Proof. — The local boundedness of 8 follows easily from the fact that
the sets {x e S|8(x) < N} are open [use (2.7.c)].

Let veL(S), e > 0. Put

E'^e/7, e":=min(y,6'y/||v||)
and

V : = int {x e V|8(x) e (y - c",y + e')}.

From the definition of y and the upper semicontinuity of 5, it follows
that leclofV'). There is an F e Jf such that |v|(S\F) < e'. Consider
[i := v|p. Since A and 5 are locally bounded and [i belongs to L(S) we
have that

W : = {xeSII^H^-^E'}

is an open neighbourhood of 1. Take a p'eI^S)'^ such that

Hp' l l = 1/y and supp(p') c V n W..

Then for each /eC^(S) with ||/||̂  ^ 1 we find that

|H ® p'(/)-H(/)| = §H^x(A/)d8p'(x)- y^(/)dp'(x)

[8^*x(A/)-^(/)]8(x)dp'(x) + ln(/)(8(x)-y)dp'(x)

^ e' 8 dp' + • / 8dp '+ l l n l l [ |8(x)-y|dp'(x)^4£\

Hence
| |H® P ' -^ l l ^ 4e'.

If S = do LK^PP (7C) In e L°°(S,B)} then, by (2.7.^), there is a p e B such
that

Hp-p'll < min (£7||v||,y)

[actually, p = (/An)o, where aeB+ and feLl(S,a) such that
p' = /a, and n is a suitable natural number]. Otherwise, p := p\ Then

||v®p-v|| ^ ||v®p-H®p|| + ||H®p-p®p'||
+ HmDp'-^ll + ||^-v|| ^7£ / = = £ . D
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3.3. THEOREM. - L^S^.^^SvlHeL^BhveHS)} and

LRuc(S,BL = {H*8v|ueL°°(S,B)^,v6L(S)}.

Proof..- Let U6L"(S,B) and V€L(S)^. Put F:=supp(v). Let
xeS with compact neighbourhood X.

Then

llu^Sv^-u^v^plI8, = ||u*8(A(§v*x-8v*jO)||^

< IN^||A(§v*x-8v*jO|| < llulOA^IUISv^-Sv^ll.

Since A and 8 are locally bounded and §veL(S), the continuity of r
at x follows. Furthermore for a p e L(S) we have >1

llu * Sp - u * SpJKll^ < llull^llpj^ll (K € JT)

and, consequently,

u*6pe| | H^-clo^^SplKlKeJT}.

Apparently, {n*5v|n6LOO(S,B),veL(S)} £ L^c(S,B).

Take a ueL^S.B), and e > 0.
Then V := {xeS\ ||u*x-n||^<e} is a neighbourhood of 1 There is
a veL(S) such that ||v|| = v(V), ||§v|| = 1 . By a combination [for
details see (2.1) of [11]] of the Eberlein-Smulian and the Banach-
Grothendieck theorem, for any /ew(S), with I/I8 < 1 we have that

|(u*8v-u)(/)| = Ju*x(y)-uCnd§v(x)
/•

^ IIU^^-Ull^dSv^) < e.
•

The factorization theorem of Cohen leads now to the result in the theorem.

D
Several characterizations of measures u€L^c(S.B) can be given A

basic one is formulated in the next theorem; the proof as presented is an
adaptation of the arguments in (3.2) of [15].

Another characterization can be found by generalizing the results in
LI-)], in the following way.
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If neL^S.B) such that {[i^x\xeA} is separable in L°°(S,B) for
some a-compact subset A of S of which 1 is an L(S)-density point [i.e.
for each open V with 1 e V, there is a v e L(S) for which v(A nV) ̂  0]
then H ^ x e LRuc(S,B) for any x e §. [Take an x e §. By a reasoning
similar to the one in [13], find a compact K contained in A n ^ ~ l x that
is not L(S)-negligible and on which r^ is continuous. Next, look for a
v e S and a compact neighbourhood V of 1 such that KKu c jcV and
prove that r^ is continuous on V. Finally, apply the next theorem in
order to obtain the announced result] In particular, if HeL°°(S,B) then
H ^ x e Lpuc(S,B) (x e §) as soon as r^ is L(S)-measurable.

3.4. THEOREM. - Let HeL°°(S,B).

Then p, e LRuc(S,B) if and only if r^ is weakly continuous at 1 [i.e.
continuous with respect to the weak topology of L^S.B)].

/ / H e LRuc(S»B) and feC(S) is uniformly continuous [i.e. x->fj, is a
continuous map from S into C(S)] then f[i e Lguc^B) • In particular, we
have that /ueLRuc(S,B) for all ^ieL^^W and feC^(S).

Proof. - Note that ^eL°°(S,B)* for each fceL°°(S,B)*, x e S if ^
is defined by h^(v) := h(v^x) (v e LOO(S,B)).

Let HeL°°(S,B) for which r^ is weakly continuous at 1. In order to
prove that r^ is norm-continuous on S, we may suppose that n is real.

First, we shall show that r^ is weakly continuous on S. Let (x^g^ be
a set in S that converges to x e S. Suppose h e L°°(S,B)* is real and such
that (^(H*^))xeA converges to a C e R . We shall prove that
C = /i(|i^x); then we may conclude that r^ is weakly continuous at x .
According to the Hahn-Banach theorem there is an BeL°°(S,B)* such
that for each real veL°°(S,B)

lim mfh{v^x^) ^ %(v) ^ lim sup h(v^x^).

Let e > 0 and let U be a compact neighbourhood of 1. V is the
collection of all v e U for which both

\Ti{[i^v)-Ti{[i)\ < E and \h^^v)-h^)\ < e.

Then 1 e int (V). Take a v e int (V) n § and note that x e int [y'^Vx)]
[cf. (2.2)]. Therefore, there are a ^o6^ ^d a family (t\)^gA m V ^OT
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which v^x = vx^ for all ^ e A , ^ ^ ^o. We find that

C - 2s = lim h([i^x^) - 2e = Ti([i) - 2s ^ ̂ O^y) - e

^ lim sup h([i^v^X)) - e = lim sup h^^v^) — e

^ ^(u) ^ \immfh^([i^\) -h c = lim mfh([i^v^x^) + e
^ ,̂

^ Ti([i^v) + e ^ ?ii(u) + 2e = C + 2s.

Apparently, C = h(\i^x).

Now, by a combination of the Eberlein-Smulian and the Banach-
Grothendieck theorem [cf. (2.11) of [11]] we find that

h(^^v) = ^h(^^x}dv{x) forall veM(S)^, h e L°°(S,B)*.

LRuc(s3) is norm-closed and hence weakly closed. Therefore, since
{a^v|veL(S)^} c L^c(S,B) [by (3.3)], it easily follows now that
HeLRuc(S,B).

The proofs of the other assertions in the theorem are left to the reader.
D

3.5. Note. - In [15], we proved that a ue M(S) belongs to L(S) as
soon as x -> u ^ x(f) from S into C is continuous at 1 for all
/ e m(S). In view of this result one could hope that a u e L°°(S,B) belongs
to LRuc(S,B) as soon as x -> u ^ x(f) from S into C is continuous at 1
for all /em(S), for which |/|? ^ 1. However, on R with Lebesgue
measure ^, the function x-^sinx2 induces a measure in L°°(R,^) that

does not belong to L^uc^^) but for which x -> sm{x-^-y)2f(y) dy is

continuous for all feLl(R,'k).

For measures a e LRUC(S,B) we can approximate H^lj^ with the aid of
the B-uniformly continuous measures in B^

3.6. PROPOSITION. - There is an a > 0 such that for each
a e Lpuc(S,B)

M^ < i n f { c e R | |a| ^ cm for some m e LRuc(S,B) n B-'} ^ a||̂ .

[If LRuc(S,B) is a Riesz space one obviously can take a to be 1.]
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Proof. — For each \\. e LRUC(S,B) , put

l lHl l^ := i n f { c e R | \[i\ < cm for some meL^^) n B+}-

Obviously, we have that ||H||S, ^ \\[i\\^.

