MANUEL VALDIVIA A class of locally convex spaces without *C*-webs

Annales de l'institut Fourier, tome 32, nº 2 (1982), p. 261-269 <http://www.numdam.org/item?id=AIF_1982__32_2_261_0>

© Annales de l'institut Fourier, 1982, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **32**, 2 (1982), 261-269.

A CLASS OF LOCALLY CONVEX SPACES WITHOUT &-WEBS

by Manuel VALDIVIA

The linear spaces we use are defined over the field K of the real or complex numbers. Space means non-zero separated locally convex topological linear space. Given a space E we denote by E' its topological dual. The dimension of E is denoted by dim E. \hat{E} is the completion of E.

If E_n is a one-dimensional space, $n = 1, 2, ..., we put \phi = \bigoplus_{n=1}^{\infty} E_n$.

A space E is unordered Baire-like if given a sequence (A_n) of closed absolutely convex sets of E, with $E = \bigcup_{n=1}^{\infty} A_n$, there is a positive integer

 n_0 such that A_{n_0} is a neighbourhood of the origin in E.

A space E is suprabarrelled if given an increasing sequence (E_n) of subspaces of E covering E there is a positive integer n_0 such that E_{n_0} is barrelled and dense in E, [7].

A space E is Baire-like if given an increasing sequence (A_n) of closed absolutely convex sets of E covering E there is a positive integer n_0 such that A_{n_0} is a neighbourhood of the origin in E.

If A is a bounded absolutely convex subsets of a space E we denote by E_A the linear hull of A endowed with the topology derived from the gauge of A. A is completing if E_A is a Banach space.

In what follows E and F are spaces and n is any non negative integer. We denote by $E \otimes_{\pi} F$ and $E \otimes_{\varepsilon} F$ the tensor product $E \otimes F$ endowed with the projective topology and the topology of the byequicontinuous convergence respectively. $E \otimes_{\varepsilon} F$ is the completion of $E \otimes_{\varepsilon} F$. We set

$$\mathbf{R}_n(\mathbf{E},\mathbf{F}) = \{z \in \mathbf{E} \otimes \mathbf{F} : \text{rank } z \leq n\}.$$

We write $\hat{R}_n(E, F)$ to denote the closure of $R_n(E, F)$ in $E \hat{\otimes}_{\varepsilon} F$.

MAIN LEMMA. $-\hat{R}_n(E,F) = R_n(\hat{E},\hat{F}).$

Proof. – We proceed by complete induction. The result is obvious for n = 0. We suppose that the property is true for a positive integer p. Let

(1)
$$\left\{\sum_{j=1}^{p+1} x_j^i \otimes y_j^i : i \in \mathbf{I}, \geq\right\}$$

be a net in $\mathbb{R}_{p+1}(E,F)$ converging in $E \otimes_{\varepsilon} F$ to an element $z \neq 0$. Since $E' \otimes F'$ separate points in $E \otimes_{\varepsilon} F$, we can select $u \in E'$, $v \in F'$ such that $u \otimes v(z) \neq 0$. Obviously

(2)
$$\lim \left\{ \sum_{j=1}^{p+1} u(x_j^i) v(y_j^i) : i \in \mathbf{I}, \geq \right\} = u \otimes v(z) \neq 0.$$

Since (1) is a Cauchy net in $E \otimes_{\varepsilon} F$ given $\delta > 0$ and an equicontinuous subset V of F' there is an $i_0 \in I$ such that

$$\sup\left\{\left|\sum_{j=1}^{p+1} (u(x_j^h)w(y_j^h) - u(x_j^k)w(y_j^k))\right| : w \in \mathbf{V}\right\} < \delta, \quad \text{for} \quad h, \ k \ge i_0$$

and therefore, according to (2),

(3)
$$\left\{\sum_{j=1}^{p+1} u(x_j^i) y_j^i : i \in \mathbf{I}, \geq\right\}$$

converges in \hat{F} to $y \neq 0$.

From (2) we deduce the existence of a subnet of (1), for which we use the same notation, such that at least one of the nets

$$\{u(x_j^i): i \in \mathbf{I}, \geq\}, \quad j = 1, 2, \ldots, p + 1,$$

has all its elements different from zero. Without loss of generality we suppose that $u(x_1^i) \neq 0, \forall i \in I$.

