Annales de l'institut Fourier

Manuel Valdivia
 A class of locally convex spaces without \mathcal{C}-webs

Annales de l'institut Fourier, tome 32, n ${ }^{\circ} 2$ (1982), p. 261-269

http://www.numdam.org/item?id=AIF_1982__32_2_261_0
© Annales de l'institut Fourier, 1982, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A CLASS OF LOCALLY CONVEX SPACES WITHOUT \mathscr{C}-WEBS

by Manuel VALDIVIA

The linear spaces we use are defined over the field K of the real or complex numbers. Space means non-zero separated locally convex topological linear space. Given a space E we denote by E^{\prime} its topological dual. The dimension of E is denoted by $\operatorname{dim} \mathrm{E} . \hat{\mathrm{E}}$ is the completion of E . If E_{n} is a one-dimensional space, $n=1,2, \ldots$, we put $\varphi=\bigoplus_{n=1}^{\infty} \mathrm{E}_{n}$.

A space E is unordered Baire-like if given a sequence $\left(A_{n}\right)$ of closed absolutely convex sets of E , with $\mathrm{E}=\bigcup_{n=1}^{\infty} \mathrm{A}_{n}$, there is a positive integer n_{0} such that $A_{n_{0}}$ is a neighbourhood of the origin in E.

A space E is suprabarrelled if given an increasing sequence $\left(E_{n}\right)$ of subspaces of E covering E there is a positive integer n_{0} such that $\mathrm{E}_{n_{0}}$ is barrelled and dense in E , [7].

A space E is Baire-like if given an increasing sequence $\left(A_{n}\right)$ of closed absolutely convex sets of E covering E there is a positive integer n_{0} such that $A_{n_{0}}$ is a neighbourhood of the origin in E.

If A is a bounded absolutely convex subsets of a space E we denote by E_{A} the linear hull of A endowed with the topology derived from the gauge of A. A is completing if E_{A} is a Banach space.

In what follows E and F are spaces and n is any non negative integer. We denote by $\mathrm{E} \otimes_{\pi} \mathrm{F}$ and $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ the tensor product $\mathrm{E} \otimes \mathrm{F}$ endowed with the projective topology and the topology of the byequicontinuous convergence respectively. $\mathrm{E} \hat{\otimes}_{\varepsilon} \mathrm{F}$ is the completion of $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$. We set

$$
\mathrm{R}_{n}(\mathrm{E}, \mathrm{~F})=\{z \in \mathrm{E} \otimes \mathrm{~F}: \operatorname{rank} z \leqslant n\}
$$

We write $\hat{R}_{n}(\mathrm{E}, \mathrm{F})$ to denote the closure of $\mathrm{R}_{n}(\mathrm{E}, \mathrm{F})$ in $\mathrm{E} \hat{\otimes}_{\varepsilon} \mathrm{F}$.

Main lemma. - $\hat{\mathbf{R}}_{n}(\mathrm{E}, \mathrm{F})=\mathrm{R}_{n}(\hat{\mathrm{E}}, \hat{\mathrm{F}})$.
Proof. - We proceed by complete induction. The result is obvious for $n=0$. We suppose that the property is true for a positive integer p. Let

$$
\begin{equation*}
\left\{\sum_{j=1}^{p+1} x_{j}^{i} \otimes y_{j}^{i}: i \in \mathrm{I}, \geqslant\right\} \tag{1}
\end{equation*}
$$

be a net in $\mathrm{R}_{p+1}(\mathrm{E}, \mathrm{F})$ converging in $\mathrm{E} \hat{\otimes}_{\varepsilon} \mathrm{F}$ to an element $z \neq 0$. Since $\mathrm{E}^{\prime} \otimes \mathrm{F}^{\prime}$ separate points in $\mathrm{E} \widehat{\otimes}_{\varepsilon} \mathrm{F}$, we can select $u \in \mathrm{E}^{\prime}, v \in \mathrm{~F}^{\prime}$ such that $u \otimes v(z) \neq 0$. Obviously

$$
\begin{equation*}
\lim \left\{\sum_{j=1}^{p+1} u\left(x_{j}^{i}\right) v\left(y_{j}^{i}\right): i \in \mathrm{I}, \geqslant\right\}=u \otimes v(z) \neq 0 \tag{2}
\end{equation*}
$$