Let [i e LRU^B)' By t3-3^ there are a v e ̂ uc^^B) and a P 6 L(s)+

such that [i == v ^ 8p. Note that

|v| ^ 8p e LRuc(S,B) and \[i\ ^ |v| ^ §p.

Therefore ||H||^ < oo .

It is not hard to prove that LRuc(S,B) is also a Banach space under
1 1 - 1 1 ^ . The proposition follows now as a corollary of the open mapping
theorem. D

The following example shows that a may happen to be unequal to 1.

3.7. Example. - Let S := {(xjQ e [0,oo) x R\y = 1 or x e [0,1] and
x =y] be endowed with the restriction topology. The multiplication is
given by

/ v ^ f^+P^+9) ^ (x+p,^+<?)eS
(^)(M):={^^ ^^

Let ^ be the Lebesgue measure on [0,oo) x {1} and let V be the
Lebesgue measure on S\[0,oo) x {1}, normalized such that

?1] x { !})== 1 =||X'||.

For a H e L(S)^ = {/(X + ?i')|/ e L1 (S,?i + ?i'U put

| |H | |^ :=inf{ceR| |H| <c(?i+r»}.

Let / : S -̂  R be given by

x if ^ = 1 and x ^ 1

/(x,^) := < -x if ^ 7^ 1 and x < 1

0 if x > 1.

Consider u^/^+X') . Note that neLRuc(S,B), but \[i\ i L^u^B)-
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In this case we have that

11^=1, while 11^=2.

Clearly, a ^ 2. However, one can show that a = 2.

4. The case where LRuc(S,B)oo is a Riesz ideal.

Consider a linear subspace L of L°°(S,B). If V is a downward
directed subset of L with infimum 0 in L [i.e. if u e L such that
0 ^ u ^ v for all v e V then u = 0], we put V [ 0(L).

We say that || |[^ is absolutely continuous on L if for each countable
subset V of L for which V^O(L) we have that

(1)- i n fdMJ^IveV} = 0.

In case (1) holds for all subsets V of L for which ViO(L) we say that
|| 11^ is order continuous on L.

Note that we do not require L to be a Riesz subspace of L°°(S,B) [see
(3.6) and (3.7)]. Furthermore, we have that || ||̂  is order continuous on L
whenever || \\^ is absolutely continuous on L and L ^ L°°(S,B)^ ; to see
the correctness of this statement it is sufficient to note that L^S.B)^ is a
subspace of M^(S) and that for each u e M^(S)+ , {v e M^(S)[v « u} is
super Dedekind complete [see also (5.13)].

In this section, we obtain characterizations for the case where
LRuc(S,B)oo is a Riesz ideal of L°°(S,B) in terms of the order continuity of
|| [|^ on certain subspaces of L°°(S,B) [see (4.14)].

Note that LRuc(S,B)oo is a Riesz ideal of L°°(S,B) as soon as LRuc(S,B)
is one. However, the converse need not be true [LRuc(S,B)oo can be a Riesz
ideal while LRuc(S,B) is not] as the following example (4.1) shows. The
results concerning LRUC(S,B) depend on those for LRuc(S,B)oo • Therefore
we study the situation for Lpuc(S,B)oo firstly.

4.1. Example. - Let S be the additive group of the real numbers, ^
denotes the Lebesgue measure on S. For an fe L^S,^,, define

HAII^ := inf{F||, + ||glU^eLl(S,^,/=/^+^.

Then L°°(S,B):= {A e L(S)J ||A||̂  <oo} isapseudo L--space; the so-
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called Gould space [cf. [10]]. It is not hard to check that
L°°(S,B)^ ^ L^S,^,) and, consequently, that || ||̂ , is order continuous on
L^S.B)^. However, || 11°, is not order continuous on L°°(S,B). We have
that LRuc(S,B)oo ^ L^S,^) is a Riesz ideal of L°°(S,B), while Lpuc(S,B)

00

is not: ?ieLpuc(S,B), but ^ ^.n+i/n] ̂  Lpuc(S,B).
n = l

4.2. PROPOSITION. - Let L°°(S,B) be such that L^cC^^oo is a Riesz

ideal. Then \\ ||̂  is order continuous on LRuc(S,B)oo-

The proof of the proposition is based on the following three lemmas. In
these lemmas LRuc(S,B)oo is supposed to be a Riesz ideal of L°°(S,B).

4.3. LEMMA A.- If HeLRuc^B)'^ and (FJ^^ is a decreasing
sequence of compact subsets of S such that mth F := ^} {FJn eN},
F ~1 F i5 not a neighbourhood of 1 [F is emaciated in the terminology of
[16]], then

lim||LiU|!-0.

4.4. LEMMA B.- // 1̂ e LRuc(S,B)^ and (F^g^ is a decreasing
sequence of compact subsets of S such that n { F J n e N } is L(S)-
negligible, then

lim 11^11^=0.
n n

4.5. LEMMA C. - If n e LRuc(S,B)Jr and 0 is an open subset of S,
then

inf{||HM^|Fe^,F^O} =0 .

In order to prove lemma B we need lemma A. A combination of
lemma B and lemma C leads to the order continuity of |[ ||^; we shall
first prove this last implication.

4.6. Proof of (4.2). - It is left to the reader to verify that the order
continuity of || [[^ follows from the following property (*).

For each |i e LRuc(S,B)^ and each decreasing sequence (U^gN °f
(*) open subsets of S for which n^nl7161^} is L(S)-negligible we

have that lim l^lu II") = 0 .» n
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In order to prove (^c), suppose that for some ^eLRucC^B)4^ and for
some decreasing sequence (OJ^g^ of open sets whose intersection is L(S)-
negligible we have that

lim llnloJI^ = a > 0.
n-»oo "

In view of lemma C for each n e N we can find a compact subset F^ of €)„
such that

HHlo^^-a.

n

Put K ^ : = f) F,. Then (K^g^ is a decreasing sequence of compact sets

for which n {K^ [ n e N} is L(S)-negligible, while

\MK^ ̂  ll^lojl^ - \Wo^€
^ ll^lojl^ - Z NO,\F,II^ > ^a for all n.

1=1 z

Clearly this violates the result in lemma B.

Apparently || ||̂  has property (^e) and consequently is order
continuous. D

4.7. Proof of Lemma A. — Suppose there are a u e LRuc(^B)^ and
a decreasing sequence (F^g^ °^ compact subsets of S such that with
F := n {FJneN}, F~ 1 F is not a neighbourhood of 1 while

lim ||a|p ||̂  = a > 0.
n-»oo "

Put M : = supp (a). Note that M e Jf.

Without loss of generality we may assume that

F^+1 ^ int (F^) for all n e N.

Let (V^gN ^e a decreasing sequence of relatively compact open
neighbourhoods of 1 such that {1} = ( ^ { V J n e N } .

By induction we construct sequences (xj^^? C^ieN m S and (KJ^N
of compact subsets as follows.
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For n e N, assume that x ^ , . . . , x^ y ^ , . . . , ̂  e S and compact sets
KI , . . . , K^ are such that for all i = 1, . . . , n,

x,, y, e V,, K, = ¥j for a certain j,

K^K,_, c • • • c = K i ,

M n K,x,-1 <= K , _ i , K.x,-1 n K, = 0 for all y , 7 ^ i.
M n A^. n K^~1 = 0, where A, := K^1 u ... u K^~1,

and
K^, nK,x.-1 = 0.

Then choose Yn+i^^n+i suc^ that

A^+i nF = 0, F^+i nF = 0,

which is possible since 1 ̂ int (F~1 FnV^i) and by assumption
A^ n F c A^ n K^= 0. Next choose an x^+i eV^i such that

^i^A^i^F ^(F^^)-^,
(*) Fx,-̂  n M c: K,, Fx^\ n F = 0,

y^i^n+i ^ Fx^i n M = 0.

Finally, take K ^ i e { F J m e N } such that K^i <= K^ and the
properties (^) hold with K^i instead of F.