Setting
$$\sum_{j=1}^{p+1} u(x_j^i) y_j = v_1^i$$
, $i \in I$, we have that
 $\sum_{j=1}^{p+1} x_j^i \otimes y_j^i = \frac{1}{u(x_1^i)} x_1^i \otimes \left(v_1^i - \sum_{j=2}^{p+1} u(x_j^i) y_j^i \right) + \sum_{j=2}^{p+1} x_j^i \otimes y_j^i$

and setting

$$z_1^i = \frac{1}{u(x_1^i)} x_1^i, \quad z_j^i = x_j^i - \frac{u(x_j^i)}{u(x_1^i)} x_1^i, \quad v_j^i = y_1^i, \quad j = 2, 3, \dots, p+1,$$

we have that the net (1) can be expressed as

$$\left\{\sum_{j=1}^{p+1} z_j^i \otimes v_j^i : i \in \mathbf{I}, \geq\right\}$$

Reasoning in the same way as we have done for the net (3) it follows that $\begin{cases}
\sum_{j=1}^{p+1} v(v_j^i) z_j^i : i \in I, \geqslant \\
\text{ converges in } \hat{E} \text{ to an element } x \neq 0. \text{ According}
\end{cases}$

to (2) again we suppose that $v(v_1^i) \neq 0$, $\forall i \in I$, and setting $\sum_{j=1}^{p+1} v(v_j^i) z_j^i = u_1^i$ it follows that

$$\sum_{j=1}^{p+1} x_j^i \otimes y_j^i = \sum_{j=1}^{p+1} z_j^i \otimes v_j^i$$

= $\frac{1}{v(v_1^j)} \left(u_1^i - \sum_{j=2}^{p+1} v(v_j^i) z_j^i \right) \otimes v_1^i + \sum_{j=2}^{p+1} z_j^i \otimes v_j^i$
= $\frac{1}{v(v_1^i)} u_1^i \otimes v_1^i + \sum_{j=2}^{p+1} z_j^i \otimes \left(v_j^i - \frac{v(v_j^i)}{v(v_1^i)} v_1^i \right)$.

The net $\left\{\frac{1}{v(v_1^i)}u_1^i \otimes v_1^i : i \in I, \geq\right\}$ converges to $\frac{1}{u \otimes v(z)}x \otimes y$ in $E \otimes_{\varepsilon} F$ and according to the induction hypothesis

$$\left\{\sum_{j=2}^{p+1} z_j^i \otimes \left(v_j^i - \frac{v(v_j^i)}{v(v_1^i)} v_1^i\right) : i \in \mathbf{I}, \geq \right\}$$

converges to an element of $R_p(\hat{E},\hat{F})$ and therefore

$$\widehat{\mathbf{R}}_{p+1}(\mathbf{E},\mathbf{F}) \subset \mathbf{R}_{p+1}(\widehat{\mathbf{E}},\widehat{\mathbf{F}}).$$

Finally, since $R_{p+1}(E,F)$ is obviously dense in $R_{p+1}(\hat{E},\hat{F})$ it follows that $\hat{R}_{p+1}(E,F) = R_{p+1}(\hat{E},\hat{F})$. q.e.d.

COROLLARY 1. – If E and F are complete then $R_n(E,F)$ is complete in $E \otimes_{\epsilon} F$.

COROLLARY 2. - $R_n(E,F)$ is closed in $E \otimes_{\varepsilon} F$.

Proof. $- R_n(E,F)$ coincides with $R_n(\hat{E},\hat{F}) \cap (E \otimes F)$ and according to Main Lemma $R_n(\hat{E},\hat{F})$ is complete in $E \otimes_{\epsilon} F$, hence $R_n(E,F)$ is closed in $E \otimes_{\epsilon} F$.

MANUEL VALDIVIA

THEOREM 1. – $E \otimes_{\epsilon} F$ has a C-web if and only if one of the two following conditions is satisfied :

- 1. E has a \mathscr{C} -web and dim $F \leq \chi_0$;
- 2. F has a \mathscr{C} -web and dim $E \leq \chi_0$.