Since (1) is a Cauchy net in $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ given $\delta>0$ and an equicontinuous subset V of F^{\prime} there is an $i_{0} \in I$ such that

$$
\sup \left\{\left|\sum_{j=1}^{p+1}\left(u\left(x_{j}^{h}\right) w\left(y_{j}^{h}\right)-u\left(x_{j}^{k}\right) w\left(y_{j}^{k}\right)\right)\right|: w \in \mathrm{~V}\right\}<\delta, \text { for } h, k \geqslant i_{0}
$$

and therefore, according to (2),

$$
\begin{equation*}
\left\{\sum_{j=1}^{p+1} u\left(x_{j}^{i}\right) y_{j}^{i}: i \in \mathrm{I}, \geqslant\right\} \tag{3}
\end{equation*}
$$

converges in $\hat{\mathrm{F}}$ to $y \neq 0$.
From (2) we deduce the existence of a subnet of (1), for which we use the same notation, such that at least one of the nets

$$
\left\{u\left(x_{j}^{i}\right): i \in \mathrm{I}, \geqslant\right\}, \quad j=1,2, \ldots, p+1
$$

has all its elements different from zero. Without loss of generality we suppose that $u\left(x_{1}^{i}\right) \neq 0, \forall i \in I$.

Setting $\sum_{j=1}^{p+1} u\left(x_{j}^{i}\right) y_{j}=v_{1}^{i}, i \in \mathrm{I}$, we have that

$$
\sum_{j=1}^{p+1} x_{j}^{i} \otimes y_{j}^{i}=\frac{1}{u\left(x_{1}^{i}\right)} x_{1}^{i} \otimes\left(v_{1}^{i}-\sum_{j=2}^{p+1} u\left(x_{j}^{i}\right) y_{j}^{i}\right)+\sum_{j=2}^{p+1} x_{j}^{i} \otimes y_{j}^{i}
$$

and setting

$$
z_{1}^{i}=\frac{1}{u\left(x_{1}^{i}\right)} x_{1}^{i}, \quad z_{j}^{i}=x_{j}^{i}-\frac{u\left(x_{j}^{i}\right)}{u\left(x_{1}^{i}\right)} x_{1}^{i}, \quad v_{j}^{i}=y_{1}^{i}, \quad j=2,3, \ldots, p+1,
$$

we have that the net (1) can be expressed as

$$
\left\{\sum_{j=1}^{p+1} z_{j}^{i} \otimes v_{j}^{i}: i \in \mathrm{I}, \geqslant\right\}
$$

Reasoning in the same way as we have done for the net (3) it follows that $\left\{\sum_{j=1}^{p+1} v\left(v_{j}^{i}\right) z_{j}^{i}: i \in \mathrm{I}, \geqslant\right\}$ converges in $\hat{\mathrm{E}}$ to an element $x \neq 0$. According to (2) again we suppose that $v\left(v_{1}^{i}\right) \neq 0, \forall i \in \mathrm{I}$, and setting $\sum_{j=1}^{p+1} v\left(v_{j}^{i}\right) z_{j}^{i}=u_{1}^{i}$
it follows that

$$
\begin{aligned}
\sum_{j=1}^{p+1} x_{j}^{i} \otimes y_{j}^{i} & =\sum_{j=1}^{p+1} z_{j}^{i} \otimes v_{j}^{i} \\
& =\frac{1}{v\left(v_{1}^{j}\right)}\left(u_{1}^{i}-\sum_{j=2}^{p+1} v\left(v_{j}^{i}\right) z_{j}^{i}\right) \otimes v_{1}^{i}+\sum_{j=2}^{p+1} z_{j}^{i} \otimes v_{j}^{i} \\
& =\frac{1}{v\left(v_{1}^{i}\right)} u_{1}^{i} \otimes v_{1}^{i}+\sum_{j=2}^{p+1} z_{j}^{i} \otimes\left(v_{j}^{i}-\frac{v\left(v_{j}^{i}\right)}{v\left(v_{1}^{i}\right)} v_{1}^{i}\right)
\end{aligned}
$$