Put A = M n UlK^lneN}. Then we have that

M n K^~1 n A^ = 0 for all n e N;

since K^~1 n A^ n M = 0 and for all m e N , m > n

M n K^-1 n (K,x,1 n M)̂  ^ K^-1 n K ,̂ = 0.

Apparently,

^K^-1 ^ I^IA - ^IA*^ I tor all n e N.

Since (y)^ converges to 1 and [i belongs to the Riesz ideal LRuc(S,B)oo
we have that

0 ^ lim \\^^ ^ lim H^IA - H|A * y^ = 0.
n -*• oo " n -»oo

Therefore, we can find a subsequence (C^^ of (KJ^ such that, with
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z^ := xi whenever €„ = Kj,

Nc^-C^^-" for all n e N .

Put D : = (J {C^~11 n e N}. Note that,

^IC,\D ^ I^ID* ^ - ^ID + Hlc^ - H^nlcJ for all n 6 N,

whence

llHlc^X ^ IIHJD * \ - PiX + IJH - H * ̂ X.

Since ^loe LRuc(S?B)» we see that

lim ||plc,\Dl|^ = 0.
n-»oo "

Now, note that by our choice of the x^,

C ^ n D ^ (J CA1

m = B + l

and we find that

llHlcJI^Nc,,\X+llHlc,,nX

^II^Dll^+ Z Nc^.-C<IIPlc,\DllS>+2-".
w=n+l

We have to conclude that lim H^lc ̂  = 0 which, however, violates the
n-»oo "

fact that l lplFjl®) ^ a > 0 for all f e e N [recall that for each n e N ,
C^e{FJfeeN}] . D

4.8. Proof of lemma B. - Let ^ e LRu^^jr and let (FJ^N be a
decreasing sequence of compact sets such that F : = f){FJn e N} is L(S)-
negligible. Take an xe§. For each /eC^(S), put

p(/)=limsup||/H|F,-i||^.
n-^oo "

Then p is a seminorm on Coo(S),

p(l) = lim llnl^-ill^, and p(f) ̂  11/11,11^1^.
n-»oo "
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According to the Hahn-Banach theorem, there exists a measure v e M(S)
such that

v(S) = p(l) and |v(/)| ^ p(f) for all / e C^(S).

Obviously, p(f) = 0 whenever /eC^(S) and / = 0 on Fx~1.
Apparently, supp (v) c ¥ x ~ 1 .

Let K e Jf such that K~ 1 K is not a neighbourhood of 1. Take an
e > 0. Then, by lemma A there exists an /eC^(S) such that

O ^ K ^ / ^ I and ||AC<£.

This shows that v(K) =0 .
By theorem (3.4) of [16], we now have that v ^ xeL(S).

Since supp(v^x) c (Fx"1)^ c F is L(S)-negligible, we find that
v ^ x = 0. Therefore,

0 = v ^ x(S) = v(S) = p(l) = lim UHlF.ill^.
n-^oo n

To complete the proof, note that

llHlpjl^ ^ llHlF^-^*^Fj^+ll^-l*^^

^ ||H-H*x||^ +AM||^-i|[^.

The facts that ^ e LRyc(S,B) and A is bounded on a neighbourhood of 1
show that

lim IJniFjl^ =0. D
n-»oo "

Before we proceed to the proof of lemma C we separate two steps in the
proof in the form of the following lemmas (4.9) and (4.10).

4.9. LEMMA. - Assume there are a [i e LRuc(SJB)jr. an a, seR+ and
a sequence (E^g^ of Borel measurable subsets such that

(i) n u £„ = 0
w n^m

(ii) IIUlEjl̂  > a + e /or ̂  neN.

Let V fc^ an open subset of S.
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Then for each m e N there are an x e V anrf an n e N, n ^ m sucn
rnar

IÎ E,\E^-I|Î  > a.

Pyw/ - Let veL(S) n B such that v(V) = ||v|| = 1. Take an
m e N. Consider an f e m(S), |/|? < oo, an n e N and
E : = E^ n supp (n). Then

mEnEx-iCOI^v(x) ^ fl/nlnl ^ x(E)rfv(x)

= \ y ^ v(E)d\f^\(y) ̂  supy^ v(E)||/p|E||
J yeE

^ supy^ V(E)|H|E|(|/|) ^ supy^ v(E)|/|?||^.
yeE yeE

Since E c supp(p,)ejf and veL(S), we can find an n e N , n ^ m
such that

sup^v(E)^e(2||^0-1.
^ 6 E

Therefore, for each / e m(S) with |/|? ^ 1 we have that

r r
plE,\E,x-l(/)l^(x) = \W^{f)-[i\^E^(f}\dv(x)
J J

> ||^IE^I^V(X)- L|E^E^-l(/)|rfv(x)

^i^cni-e/2.
Since \\[i\^ ||̂  ^ a + £, there is some / em(S) with |/|? ^ 1 such that
I^IE^(/)I > a + e/2 [see (2.7A)].
Apparently, we have that

JllPlE^-ill^vM ̂  J|H|E^-I(/)I^V(X) > a.

The existence of an x e V with the required property follows. D

In the proof of lemma C, we will have to choose compact sets F with
an additional property: viz.¥xx~1 = F for some xe§. Unlike the
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group case, for semigroups, this is not a trivial property. The following
lemma overcomes this problem. The proof of this lemma may be based on
an observation as in the last few sentences of the proof of lemma B; we omit
the details.

4.10. LEMMA. — Assume there are a [ie LRUC(S,B)^ ^ P e ̂ + wd ^n

open subset 0 of S such that

llHlo\X ^ P for all F e Jf for which ¥ <== 0.

Then there exists an XQ e § and an a 6 (0,P) such that

ll^loxo VllS) > a for all F e Jf for which F ^ Oxo '. D

[Note that, whenever FeJf , F c O^o1 and P := F^o1 nsupp(n)
we have that F' e Jf, P S O^o1 , F c p, F'^oXo1 n supp (p) = P.]

4.11. Proofoflemma C. — Suppose there exist a ^ e LRuc(S?B)Jr and an
open set 0 of S such that for some X o e § , a, e e R ^ we have that

llHloxo- ̂ X > a + e for all F e Jf, F c Qxo 1 ;

if we can deduce a contradiction then, in view of the above lemma, we may
conclude that lemma C holds. Put M := supp(n). Without loss of
generality, we may assume that there exists a sequence (Gn)^N of compact
subsets of S such that

0 = Go c GI c int (G2) <= G2 c int (G3) S . . . . . . c 0
and

0=U{GJneN}.

Let (n(k))ke^ be a sequence in N such that for all f e e N

(1) n(k) > n{k-l) + 2 [where n(0) = 0].

Put KI := G^Xo1 n M, Ui := (intG^i)+i)xo1 and for each f e e N ,
k > 1 put

(2) K, : = (G^xo-x nM)\(int G^_ ,^0 1

and

Uk := (intG^+^Xo^G^.D+iXo1.
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Note that

(3) Kfc is compact, U^ is open (k e N)

(4) Kfc c u^ c Oxo 1 , H. n Ufc = 0 (k e N,n e N,n^k)

(5) (KfcXo)xo1 n M = Kfc (keN).

By induction, we shall show that, in addition to (1), the seauence (n(fc))feeN
can be chosen such that for any k e N XQ 1

(6) KJI^>a+£.

By the Fatou-Levi property of || ||^, we can find an n( l )eN such that (6)
holds with k = 1.

Now consider a p e N and suppose that n(l), . . . , n(p) have been
choosen such that (1) and (6) hold for k ^ p . Since

ÎO^G^ ÎÎ  > a + £

and

(O\G^) ̂  2)^0 ' c U (Gn^O ^GnCp) + 2^0 1) ,
m=n(p)+2

again by the Fatou-Levi property, we can find an n(p-\-\) e N such that
n(p+l) > n(p) + 2 and (6) holds with k = p 4- 1.