Proof. – If F is finite dimensional and if E has a \mathscr{C} -web then $E \otimes_{\varepsilon} F$ is isomorphic to $E^{\dim F}$ which has a \mathscr{C} -web. If F has countable infinite dimension and if E has a \mathscr{C} -web then $E \otimes_{\varepsilon} F$ has a \mathscr{C} -web since the topology of $E \otimes_{\varepsilon} F$ is coarser than the topology of $E \otimes_{\varepsilon} \varphi$ and this space has a topology coarser than the topology of $E \oplus E \oplus E \oplus \ldots$. We reach the same conclusion changing the roles of E and F.

We suppose now that dim $E > \chi_0$, dim $F > \chi_0$ and that $E \otimes_{\varepsilon} F$ has a \mathscr{C} -web $(C_{n_1, n_2, \dots, n_p})$. Let $\{x_i : i \in I\}$ and $\{y_i : i \in I\}$ be families of linearly independent vectors in E and F respectively such that card $I > \chi_0$. Since $\bigcup_{n=1}^{\infty} C_n = E \otimes F$ and $\bigcup_{n_{p+1}=1}^{\infty} C_{n_1, n_2, \dots, n_{p+1}} = C_{n_1, n_2, \dots, n_p}$ there is a sequence (n_p) of positive integers and there is a decreasing sequence (J_p) of subsets of I such that $x_i \otimes y_i \in C_{n_1, n_2, \dots, n_p}$, $i \in J_p$, card $J_p > \chi_0$, $p = 1, 2, \dots$. It follows that we can take linearly independent elements $u_p \in E$, $v_p \in F$, $p = 1, 2, \dots$, such that

$$u_p \otimes v_p \in \mathcal{C}_{n_1, n_2, \dots, n_p}.$$

We select a sequence (λ_p) of strictly positive real numbers such that $\{\lambda_p u_p \otimes v_p : p = 1, 2, ...\}$ is contained in a bounded completing absolutely convex subset A of $E \otimes_{\varepsilon} F$ [3, p. 75]. Since $(E \otimes F)_A$ is a Banach space and since $R_n(E,F)$ is closed in $E \otimes_{\varepsilon} F$ there is a positive integer n_0 such that $R_{n_0}(E,F) \cap (E \otimes F)_A$ has interior point in $(E \otimes F)_A$ and therefore

$$\mathbf{R}_{2n_0}(\mathbf{E},\mathbf{F}) \cap (\mathbf{E} \otimes \mathbf{F})_{\mathbf{A}} = (\mathbf{R}_{n_0}(\mathbf{E},\mathbf{F}) + \mathbf{R}_{n_0}(\mathbf{E},\mathbf{F})) \cap (\mathbf{E} \otimes \mathbf{F})_{\mathbf{A}}$$

is a neighbourhood of the origin in $(E \otimes F)_A$ and since $R_{2n_0}(E,F)$ contains any scalar multiple of every vector $z \in R_{2n_0}(E,F)$ it follows that

$$\mathbf{A} \subset \mathbf{R}_{2n_0}(\mathbf{E},\mathbf{F}).$$

But $\sum_{p=1}^{2n_0+1} \frac{1}{2^p} \lambda_p u_p \otimes v_p$ belongs to A and its rank is $2n_0 + 1$. This is a contradiction.

We suppose now that $E \otimes_{\epsilon} F$ has a \mathscr{C} -web and dim $F \leq \chi_0$. We

take $y_0 \in F$, $y_0 \neq 0$. Let T be the mapping from E into $E \otimes_{\varepsilon} F$ such that $T(x) = x \otimes y_0$, $x \in E$. Then T(E) is isomorphic to E (cf. [3], § 44, 1.(4)). Since T(E) is contained in $R_1(E,F)$ it is easy to prove that T(E) is closed in $E \otimes_{\varepsilon} F$ and thus has a \mathscr{C} -web. Analogously, if $E \otimes_{\varepsilon} F$ has a \mathscr{C} -web and dim $E \leq \chi_0$, F has a \mathscr{C} -web. q.e.d.

THEOREM 2. $- E \otimes_{\pi} F$ has a C-web if and only if one of the two following conditions is satisfied :

1. E has a \mathscr{C} -web and dim $F \leq \chi_0$;

2. F has a C-web and dim $E \leq \chi_0$.

Proof. – On $E \otimes F$ the π -topology is finer than the ε -topology. Hence, if $E \otimes_{\pi} F$ has a \mathscr{C} -web then $E \otimes_{\varepsilon} F$ has a \mathscr{C} -web. Thus we apply the former result to obtain that 1 or 2 is satisfied.