The net $\left\{\frac{1}{v\left(v_{1}^{i}\right)} u_{1}^{i} \otimes v_{1}^{i}: i \in \mathrm{I}, \geqslant\right\}$ converges to $\frac{1}{u \otimes v(z)} x \otimes y$ in $\mathrm{E} \hat{\otimes}_{\varepsilon} \mathrm{F}$ and according to the induction hypothesis

$$
\left\{\sum_{j=2}^{p+1} z_{j}^{i} \otimes\left(v_{j}^{i}-\frac{v\left(v_{j}^{i}\right)}{v\left(v_{1}^{i}\right)} v_{1}^{i}\right): i \in \mathrm{I}, \geqslant\right\}
$$

converges to an element of $\mathrm{R}_{p}(\hat{\mathrm{E}}, \hat{\mathrm{F}})$ and therefore

$$
\hat{\mathrm{R}}_{p+1}(\mathrm{E}, \mathrm{~F}) \subset \mathrm{R}_{p+1}(\hat{\mathrm{E}}, \hat{\mathrm{~F}})
$$

Finally, since $\mathrm{R}_{p+1}(\mathrm{E}, \mathrm{F})$ is obviously dense in $\mathrm{R}_{p+1}(\hat{\mathrm{E}}, \hat{\mathrm{F}})$ it follows that $\hat{\mathbf{R}}_{p+1}(\mathrm{E}, \mathrm{F})=\mathrm{R}_{p+1}(\hat{\mathrm{E}}, \hat{\mathrm{F}})$.
q.e.d.

Corollary 1. - If E and F are complete then $\mathrm{R}_{n}(\mathrm{E}, \mathrm{F})$ is complete in $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$.

Corollary 2. $-\mathrm{R}_{n}(\mathrm{E}, \mathrm{F})$ is closed in $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$.
Proof. $-\mathrm{R}_{n}(\mathrm{E}, \mathrm{F})$ coincides with $\mathrm{R}_{n}(\hat{\mathrm{E}}, \hat{\mathrm{F}}) \cap(\mathrm{E} \otimes \mathrm{F})$ and according to Main Lemma $R_{n}(\hat{E}, \hat{F})$ is complete in $E \hat{\otimes}_{\varepsilon} F$, hence $R_{n}(E, F)$ is closed in $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$.
q.e.d.

Theorem 1. - $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ has a \mathscr{C}-web if and only if one of the two following conditions is satisfied:

1. E has $a \mathscr{C}$-web and $\operatorname{dim} \mathrm{F} \leqslant \chi_{0}$;
2. F has $a \mathscr{C}$-web and $\operatorname{dim} \mathrm{E} \leqslant \chi_{0}$.

Proof. - If F is finite dimensional and if E has a \mathscr{C}-web then $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ is isomorphic to Edim F which has a \mathscr{C}-web. If F has countable infinite dimension and if E has a \mathscr{C}-web then $\mathrm{E} \otimes_{\varepsilon} F$ has a \mathscr{C} web since the topology of $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ is coarser than the topology of $\mathrm{E} \otimes_{\varepsilon} \varphi$ and this space has a topology coarser than the topology of $\mathrm{E} \oplus \mathrm{E} \oplus \mathrm{E} \oplus \ldots$. We reach the same conclusion changing the roles of E and F .

We suppose now that $\operatorname{dim} \mathrm{E}>\chi_{0}, \operatorname{dim} \mathrm{~F}>\chi_{0}$ and that $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ has a \mathscr{C}-web $\left(\mathrm{C}_{n_{1}, n_{2}, \ldots, n_{p}}\right)$. Let $\left\{x_{i}: i \in \mathrm{I}\right\}$ and $\left\{y_{i}: i \in \mathrm{I}\right\}$ be families of linearly independent vectors in E and F respectively such that card $I>\chi_{0}$. Since $\bigcup_{n=1}^{\infty} \mathrm{C}_{n}=\mathrm{E} \otimes \mathrm{F}$ and $\bigcup_{n_{p+1}=1}^{\infty} \mathrm{C}_{n_{1}, n_{2}, \ldots, n_{p+1}}=\mathrm{C}_{n_{1}, n_{2}, \ldots, n_{p}}$ there is a sequence $\left(n_{p}\right)$ of positive integers and there is a decreasing sequence $\left(\mathrm{J}_{p}\right)$ of subsets of I such that $x_{i} \otimes y_{i} \in \mathrm{C}_{n_{1}, n_{2}, \ldots, n_{p}}, i \in \mathrm{~J}_{p}$, $\operatorname{card} \mathrm{J}_{p}>\chi_{0}, p=1,2, \ldots$ It follows that we can take linearly independent elements $u_{p} \in \mathrm{E}, v_{p} \in \mathrm{~F}, p=1,2, \ldots$, such that