For each m e N, put
00

^m := U ̂  t̂1 IK)te t^t n^-m = 0.
n=w m

There exists a sequence (V^g^ °^ open relatively compact
neighbourhoods of 1 such that

(7) xo§-1 3V^V,3 • • • , n V ^ = { 1 }

and

(8) (K^V^)V^1 n M <= U« for all n 6 N;

since M is compact and (4), (5) hold.
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Let (y(^))^6N ^d (^(^))neN be sequences in N such that for all n e N,
n > 1,

(9) ?i(n+1) > y(^) > X(n) > y(l) = )i(l) = 1.

Let (x^eN be a sequence in S such that x^eV^^ for all n e N . For
each n e N, n > 1, put

F^ : = K,^ and C^ : = F \̂(F -̂.\ u£^_,).
Then

(10) O^eN converges to 1.

In order to prove that

(11) C, n C,+ix,-1 = 0 for all ij eN,

we distinguish three cases.

If j ^ i then

C, nC^iX,-1 s(C,x,nC^i)xr1 c (K^)V^ nK, î))x,-1

c (U^nK,^,))xr1 = 0 [by (7) and (4)].

If j > i + 1 then

Cj n C,+iX, c K^nC^+iXf c ^Y(/-I) n ^i+i-^i
^K^,)nC,^x,-1 =0 [by (9)].

If j = i + 1 then C, n C^i^"1 = Cf+ i n Cf+ix,"1 = 0.

Hence (11) holds.

Finally we shall show that the sequences (y(n)), (M^)) ̂ d (x^) can be
chosen such that, in addition to (10) and (11), for all n e N, n > 1, also

(12) llHlcJI^ > a.

By lemma (4.9), we can find an x^ e V\ and a X(2) e N, ^(2) > 1 such
that

NF î-1!!̂  > a-
Now, note that (F^F^i-1 u^x,))^¥^\¥^1 [here (A^TA
means A^ c A^ c • • • and A = u^AJ ; since, by (5) and (7),

(K^y)y~1 n M = K^ for all m e N , yexo^-1



90 GERARD L. G. SLEIJPEN

we have

n F^ n £,x, ^ (F -̂1 n fl KJx^ == 0.

Since || ||̂  has the Fatou-Levi property, there exists a y(2)eN,
y(2) > HI) such that W^ > a.

Now, consider a p e N and suppose that y ( l ) , .. . , y(p),
^-(1), . . . , X(p) in N and x^ , . . . , X p _ i in S are as required.

By (4.9) there are a ^(p+l)eN and an x^eY^ such that

^(P+ 1) ^ y{p) and N^F ;̂1!̂  > a-

As above, by the Fatou-Levi property, there is a y(p + 1) e N such that
y(p+l) > ^(p+1) and (12) holds with n = p + 1.

Finally, put A := (J C^i^"1. Then, by (11),
j'=i

C .̂ n A = 0 for all j e N .

Since
WCJ\A\ ^ Wcj - ̂ ^j-i\Cj + ^IA*^-I-H|A| for all j e N

and by (12), we find that

a < HulcJI^ = IIPlc,\X ^ llHlc.-^^^-ilc.ll^ + llHlA^.i-HUI^
^ |lH-H*x,_i||^ + II^A* x,_i-nUI^ for all j e N .

This inequality cannot hold; because (^._i)^N converges to 1 [see (10)],
while both ^ and ^IA belong to L^cC^a). D

It is not hard to see how the case where LRuc(S»B)oo ls a Riesz ideal is
related to the order continuity of |[ ||̂  on LRuc(S,B)oo- However, we
can also link this situation to the order continuity of || ||̂  on a subspace of
L^S^ that does not explicitely depend on LRuc(S,B)oo [cf- (4•14)]» and
even on a subspace of L(S) of which the definition is intrinsically based on
S itself and has nothing to do with || \\^ [cf. (4.15.2)]. In (4.12), we
introduce these spaces and in the subsequent proposition we show that
these spaces [as Riesz ideals of L°°(S,B)] are natural objects.

4.12. Notation. — Let U be a compact neighbourhood of 1. The
Riesz ideal of L^S.B) consisting of all peL°°(S,B) for which the
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collection {|p|^x|xeU} has an upper bound in L°°(S,B) is denoted by
Lu(S,B). Lij(S) denotes the space of all ueL(S) for which
{|H[^x|xeL(S)} has an upper bound in L(S) [Lu(S) = Lu(S,B) if
L°°(S,B) = L(S), || | |^=|| ||].

If A is a subspace of M(S) then we put

A° := {H^xeM(S) |neA,xe§}
and

Supp (A) : = do (J {supp(p)|H e A}.

4.13. PROPOSITION. — Let U and V be compact neighbourhoods of 1.
Then :

(1) Lu(S,B)^ = U(S,B)^[ : = (U(S,B).r)°] ;
(2) If H e L°°(S,B) and p e Lu(S)^ then [i ^ p e Ly(S,B);
(3) Lu(S,B)^ c Lu(S) [see also (4.15.2)]. D

One can prove (1) by adapting the arguments in (2.7) of [18]. The proof
of (2) and (3) is easy.

4.14. THEOREM. —Let U be a compact neighbourhood of1. Consider the
following properties :

(1) LRuc(S,B)oo is a Riesz ideal of L°°(S,B)^ ;
(2) || ||̂  is order continuous on LRuc(S,B)oo»
(3) || 11^ is order continuous on Lij(S,B)^.

Then, (1) and (2) are equivalent and both imply (3).
If, in addition, S = Supp L!y(S)) then all the properties (1), (2) and (3)

are equivalent [see also (4.15.1) and (4.15.2)].

Proof. - «(1) => (2)» is the content of (4.2).

Before we prove «(2) => (1)», we make some observations concerning
the order denseness of LRuc(S,B)oo m 1'Ruc ̂  {veL^SJ^IM < |(i| for
some H e LRuc(S,B)oo}. A linear subspace L' [not necessarily a Riesz
subspace] of a Riesz space L is said to be order dense, if for each n e L
there are nets (v^^ in \J and (uJ^eA m L such that In—vJ < ̂  for
all ? ieA, while (^)tO(L).

Note that
(4) for each meN^S)^, Coo(S) is order dense in L°°(S,w) [cf. [14],

ch. Ill, ex. 13; here / ^ g if / < g m-a.e. and any function in C(S) is
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identified with its equivalence class]. In particular, by (3.4) and (3.6) we have
that

(5) LRuc(S,B)oo is order dense in I^uc-

Suppose that (2) holds. In case, in addition, LRuc(S,B)oo is a Riesz
subspace of L°°(S,B) we may apply theorem 5.10 of [14] in order to see
that LRuc(S,B)oo is Dedekind a-complete. Then (5) implies that
LRuc(S,B)oo = LRUC- Unfortunately, LRuc(S,B)oo need not be a Riesz
subspace [see (3.7)]. However, we can adapt the proof of 5.10 of [14] as
follows.

Let D c Lpuc(S,B)oo such that D[ and |A ^ O(^ieD). Consider the
subcollections A of LRuc(S,B)<^ f01" which

(6) £E ^ p, for all p, e D and for every finite subset E of A.

By Zorn's lemma, there exists a subset A() of LRUC(S,B)^) that is
maximal with property (6). Then

{^ - £E | H e D,E ̂  Ao ,E finite} [ 0 (Lpuc(S,B)J.

And now the order continuity of || ||̂  on LRuc(S,B)oo shows that D is a
Cauchy net. Consequently, D has an infimum in LRuc(S,B)oo 2Ln^
moreover, this infimum is precisely the infimum of D in L^S^).
Therefore, by (4) and the fact that {fm \ f e Coo(S)} is a Riesz space, we
have that {fm\fe L°°(S,w)^} <= Lpuc(S,BL for all m e Lpu^B)4^. By
(3.6) and the norm closedness of LRuc(S,B)oo» we obtain that
LRuc(S»B)op = LRUC-

«(1) => (3)». Suppose that Lpuc(S,B)oo is a Riesz ideal. We shall
show that L!u(S,B)^ c Lpuc(S,B)^ ; then, since Lu(S,B)^. is a Riesz ideal,
(3) follows from (2).