If F is finite dimensional and if E has a \mathscr{C} -web then $E \otimes_{\pi} F = E \otimes_{\varepsilon} F$ has a \mathscr{C} -web. If F has countable infinite dimension and if E has a \mathscr{C} -web then $E \otimes_{\pi} F$ has a \mathscr{C} -web since the topology of $E \otimes_{\pi} F$ is coarser than the topology of $E \otimes_{\pi} \phi = E \otimes_{\varepsilon} \phi$. We reach the same conclusion changing the roles of E and F. q.e.d.

THEOREM 3. – If E and F are Suslin spaces then $E \otimes_{\pi} F$ is a Suslin space.

Proof. – Let ψ : $E \times F \to E \otimes_{\pi} F$ be the canonical bilinear mapping which is continuous and thus $\psi(E,F) = R_1(E,F)$ is a Suslin topological subspace of $E \otimes_{\pi} F$. On the other hand the mapping

$$\theta$$
: $\mathbf{R}_1(\mathbf{E},\mathbf{F}) \times \mathbf{R}_1(\mathbf{E},\mathbf{F}) \times \ldots \times \mathbf{R}_1(\mathbf{E},\mathbf{F}) \to \mathbf{E} \otimes_{\pi} \mathbf{F}$

so that

$$\theta(x_1 \otimes y_1, x_2 \otimes y_2, \ldots, x_n \otimes y_n) = \sum_{j=1}^n x_j \otimes y_j \bullet$$

is π -continuous and therefore

$$\theta(\mathbf{R}_1(\mathbf{E},\mathbf{F}) \times \mathbf{R}_1(\mathbf{E},\mathbf{F}) \times \ldots \times \mathbf{R}_1(\mathbf{E},\mathbf{F})) = \mathbf{R}_n(\mathbf{E},\mathbf{F})$$

is a Suslin topological subspace of $E \otimes_{\pi} F$. Finally, $E \otimes_{\pi} F$ is a Suslin space since coincides with $\bigcup_{n=1}^{\infty} R_n(E,F)$, (cf. [2], § 6, N° 2, Prop. 8).

q.e.d.

MANUEL VALDIVIA

COROLLARY 1.3. – If E and F are Suslin spaces then $E \otimes_{\varepsilon} F$ is a Suslin space.

Note 1. – If we consider two Suslin spaces E and F of dimension larger than χ_0 we can apply the former results to obtain that $E \otimes_{\pi} F$ is a Suslin space without a \mathscr{C} -web. Thus the closed graph theory of De Wilde [4] does not contain the closed graph theorem of L. Schwartz, [7] and [8].

Bourbaki [1, p. 43] proves that if E and F are metrizable and F is barrelled then every separately equicontinuous set of bilinear forms on $E \times F$ is equicontinuous. Since every barrelled metrizable space is Baire-like [1], Theorem 4 generalizes this result.

THEOREM 4. – If E is metrizable and F is a Baire-like space then every separately equicontinuous set \mathcal{B} of bilinear forms on $E \times F$ is equicontinuous.

Proof. – Let (U_n) be a decreasing basis of closed absolutely convex neighbourhoods of the origin in E. We set

$$V_n = \{y \in F : |B(x,y)| \le 1, x \in U_n, B \in \mathscr{B}\}, n = 1, 2, ...$$

which is a closed absolutely convex subset of F and the sequence (V_n) is increasing. On the other hand if $z \in F$ there is a positive integer p such that $|\mathbf{B}(x,z)| \leq 1, x \in U_p$, $\mathbf{B} \in \mathcal{B}$, according to the separate equicontinuity of \mathcal{B} . Thus $z \in V_p$ and since F is Baire-like there is a positive integer q such that V_q is a neighbourhood of the origin in F. Therefore $|\mathbf{B}(x,y)| \leq 1, (x,y) \in U_q \times V_q$, $\mathbf{B} \in \mathcal{B}$. q.e.d.

COROLLARY 1.4. – If E is metrizable and if F is a barrelled space whose completion is Baire, then every set separately equicontinuous of bilinear forms on $E \times F$ is equicontinuous.