$$
u_{p} \otimes v_{p} \in \mathrm{C}_{n_{1}, n_{2}, \ldots, n_{p}}
$$

We select a sequence $\left(\lambda_{p}\right)$ of strictly positive real numbers such that $\left\{\lambda_{p} u_{p} \otimes v_{p}: p=1,2, \ldots\right\}$ is contained in a bounded completing absolutely convex subset A of $E \otimes_{\varepsilon} F[3, p .75]$. Since $(E \otimes F)_{A}$ is a Banach space and since $R_{n}(\mathrm{E}, \mathrm{F})$ is closed in $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ there is a positive integer n_{0} such that $R_{n_{0}}(E, F) \cap(E \otimes F)_{A}$ has interior point in $(E \otimes F)_{A}$ and therefore

$$
\mathrm{R}_{2 n_{0}}(\mathrm{E}, \mathrm{~F}) \cap(\mathrm{E} \otimes \mathrm{~F})_{\mathrm{A}}=\left(\mathrm{R}_{n_{0}}(\mathrm{E}, \mathrm{~F})+\mathrm{R}_{n_{0}}(\mathrm{E}, \mathrm{~F})\right) \cap(\mathrm{E} \otimes \mathrm{~F})_{\mathrm{A}}
$$

is a neighbourhood of the origin in $(\mathrm{E} \otimes \mathrm{F})_{\mathrm{A}}$ and since $\mathrm{R}_{2 n_{0}}(\mathrm{E}, \mathrm{F})$ contains any scalar multiple of every vector $z \in \mathrm{R}_{2 n_{0}}(\mathrm{E}, \mathrm{F})$ it follows that

$$
\mathrm{A} \subset \mathrm{R}_{2 n_{0}}(\mathrm{E}, \mathrm{~F})
$$

But $\sum_{p=1}^{2 n_{0}+1} \frac{1}{2^{p}} \lambda_{p} u_{p} \otimes v_{p}$ belongs to A and its rank is $2 n_{0}+1$. This is a contradiction.

We suppose now that $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ has a \mathscr{C}-web and $\operatorname{dim} \mathrm{F} \leqslant \chi_{0}$. We
take $y_{0} \in \mathrm{~F}, y_{0} \neq 0$. Let T be the mapping from E into $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ such that $\mathrm{T}(x)=x \otimes y_{0}, \quad x \in \mathrm{E}$. Then $\mathrm{T}(\mathrm{E})$ is isomorphic to E (cf. [3], $\S 44,1 .(4)$). Since $T(E)$ is contained in $R_{1}(E, F)$ it is easy to prove that $T(E)$ is closed in $E \otimes_{\varepsilon} F$ and thus has a \mathscr{C}-web. Analogously, if $E \otimes_{\varepsilon} F$ has a \mathscr{C}-web and $\operatorname{dim} E \leqslant \chi_{0}, F$ has a \mathscr{C}-web.

Theorem 2. - $\mathrm{E} \otimes_{\pi} \mathrm{F}$ has a \mathscr{C}-web if and only if one of the two following conditions is satisfied:

1. E has $a \mathscr{C}$-web and $\operatorname{dim} \mathrm{F} \leqslant \chi_{0}$;
2. F has a \mathscr{C}-web and $\operatorname{dim} \mathrm{E} \leqslant \chi_{0}$.