Let peLu(S,B),r Take a veL(S)+ for which lesupp(v)eJf and
| |v|| = 1. There is a p" e L^S.B)^ such that

p ^ x ^ p" for all x e U.

Note that p" * v eLpuJS.B)^. Furthermore, for any XQ e § nint(U),
with d := v(U~1 Xo) we have that d > 0 and

= [p' ^y(f)dv(y)^ \ p
J Ju-^o

P' * v(/) = \pv ^ y(f) dv(y) ̂  \ ^ * y(f) dv(y)

-L p * xo(f) dv(y) = dp * Xo(f} for all / 6 C^^ .
u-^o
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Hence
0 ^ rip ^ Xo ^ p' * v.

Consequently, p ^ XQ eLRuc(S,B)jr, which shows that

L!,(S,B)^^L^c(S,BL.

«(3) => (1)». Assume that S = Supp Lu(S) and that || \\^ is order
continuous on Lu(S,B)^.. Let neLRuc(S,B)^ and let / be a Borel
measurable function from S into { z e C | |z| ^ 1}. Put v := f[i. In
order to show that v e LRUC^^OO > let £ > 0. Then
W : = { x e S | ||^x-H||^<e} is a neighbourhood of 1. There is a
p e L!u(S)^ such that p(W) = ||p|| = 1. Then

H*peLu(S,B)^ nLRuc(S,B),,

II^P-Hlloo < e-

The order continuity of || H®, on L&(S,B)^ and the order denseness of the
subcollection {g(vi^p)\g eCoo(S)} of LRuc(S,B)oo in {h(\i^p)\h em(S),
\\h\\^ ^ 1} imply that

/(H^p)eL^c(S,B)oo.

Finally, the inequalities

||v*x-v*JC < l|v*x-/(H^p)*x||^
+ ll/(H*P)*^-/(H*P)*y||S) + ll/(P*P)*^-v*^||^
< £(A(x)+A(^)) + ||/(^^p)^x-/(^l*p)*^||B,

clear that v e LRuc(S,B)oo • D

4.15. Remarks. — Let U be a compact neighbourhood of 1.
(1) In [18], we gave sufficient topological conditions on S [e.g. § is a

Gg-subset of S] under which S = Supp Ljj(S). However, it is still an
unsolved problem whether S = Supp Lu(S) for all [foundation] stips S.

(2) Let A be the collection of all measures in L(S) of the form
x ^ H * y , where x,y e § and ^ e L(S)^ such that
{|n|^z|zeU} u {z^ |n| |z e U} has an upper bound in L(S). [As a linear
space A does not depend on the choice of the compact neighbourhood U
of 1.] Suppose that S = Supp A = Supp L°°(S,B). Then Lu(S,B)^ = A.
Therefore, concerning this case, we may state that Lu(S,B)^ does not
depend on B. [One can show, by techniques as used in the proofs in § 3 of
[15], that Supp(A) = SuppL[j(S).]
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(3) In case S is a group with right Haar measure w, we obviously
have that S = Supp(A) = SuppL°°(S,B) [unless L°°(S,B)={0}], whence

Uj(S,B)̂  = A = {/m|/eL°°(S,m)}^.

(4) The following example shows that in (4.14.3) one may not replace
U(S,B)S. by L^B)^.

4.16. Example. — Let S be the additive subsemigroup [0,oo) of the
real numbers. ^ is the Lebesgue measure on S.

For each /eL^S,^)^ we define

IIAHS, := sup {1 | \f{t)\ dt + f |/(r)| dt |e > ol
l£ JO Je J

L°°(S,B):= {A|/6Ll(S,?l)^,||A||^<oo}. Then || ||̂  is order
continuous on LSj(S,B)^, while for each n, Hn:=^ | [o i /n) belongs to
U(S,B)^, (^)iO, but ||^=1 for all n e N .

4.17. COROLLARY. - LRuc(S,B)oo = L°°(S,B)^ if and only if || \\^ is
order continuous on L°°(S,B)Qo.

Proof. - Assume that || \\^ is order continuous on L^SJB)^. Then,
since LRuc(S,B)oo ls a norm closed Riesz ideal, LRuc(S,B)oo ls a band in
L°°(S,B)^. Therefore, in order to show that LRuc(S,B)oo = L°°(S,B)^, we
only have to prove that

for each ^eL^S.B)^ there is an m e LRUC;(S,BU
such that H « m. J

Let peL^S.B)^. Take a veL(S)^ for which lesupp(v). Then

[i * V 6 LRUC(S,B)^

and, moreover,
H « H * v;

because, if F e K and ^ ^ v(F) = 0 then

l e c l o { x ( = S [ n *x(F) =0},
whence ^(F) =0 . Q

Maybe needless to note that LRuc(S,B)oo can be a Riesz-ideal while
|| \\^ is not order continuous on L°°(S,B)^ [see the following example].
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4.18. Example. - Let S := {zeC| |z |=l}, endowed with the usual
topology and multiplication. ^ denotes the Lebesgue measure on S. For
each feLl(S^=Ll•(S^) define

fl f8 1
IIAIlS, := sup ^- |/(exp (it+is))\^/sds\ t, e e (0,2ji] [ .

I8 Jo J

Then L°°(S,B):= {A|/e L^VAII^oo}.

Now, Lu(S,B) = {A|/eL°°(S^)}. In order to show that || ||̂  is
order continuous on Ly(S,B), let (/^^ be a decreasing sequence such
that 1 ^CO.eNiO.

Suppose that inf||/^||^ = a > 0.

Then for each n e N there are some e > 0 and some t e (0,27i] such that

a/2 ^ 1 |^(exp (it + is))\^s ds ^ 1 [£ ̂ s ds = 2 ̂ /e.
£ Jo € Jo 3

Clearly e ^ e^ : = (3a/4)2 and

i r8
a/2 ^ - |̂ (exp (it + is)) | ̂ /s ds

£ Jo

< 2JC f n |̂ (exp (ft+f5))| ds = 2K H/JI,,
^o Jo Co

which is impossible by the Fatou lemma. However, with

fn(exp(is)) := s"2^,!/^) for all se[0,27i),

we have a sequence (/^)^N for which

(^)iO, /^eL^S.B)
and

11/^11^=1 for all n e N .

5. The case where LRuc(S,B) is a Riesz ideal.

In view of the results in the previous section one might hope that
(*) I-RUC^B) is a Riesz ideal if and only if \\ \\^ is order continuous
^ Lpuc(S,B).
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A short reflection with <°°(Z) in mind clears that this hope is vain.
However, in case S is a group, lw)(Z) is essentially the only counter
example : if S is discrete then L°°(S,B) = LRUC(S,B) and otherwise the
above conjecture (^) is correct [cf. (5.10) and (5.11.2)]. In general, the
situation is more complicated. We have to split the semigroup into two
disjoint sets, one of which consists of the elements t that have a kind of
« fix-point property » [1 e int {x e S | tx = r}].

In (5.1)-(5.3), we introduce and discuss the mentioned partition of S.
Next, in (5.4)-(5.5) we obtain results on the « non-disastrously collapsing »
part of S. The complementary part is discussed in (5.6)-(5.9). Finally, the
main result can be found in (5.10).

5.1. LEMMA. - For each t e S , put H(t) := {x e S\tx=t}.

Then H{t) is a closed subsemigroup of S and

l eH^H^cHO) (reS).

For each t e S , H(t) is either meagre or open.

Proof. — The proof of the first claim is left to the reader.
Suppose that int [H(Q] ^ 0. Then 1 eint [H(Q-1 H(Q], by (2.2),

y e int [H(r)-l H(r)^] <= H(r) for all y e H(t).

Therefore H(t) is open. D

5.2. Notation. - Let Z be the left ideal { r e S | H ( 0 is open}.

5.3. Remarks. - (a) Since Z is an ideal by (2.4), we have that
Z\Ze^T.

(b) If S is connected then Z is the collection of the left zeros of S.
(c) If Z = S then {1} = n{H(r)|H(r) open and closed} [because

x = 1 if tx = t for all t e S] and, consequently, S has a zero
dimensional topology.