Proof. – It is an immediate consequence of the former theorem and from the fact that every barrelled space whose completion is Baire is a Baire-like, [6]. q.e.d.

Note 2. — It is immediate that our Theorem 4 can be easily generalized to bilinear mapping with range in a third locally convex space. Then this theorem contains another result due to Bourbaki [3, Ex. 1, Chap. III, § 4, p. 44] for locally convex spaces.

PROPOSITION 1. – If E is a barrelled metrizable space and if F is a Baire-like space then $E \otimes_{\pi} F$ is Baire-like.

Proof. – Let (W_n) be an increasing sequence of closed absolutely convex subsets of $E \otimes_{\pi} F$ covering $E \otimes F$ and let (U_n) be a decreasing basis of closed absolutely convex neighbourhoods of the origin in E. We set

$$V_n = \{ y \in F : x \otimes y \in W_n, x \in U_n \}, \quad n = 1, 2, ...,$$

which is a closed absolutely convex subsets of F and (V_n) is an increasing sequence.

$$\mathbf{Z}_n = \{ x \in \mathbf{E} : x \otimes z \in \mathbf{W}_n \}, \qquad n = 1, 2, \dots,$$

which is a closed absolutely convex subset of E and (Z_n) is an increasing sequence covering E. Then there is a positive integer n_0 such that Z_{n_0} is a neighbourhood of the origin in E. We can find a positive integer $p \ge n_0$ such that $U_p \subset Z_{n_0}$ and then $z \in V_p$ and so (V_n) covers F. Since F is a Baire-like there is a positive integer q such that V_q is a neighbourhood of the origin in E and thus W_q is a neighbourhood of the origin in E $\otimes_{\pi} F$. q.e.d.

PROPOSITION 2. – If E and F are unordered Baire-like spaces and if E is metrizable then $E \otimes_{\pi} F$ is unordered Baire-like.

Proof. – Let (W_n) be a sequence of closed absolutely convex subsets of $E \otimes_{\pi} F$ covering $E \otimes F$ and let (U_n) be a decreasing basis of closed absolutely convex neighbourhood of the origin in E. We set

$$\mathbf{V}_{n,m} = \{ y \in \mathbf{F} : x \otimes y \in \mathbf{W}_n, \forall x \in \mathbf{U}_m \}, \qquad , m = 1, 2, \ldots$$

Obviously $V_{n,m}$ is a closed absolutely convex subset of F. We shall see

that $\bigcup_{n,m=1} V_{n,m} = F$.

Indeed, let $z \in F$ and set

$$\mathbf{Z}_n = \{ x \in \mathbf{E} : x \otimes z \in \mathbf{W}_n \}, \quad n = 1, 2, \dots,$$

which is a closed absolutely convex subset of E such that $\bigcup_{n=1}^{\infty} Z_n = E$. There is a positive integer p such that Z_p is a neighbourhood of the origin in E. We find a positive integer q such that $U_q \subset Z_p$. Then

MANUEL VALDIVIA

 $z \in V_{p,q}$. We can find positive integers r, s such that $V_{r,s}$ is a neighbourhood of the origin in F. If $\psi : E \times F \to E \otimes F$ is the canonical bilinear mapping then $\psi(U_s \times V_{r,s}) \subset W_r$ and thus W_r is a neighbourhood of the origin in $E \otimes_{\pi} F$. q.e.d.

PROPOSITION 3. – If E is a metrizable suprabarrelled space and if F is an unordered Baire-like space, then $E \otimes_{\pi} F$ is suprabarrelled.

Proof. – Let (G_n) be an increasing sequence of subspaces of $E \otimes_{\pi} F$ covering $E \otimes F$ and let us suppose G_n is not barrelled, n = 1, 2, ...We can find in each G_n a barrel T_n which is not a neighbourhood of the origin in G_n . Let W_n be the closure of T_n in $E \otimes_{\pi} F$, n = 1, 2, ...We use $V_{n,m}$ and Z_n with the same meaning as before. We set

$$\mathbf{S}_n = \{ x \in \mathbf{E} : x \otimes z \in \mathbf{G}_n \}, \quad n = 1, 2, \dots$$