Proof. - On $\mathrm{E} \otimes \mathrm{F}$ the π-topology is finer than the ε-topology. Hence, if $\mathrm{E} \otimes_{\pi} \mathrm{F}$ has a \mathscr{C}-web then $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ has a \mathscr{C}-web. Thus we apply the former result to obtain that 1 or 2 is satisfied.

If F is finite dimensional and if E has a \mathscr{C}-web then $\mathrm{E} \otimes_{\pi} \mathrm{F}=\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ has a \mathscr{C}-web. If F has countable infinite dimension and if E has a \mathscr{C}-web then $\mathrm{E} \otimes_{\pi} \mathrm{F}$ has a \mathscr{C}-web since the topology of $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is coarser than the topology of $\mathrm{E} \otimes_{\pi} \varphi=\mathrm{E} \otimes_{\varepsilon} \varphi$. We reach the same conclusion changing the roles of E and F . q.e.d.

Theorem 3. - If E and F are Suslin spaces then $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is a Suslin space.

Proof. - Let $\psi: \mathrm{E} \times \mathrm{F} \rightarrow \mathrm{E} \otimes_{\pi} \mathrm{F}$ be the canonical bilinear mapping which is continuous and thus $\psi(E, F)=R_{1}(E, F)$ is a Suslin topological subspace of $E \otimes_{\pi} F$. On the other hand the mapping

$$
\theta: \mathrm{R}_{1}(\mathrm{E}, \mathrm{~F}) \times \mathrm{R}_{1}(\mathrm{E}, \mathrm{~F}) \times \ldots \times \mathrm{R}_{1}(\mathrm{E}, \mathrm{~F}) \rightarrow \mathrm{E} \otimes_{\pi} \mathrm{F}
$$

so that

$$
\theta\left(x_{1} \otimes y_{1}, x_{2} \otimes y_{2}, \ldots, x_{n} \otimes y_{n}\right)=\sum_{j=1}^{n} x_{j} \otimes y_{j}
$$

is π-continuous and therefore

$$
\theta\left(\mathrm{R}_{1}(\mathrm{E}, \mathrm{~F}) \times \mathrm{R}_{1}(\mathrm{E}, \mathrm{~F}) \times \ldots \times \mathrm{R}_{1}(\mathrm{E}, \mathrm{~F})\right)=\mathrm{R}_{n}(\mathrm{E}, \mathrm{~F})
$$

is a Suslin topological subspace of $\mathrm{E} \otimes_{\pi} \mathrm{F}$. Finally, $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is a Suslin space since coincides with $\bigcup_{n=1}^{\infty} R_{n}(E, F)$, (cf. [2], §6, $N^{0} 2$, Prop. 8).
q.e.d.

Corollary 1.3. - If E and F are Suslin spaces then $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ is a Suslin space.

Note 1. - If we consider two Suslin spaces E and F of dimension larger than χ_{0} we can apply the former results to obtain that $E \otimes_{\pi} F$ is a Suslin space without a \mathscr{C}-web. Thus the closed graph theory of De Wilde [4] does not contain the closed graph theorem of L. Schwartz, [7] and [8].

Bourbaki [1, p. 43] proves that if E and F are metrizable and F is barrelled then every separately equicontinuous set of bilinear forms on $\mathrm{E} \times \mathrm{F}$ is equicontinuous. Since every barrelled metrizable space is Baire-like [1], Theorem 4 generalizes this result.

Theorem 4. - If E is metrizable and F is a Baire-like space then every separately equicontinuous set \mathscr{B} of bilinear forms on $\mathrm{E} \times \mathrm{F}$ is equicontinuous.

Proof. - Let $\left(\mathrm{U}_{n}\right)$ be a decreasing basis of closed absolutely convex neighbourhoods of the origin in E. We set

$$
\mathrm{V}_{n}=\left\{y \in \mathrm{~F}:|\mathbf{B}(x, y)| \leqslant 1, x \in \mathrm{U}_{n}, \mathbf{B} \in \mathscr{B}\right\}, \quad n=1,2, \ldots,
$$

which is a closed absolutely convex subset of F and the sequence $\left(\mathrm{V}_{n}\right)$ is increasing. On the other hand if $z \in \mathrm{~F}$ there is a positive integer p such that $|\mathrm{B}(x, z)| \leqslant 1, x \in \mathrm{U}_{p}, \mathrm{~B} \in \mathscr{B}$, according to the separate equicontinuity of \mathscr{B}. Thus $z \in \mathrm{~V}_{p}$ and since F is Baire-like there is a positive integer q such that V_{q} is a neighbourhood of the origin in F. Therefore $|\mathrm{B}(x, y)| \leqslant 1, \quad(x, y) \in \mathrm{U}_{q} \times \mathrm{V}_{q}, \quad \mathrm{~B} \in \mathscr{B}$.
q.e.d.