(d) If {1} is open [or, equivalently, if S discrete] then Z = S.
(e) In case S is a group, we have that either Z = S [if S is discrete]

or Z = 0 [if S is not discrete].

5.4. LEMMA. - Let V be an open subset of S and let F e Jf be such
that

F nZ = 0.
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There exists an x e V [even x e §] SMC^I rftat rx ^ t for all t e F. TTi^n

n Fx-"= 0.
n = l

co / 2j \

Put n(F,x):= U (A^+iMJA, , \vhere A, := (F^x-^x-1^ eN) anri
j=o \ 1=0 /

Ao = F\Fx-1. TT^n
n(F,x)x-1 nn(F,x) = 0

anrf
F n Fx-1 c n(F,x)x-1 u n(F,x).

Proof. - Take an r e § such that rF n Z = 0.

For each t e F, S ~1 rt is a neighbourhood of t . Therefore, there are
t ^ , . . . , ̂  e F such that

F c S~1 Hi u . . . u S~1 rr^.
m

Since H(rtf) is meagre ( f = = l , . . .,m), there is an x e V\(J H(r^). One
easily checks that tx + t for all t e F. < = i

00

Suppose that r e (^ Fx"". Then T := Q clo{txn |n^m} is a non-
n = l m

empty compact subset of F for which Tx •c T. Hence there is a « fix-
point » q in T; i.e. qx = q. But this violates our choice of x.

The proof of the last claim is straightforward : we omit this. D

5.5. PROPOSITION. — Assume that LRuc(S?B) is a Riesz ideal. Then

{^ieLRuc(S,B)lHlzeLRuc(S,B)oo} c LRuc(S,B)oo-

Proof. - Let neL^S^'^ such that ^i|z = 0.
Let VQ be a compact neighbourhood of 1 and p e R such that

P>l|A^vol loo.

Firstly, we shall show that for any K e JT

(1) 1 e int {x e S| \\^ , ̂  \\^ > II^X/P}

and for any K e Jf and any countable subset A of § with 1 e A

(2) 1 e do {x e A| llnlKx-^Kll^ ^ e} for a11 £ > 0.
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Next, with the aid of (1) and (2), we shall show that

(3) P = 0, where P : = J inf { H^X |F e Jf, F n Z = 0}.

The proposition follows easily from (3).
Property (1) follows from the observation that [i\^e LRUC(S,B) and

llHlX < II^IK * ̂ IX + IÎ IK * ^IK - HlX
^ AMIlHiK ,KX-^ + IIPlK * X - UlKH^.

In order to prove (2), consider a subset A' of § with 1 e do A'. By
induction, one can construct sequences (U^g^ anc! (^n)neN °^ open
subsets of S and (xj^g^ °f elements of A' such that

u.ejr, { i }==nv^, K=n^,
^n^ieV^, ^ ¥„ nx^-1, U^,V^, ^ U^ for all neN.

Put E^ : = U^^Ui. Note that E^i c E^ for all n e N . Since Ui is
compact, by (4.2), it is sufficient to show that

a = 0, where a : = .lim 11^11 .̂

By exploiting the Fatou-Levi property and the fact that all the sets £„ are
closed, one can show by induction that there exist sequences (a(n))^gN
(P^n^o °^ natural numbers and (F^g^ °f compact sets such that

P(0) = a(l) = 1, a(n+1) > P(n) > a(n) for all n e N
^ c E^_I)\E,^, F^Vp^ n E^ = 0

and UHlpjl^ ^ a.

Put ^ := Xp^_i)(n eN). Note that F^ c U^ for all w , n e N , w ^ n,
because

F^n c Ep(m-l)^ c (Up^-i)Xp-^_i))x^_i) C Ui .

oo

Put A : = (J F^. Then
n=l

A^\Ui c Fî  u ... u F^_^ c FiVp(i) u ... u F^_iVp^_ip

whence
A\A^ 3 F^ for all n e N .
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Apparently,

a ^ llHlpjl^ < lluL * ̂ n-HlX for all n e N .

Since ^IA e LRuc(S,B) we have that a = 0.

To prove (3), note that S\Z is the union of the open relatively compact
subsets U of S for which U n Z = 0. Therefore, in view of the Fatou-
Levi property, there is a sequence (U^ ^ o of open relatively compact
subsets of S such that

U,nZ=0, 0=\j^v^v^, for all neN

and
IIPlu^oJI^ ^ P for all n ̂  0.

Via an inductive construction, based again on the Fatou-Levi property and,
furthermore on (1), (2) and lemma (5.4), one can find sequences (F^)^N of
compact subsets of S and (x^^y in § such that (x^)^^ converge to 1,

tx^ ^ t for all t e ¥ ^ for all n e N ,

F^ uF^^U^.J
F.nF^-^0 J fora" n? w e N ? m > n

and

IIPlp.nF^-1!!^ ^ . P/P tor all n e N.

[Actually,

11̂ -̂  ^ 2-"-2 P and F^ ^ U,\fu^_, u "U P^1}']
\ j = l / J

Put C^:=n(F^,xJ nF^ and C, := II(F^)^-1 n F^; the notation
here is as in (5.4). Then, by (5.4),

Fn n F^-1 c c^ u C^ and €„ n €„ = 0.

Hence, we have that

(i) NcJI^^P/P or (ii) NcJÎ  ^ ^ P/p.
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Now, take An to be C, in case (i) or else A, = C,. Note that

A^x, n An = 0

if w > n, A,, n A,<1 £ F^ n F,̂ -1 = 0,
if w < n, A^ n A, £ F^ n F, £ U^ n F,, = 0.

oo

Put A : = (J A^. Then A^ c A\Ax^ for all n e N , which leads to
n=l

\ P/P ̂  llHlAJI^ HHlA*^-^lX.

Since n^e LRUC:(S,B), this shows that P = 0. D

By a combination of (4.14) and (5.6) we obtain a description of the case
where {n e LRuc(S,B)lulz=0} is a Riesz ideal [see (5.10)].

We now consider the measures that vanish outside Z. If the identity
element has a connected neighbourhood V, then there are no problems :
because in this case tV = t for all t e Z , whence Hlz*^=p|z for every
v e V and [i e L^S^). Consequently, here ^[2 e LRuc(S,B) for every
^eL°°(S,B).

In general, however, the situation is more complicated as the following
example may show.

5.6. Example. — Let G be the product space {—l.+l} 1 ^ .
N ^ : = N u { o o } is endowed with the discrete topology. S is the subspace

{(n,0 e N^ x G|r(m) = 1 for all m > n}

of the topological product N^ x G. The multiplication on S is given by

(n,0(m,s) := (min(n,m),rs),
where

— , fl if i > min (n,m)
\t(i). 5(0 if i ^ min (n,m) ((n.Q, (ms) e S).

Then S is a foundation stip. Put S o o : = { o o } x G and for each n e N
S^ = {(n,t) | where teG such that (n,t)eS}. Then Z = S \ S ^ .

For each n e N00 let n^ be the Haar measure on the subgroups S^
normalized such that ||7cJ| := 2~" if n e N and ||7t^|| = 1. Put
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00

^ ••= Z ^n + Tloo- For a neL(S)ioc,
n = l

llHll^inf^eR^l^cm}.

Then m e LRUC(S»B) , while m\^ ^ LRuc(S,B) where

A : = { ( n , r ) e S | n € N , if t= ((J then r ,= l} .

In order to describe the case where {p, e LRuc(S,B)l^lz=^} is a Riesz
ideal, we use the sets Z(x) : = [t e Z| tx = t} (x e S) [see (5.9)]. In the proof
of (5.9), we need a partition of the sets Z\Z(x). This partition is introduced
in (5.7). Its measurability properties are discussed in (5.8).

5.7. LEMMA. - Let x e S . Put Z(x) := {t e Z\tx=t] and
Q(x) := Z\Z(x). There exists a set Q(x) c Q(x) such that

Q(x)x n Q(x) = Q(x)x2 n Q(x)x = 0,
Q(x) =Q(x)x uQ(x) uQ(x)x-1.