 (S_n) is an increasing sequence of subspace of E covering E and therefore there is a positive integer p such that S_p is barrelled and dense in E. If $x \in S_p$ there is a real number h > 0 such that $h(x \otimes z) \in T_p \subset W_p$ and thus $hz \in Z_p$, i.e., Z_p is absorbing and thus a barrel in E. It follows that $Z_p \cap S_p$ is a barrel in S_p and therefore a neighbourhood of 0. But S_p is dense in E, so $Z_p = \overline{Z_p \cap S_p}$ is a neighbourhood of the origin in E. Reasoning as we did in the proposition above, we obtain a positive number r such that W_r is a neighbourhood of the origin in $E \otimes_{\pi} F$, which is a contradiction. According to Proposition 1 there is a positive integer n_0 such that G_n is dense in $E \otimes_{\pi} F$, $n \ge n_0$.

PROPOSITION 4. $- E \otimes_{\pi} F$ is a Baire space if and only if one of the following two conditions is satisfied :

- 1. dim $E < \infty$ and $F^{\dim E}$ is a Baire Space;
- 2. dim $F < \infty$ and $E^{\dim F}$ is a Baire space.

Proof. – If the dimension of E is finite then $E \otimes_{\pi} F$ is isomorphic to $F^{\dim E}$. Analogously if F is finite dimensional then $E \otimes_{\pi} F$ is isomorphic to $E^{\dim F}$. Suppose that E and F are infinite dimensional and $E \otimes_{\pi} F$ is a Baire space. We can find a positive integer n_0 such that $R_{n_0}(E,F)$ is of second category in $E \otimes_{\pi} F$. According to Corollary 2.1, $R_{n_0}(E,F)$ is closed in $E \otimes_{\epsilon} F$ and thus it is closed in $E \otimes_{\pi} F$ hence $R_{2n_0}(E,F)$ is a neighbourhood of the origin in $E \otimes_{\pi} F$ which is a contradiction since $R_{2n_0}(E,F)$ is not absorbing in $E \otimes F$.

The following Theorem is an immediate consequence of the preceding results, having in mind that every infinite dimensional Fréchet spaces has dimension larger or equal than 2^{χ_0} , [6].

THEOREM 5. – If E and F are infinite dimensional Fréchet spaces the following is true for $E \otimes_{\pi} F$:

1. is unordered Baire-like;

2. is not a Baire space;

3. has not a C-web.

If E and F are separable then

4. $E \otimes_{\pi} F$ is a Suslin space.

We gratefully thank Prof. H. Horváth for his valuable suggestions.

BIBLIOGRAPHY

- [1] I. AMEMIYA and Y. KOMURA, Über nich-vollständinge Montelräume, Math. Ann., 177 (1968), 273-277.
- [2] N. BOURBAKI, Éléments de Mathématique, Topologie Générale Chap. IX, Hermann, Paris, 1974.
- [3] N. BOURBAKI, Éléments de Mathématique, Espaces vectoriels topologiques, Act. Sci. et Ind., Paris, vol. 1929 (1955).
- [4] M. DE WILDE, Réseaux dans les espaces linéaires à semi-normes, Mém. Soc. Royale Sci. Liège, 18 (5), 2 (1969), 1-144.
- [5] G. KÖTHE, Topological Vector Spaces II, Springer-Verlag, New York-Heidelberg-Berlin, 1979.
- [6] H. Löwig, Über Die dimension linearer Räume, Studia Math., (1934), 18-23.
- [7] A. MARTINEAU, Sur le théorème du graphe fermé, C. R. Acad. Sci., Paris, 263 (1966), 870-871.
- [8] L. SCHWARTZ, Sur le théorème de graphe fermé. C.R. Acad. Sci., Paris 263 (1966), 602-605.
- [9] M. VALDIVIA, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, Grenoble, 21, 2 (1971), 3-13.
- [10] M. VALDIVIA, On suprabarrelled spaces. Functional Analysis, Holomorphy and Approximation Theory. Proocedings, Rio de Janeiro 1978, Lecture Notes in Math., 843 (1981), 572-580, Springer-Verlag, New York-Heidelberg-Berlin.

Manuscrit reçu le 20 août 1981.

Manuel VALDIVIA, Facultad de Matemáticas Dr. Moliner s.n. Burjasot (Valencia) Espagne.