Proof. — Consider the following sets.

A := {t e Z\tx" e Z(x) for some neN},
B := {teZ^x"1 = t for some m e N , m^2},
C := { t e Z l r ^ e B for some n == 0,1,2,...} [where x° :=1] and
D := {t e Z|tx" + tx"1 for all n, m e N, n ^ m}.

Note that all these sets are fixed under multiplication by x [i.e.
Ax c A, etc.].

Put A' : = {t e Altx2" e Z(x) and ^c2""x ^ Z(x) for some neN}.

Then A'x n A' = A'x2 n A'x = 0, A'x u A' = A\Z(x).

With the aid of Zorn's lemma, one can find a subset B' of B such that

B'x n B' = 0, B'x2 n B'x = 0
and

B c B'x u B' u B'x~

Put Bo := B'x and B^ := B' u (B\B'x). Now, let

C' : = {t e C | there are an n ̂  1, b e Bg for which tx2" = b, while
rx2""1 ^B} u { t e C | f o r certain n ^ 0, f c e B o , tx2n+l=b, while
tx^B} uB\
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Then Cx n C = 0, C'x2 n Cx = 0, Cx u C u Cx-1 = C.

Choose a subset E of D such that for each t e D the set
E n {s e D\sx" = tx"1 for some n, m e N} contains exactly one element.

Put D' := [^{{tx^x-^tGE, n, weN}.

Then D'x n D' = 0, D'x2 c D' and D'x u D' = D.

Now, the set Q(x) := A' u C' u D' fulfills the required conditions.
D

5.8. LEMMA. - For each U c S, put Z(U) := {teZ\tV=t}.

Let U be a neighbourhood of 1. Then Z(U) is a closed, discrete subset
of S; since on Z(U) the neighbourhood (rU)U~1 of reZ(U) coincides
with {t}. In particular, we have that each subset of Z(U) is a Borel set. If
^ e U c V <= S (/i^n Z(V) c Z(U) ^Z(x). // (V^N ^ a sequence of

ao oo

neighbourhoods of 1 sucfc r/iar Q V^ = {1} r/i^M Z = \J Z(VJ. D
n = l n = l

5.9. PROPOSITION. — {u e LRuc(S»B)|H|^=n} fs a J?^5z frf^^? if and only
if

1 e int {x e S | ||Hlz\z(x)ll^ < e} /or ^cA e > 0,
^ieLRuc(S,B) ^ith piz = H .

Proof. — Suppose there is a [i e LRuc(S?B) with n|^ = j^ and an
a > 0 such that with W := {x e S|||n|z\z(x)ll^>a} we have that
1 e do (W). We shall show that under this assumption
{v e L°° (S,B) 10 ̂  |v| ̂  n} ^ LRUC(S,B) ; then the « only if »part
of the proposition follows.

Let Vo := ^x e S|||n^x—n||^< ~^r Then Vo is a neighbourhood

of 1 and for each x e Vo n W we have that

H^IZ\Z(X)*^ ^ llHlz\z(x)ll^-llHlz\z(x)*^-Hlz\z(x)ll^

> a - ll^x-Hll^ ^ - a;

because ulz(x)*^=Hlz(x)-

Using the Fatou-Levi property, by induction, we can find sequences
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(^n)n6N °f neighbourhoods of 1 and (x^e^ in S such that

x^ e V ^ _ i for all n,

¥„ c= n [xrW^V.x^nVJ n Vo, {1} = ft V^
i=l n = 1

and with X^ : = Z(V^)\Z(xJ we have that

Nx *^nlloo > 7 a for all n e Nn 4

[take x^eV^- i n W and find a ¥„ with the required properties]. Note
that

if m < n then X, c, Z(VJ c Z(V^_0 c Z(x^),
if m > n then X^ c Z(VJx^ ^ Z(xJ; because x^x^ e ¥„"1 (V^xJ.

Hence

(X^ nX^)\Z(x^) =0 for all m, n e N, m ^ n.

For each n e N, choose ¥„ to be either

Q(x^-1 n X^, or Q(x^) n X^ or Q(x^ n X,

such that

I I ^ IY ^nIlS) > 701 [use the lemmas (5.7) and (5.8)].n 4

oo

Put Y := (J ¥„. Then Y is measurable and
n = l

InlY^-HM = |HlY\Z(x^)*^-PlY\Z(xJ

^ l^lY^Z(x^)*^-^lY^nY\zJ = I^IY,*^!.

So we find that

-a ^ [Inly ^xj|^ ^ II^IY*^ - ^IYII^ for all n e N .4 "

Since (x^gN converges to 1, this shows that nly ^ LRuc(S,B).

The « i f » part follows easily from the observation that if
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v,HeL°°(S,B), |v| ^ [HI and ^ = ^ then

1|V*X-V||^ = |[v|z\z(x)^-V|z\Z(^

< ll^lz\z(x)*^ll^+llHl2\z(.)ll^ < llHl2\z(X(l+A(x)). D

Tying the results of the propositions (5.5) and (5.9) together, we come to
the following theorem.

5.10. THEOREM. - Let U be a compact neighbourhood of 1 . Consider
the following properties :

(1) LRuc(S,B) is a Riesz ideal of L°°(S,B).

(1\ [^ ^ ^Bois order continuous on {^ls\zlH € LRuc(S,B)}
\(b) leint{^eS|||n|z\z(.)l|^<e} for all e > 0, peL^^B).

^ f(^) I I US) is order continuous on {p|s\zlP e L[j(S,B)°} and
\(b) leint{.)ceS[[[p|z\z(.)ll^<e} for all e > 0, peL?j(S,B)°.

(4) {Hls\zlP e LRuc(S,B)| c LRuc(S,B)oo.

Then (1) and (2) are equivalent and they both imply (3) and (4). J/, in addition,
S = SuppL!u(S), then (1), (2) anrf (3) are equivalent.

Proof. - «(4) <= (1) => (2)» is a combination of (5.6), (5.9) and (4.2).
Now, suppose that (2) holds. We shall show that (2a) implies (4); then (1)
follows from (2), (4.2) and (5.9).

Let ueLRuc(S,B). Let

V := {/eC(X)|^z^/^l and l-/eCoo(S)}.

Then V^z and/n - ̂  = /^z. Since /neL^^B) (/eV) and
LRuc(S,B) is norm closed, (Id) implies that Ulz e Lpuc(S,B).
In particular, we have that (l-/M\ze LRuc(S,B)^ {feV) and since

Pls\z-(l -/)Hls\2=/Hls\2 (/eV)

we see that ^|s\z e LRUC(S,B)̂  .

By an adaptation of the arguments in the proof of «(1) => (3)» and
«(3) ==> (1)» of (4.14), one can complete the proof of this theorem. D

5.11. Remarks. - (1) If 1 has a connected neighbourhood V [for
instance if {1} is open] then Z\Z(x) = 0 for all x e V ; because



MEASURES WITH CONTINUOUS TRANSLATION 105

V c H(t) for all t e Z and hence for all t e Z . Therefore, in this
situation both the conditions (b) in (2) and (3) are redundant.

(2) This is also the case if S is a group [if {1} is not open then
2=0].

(3) Example (5.6) shows that, in general, these conditions (b) are
meaningful.

5.12. COROLLARY. - LRuc(S,B) = L°°(S,B) if and only if
(a) || H^, is order continuous on {^\s\2\^ e LRuc(S,B)} and
(b} 1 e int [x e S| H^zooll!^} for all e > 0, ^ e L°°(S,B).

Proof. - For a HeL°°(S,B), note that

ll̂ l2* l̂X ^ ll^l2\Z(x)*^-^l2\Z(X

^fcX(A(x)+l).

Now, by making some observations simular to those in the proof of (4.17),
the corollary follows. Q

We conclude this section with the following observation (5.13). In this
one, we prove that under certain restrictions on the size of S [discrete
subsets have to be of measurable cardinality] || ||̂  is order continuous on
LRuc(S,B)|s\z as soon as || H^ is absolutely continuous on this space
LRuc(S?B)ls\2- As a consequence, under the mentioned restriction, in (2)
and (3) of (5.10), one may replace « order continuous » by « absolutely
continuous » [in order to see the correctness of this statement as far as (3)
concerns one may for instance inspect the arguments in the proof of
«(3)=^(1)» in (4.14)].

In the proof of this observation (5.13), we use a result from [17]. A
discussion of this restriction of the size and references concerning the notion
of measurable cardinality and the other notion [o-smooth, z-smooth] used
in the proof of (5.13) can also be found in [17].

5.13. PROPOSITION. — Let S be such that
(i) each discrete subset [i.e. discrete if endowed \vith the restriction

topology] is of measurable cardinality,
(ii) for each F e Jf there is a neighbourhood V of 1 such that \~l¥

is (j-compact.

Let gem{S) be such that 0 ^ g < 1 and || 11°, is absolutely continuous
on M : = {<^eLRuc(S,B)}.
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Then M c L°°(S,B)^ and, in particular, || ||̂  is orri^r continuous
on M.

Proo/ - For an heC(S) and a peL(S), put

p oh(t):== p ^ F(h)(reS).

Note that p o h is uniformly continuous and that p o (h^) = (p o /i)^.
Furthermore, in view of (ii), for each h e Coo(S) we can find a p e I^S)'^
such that ||p|| = 1 and p o h vanishes outside a o-compact subset of S.

Let H e Lmjc(S»B) • Take an x e § and put

V:={/eC(S) |0^/^ l , l-/eCoo(S)}.

Then V^O.

Let p : C(S) -^ [0, oo) be defined by

p(h) := inf{MpoV^)^xd/eV,peL(S)+,||p||=l} (^ieC(S)).

Then ^ is a seminorm on C(S) for which

P(h) ^ INoolNoo A(x) (^eC(S)).

donsider an /leCoo(S). There is a peL(S)+ , [|p|| == 1 for which
p oh([i^x)eM^(S). Moreover, /(p o h)([i^x) e LRuc(S,B) [see (3.4)].

Since L^S.v) is super Dedekind complete for any v6M^(S), we have
that

(1) p(^)=inf{||topoV)(H^xd/eV,peL(S)+, ||p||=l}=0

for all /ieCoo(S).

According to the Hahn-Banach theorem there is a (p e C(S)* such that

(p(l)=p(l) and |(pWl^p(/z)^|NoollHll^A(x) for all heC(S).

Since p°hf^ is uniformly continuous we have that (poh/^)(^x)
belongs to LRuc(S»B) and therefore, by assumption, we see that (p is CT-
smooth. Consequently, by (5.4) of [17], (p ^ x : h -> (p(^) (h e C(S)) is a
T-smooth functional on C(S). However, by (1), (p * x(h) = 0 for all
AeCoo(S) and the T-smoothness implies that

0 = ( p ^ x ( l ) = ( p ( l ) = p ( l ) .
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Apparently,

Consider
mf{\\gf(^x)\\^\fe\} =0.

ll/rf ^ \\fg(^x)\\^ + \\fg(^x)-fg^
^ 11/^^C + ||^x~^.

Recall that n € LRuc(S,B) in order to see that

inf{||/^C|/eV} =0 .

Since l - /eCoo(S) (/eV), this shows that

^lecloL^S.BL ^L^BL. D

6. The case where LRuc(S,B) is a Riesz subspace.

In case S is a group, we have that

1^x1 = \[i\ ^ x for all H € L°°(S,B), x e S

and, since || |H|-|n*x| ||̂  ^ l lu-^^xll^, we see that |H|eL°°(S,B)
whenever HeL°°(S,B). However, example (3.7) shows that, in general,
LRU(:(S,B) need not to be a Riesz subspace.

6.1. Notation. — Let U be a compact neighbourhood of 1. L!u(S,B) is
a pseudo L°°-space under the norm || ||u given by

llHll i j : = inf^eR'^lsup {|^i| ^ x\xe\J} ^ cm for some m e B + }

for each [i e L!j(S,B) [see also § 7 of [19]].

The collection of all ^ e Lu(S,B) for which r^ is continuous with
respect to || ||iu is denoted by LRUC(S,B).

Note that L°°(S,B) * Lu(S)^ * L(S)^ ^ L^(S,B) c LRUC(S,B).

By exercising with some triangle inequalities, theorem (3.4), and
techniques as presented in the proof of (4.14), one can prove the following
result : we omit the details.

6.2. THEOREM. — Let U be a compact neighbourhood of 1. Consider
the following properties :

(1) LRuc(S,B) f5 a Riesz subspace of L°°(S,B).
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(2) For each neL^^B), £ > 0, xe§ , Xe jT mr/i xeint(X)

leint{xeS|| | |H^[^z-|n^x|| |^ < e, for some y e X nxz-1}.

(3) For each neL^S.B), e > 0 , xe§, Xe^T m^i xeint(X),

lemt{xeS|| | |n^|^z-|n^x|| |^ < e, for some y e X nxz-1}.

Then (1) anri (2) are equivalent and both imply (3). If, in addition,
S = Supp (Lu(S)) then all the properties (1), (2) and (3) are equivalent.

A similar statement holds if one replaces

LRUC(S,B) by L^c(S,BL

and simultaneously L^(S,B) by LRUC(S,B)^ Q

6.3. Remark. - (1) In view of (4.12) and (6.1), it will be clear what we
mean by L^c(S).

One can show that LRuc(S,B),r c Lpuc(S) if S = Supp Lu(S) and if,
in addition, S = SuppL°°(S,B) then we even have that

LRUC(S,B)^=A nLRuc(S)^.

In case S is a group,

LRUC(S,B)̂  = Lpuc(S,B)^ = {/m[/eCoo(S)},

where m is a right Haar measure.

(2) The property in (6.2.2-3) can be viewed as a weak kind of order
continuity. To be more precise : let ^ e L^S.B).

If x e §, X e Jf, x e int (X) and (z^^is a net in § that converges to 1
such that z^eSzy for all ^, ye A with ^y then

0 < {l^*}\l*^-lH*x| |XeA}iO,

where y^ e X such that y^ = x.

Now, we have that

0 = i n f {|| In^J^-l^xl ||̂  | ?L£A}

for all these x, X and (z^\^ if and only if a property as in (6.2.2) holds.
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(3) If LRUC(S,B) is a Riesz subspace of L°°(S,B) then so is LRUC:(S,B).
The converse, however, need not be true [consider once more the
semigroup from example (3.7) where the « pseudo L°°-norm » now is given
by

IIA'+^l^^ll/lloo+ll^ll].

6.4. COROLLARY. — Assume that S has a zero-dimensional topology.
Then LRU(:(S?B) is a Riesz subspace.

Proof. — Take an x e § with compact neighbourhood X of x.
Let V be an open relatively compact neighbourhood of 1 such that

Vx^in t (X) . Since xeck^S"'1^) there are x^ , ^eS such that
x = X2Xi, x ^ e V , Vxi c x. Then [cf. (2.2)],

leint^r^VnSr1^)] c^x^"^.

Hence, as in (4.5) of [18], there is an open compact subsemigroup H of S
such that

l e H c (Vxi)-^ n§-1^-

Take an idempotent e in the kernel of H. Then e e § [cf. (4.5) of [18]]
and eHe is a group. Furthermore x^e = x^ and xe = x.

Consider a |AeL°°(S,B). If z e H then yz = x for some ye\x^.

Since
supp (|^*^| *z) c do Syz c clo Sx c Se and ye = y ,

we have that \\i ̂  y\ ̂  z = |n ̂  y\ ̂  eze . Finally, the fact that eze belongs to
the group eHe, while supp(JH*^|) c Se, implies that

\[i^y\ * eze = \yi^y^eze\ = |»A*x|.

Apparently, for each z e H , there is a y e X nxz~ 1 such that

\[i^y\^z- \[i^x\ =0. D
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