Corollary 1.4. - If E is metrizable and if F is a barrelled space whose completion is Baire, then every set separately equicontinuous of bilinear forms on $\mathrm{E} \times \mathrm{F}$ is equicontinuous.

Proof. - It is an immediate consequence of the former theorem and from the fact that every barrelled space whose completion is Baire is a Baire-like, [6]. q.e.d.

Note 2. - It is immediate that our Theorem 4 can be easily generalized to bilinear mapping with range in a third locally convex space. Then this theorem contains another result due to Bourbaki [3, Ex. 1, Chap. III, § 4, p. 44] for locally convex spaces.

Proposition 1. - If E is a barrelled metrizable space and if F is a Baire-like space then $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is Baire-like.

Proof. - Let $\left(\mathrm{W}_{n}\right)$ be an increasing sequence of closed absolutely convex subsets of $\mathrm{E} \otimes_{\pi} \mathrm{F}$ covering $\mathrm{E} \otimes \mathrm{F}$ and let $\left(\mathrm{U}_{n}\right)$ be a decreasing basis of closed absolutely convex neighbourhoods of the origin in E. We set

$$
\mathbf{V}_{n}=\left\{y \in \mathrm{~F}: x \otimes y \in \mathbf{W}_{n}, x \in \mathrm{U}_{n}\right\}, \quad n=1,2, \ldots,
$$

which is a closed absolutely convex subsets of F and $\left(\mathrm{V}_{n}\right)$ is an increasing sequence.

$$
\mathrm{Z}_{n}=\left\{x \in \mathrm{E}: x \otimes z \in \mathrm{~W}_{n}\right\}, \quad n=1,2, \ldots
$$

which is a closed absolutely convex subset of E and $\left(Z_{n}\right)$ is an increasing sequence covering E. Then there is a positive integer n_{0} such that $Z_{n_{0}}$ is a neighbourhood of the origin in E . We can find a positive integer $p \geqslant n_{0}$ such that $\mathrm{U}_{p} \subset \mathrm{Z}_{n_{0}}$ and then $z \in \mathrm{~V}_{p}$ and so $\left(\mathrm{V}_{n}\right)$ covers F . Since F is a Baire-like there is a positive integer q such that V_{q} is a neighbourhood of the origin in E and thus W_{q} is a neighbourhood of the origin in $\mathrm{E} \otimes_{\pi} \mathrm{F}$. q.e.d.

Proposition 2. - If E and F are unordered Baire-like spaces and if E is metrizable then $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is unordered Baire-like.

Proof. - Let $\left(\mathrm{W}_{n}\right)$ be a sequence of closed absolutely convex subsets of $\mathrm{E} \otimes_{\pi} \mathrm{F}$ covering $\mathrm{E} \otimes \mathrm{F}$ and let $\left(\mathrm{U}_{n}\right)$ be a decreasing basis of closed absolutely convex neighbourhood of the origin in E. We set

$$
\mathrm{V}_{n, m}=\left\{y \in \mathrm{~F}: x \otimes y \in \mathbf{W}_{n}, \forall x \in \mathrm{U}_{m}\right\}, \quad, m=1,2, \ldots
$$

Obviously $\mathrm{V}_{n, m}$ is a closed absolutely convex subset of F . We shall see that $\bigcup_{n, m=1}^{\infty} V_{n, m}=F$.

Indeed, let $z \in F$ and set

$$
\mathrm{Z}_{n}=\left\{x \in \mathrm{E}: x \otimes z \in \mathbf{W}_{n}\right\}, \quad n=1,2, \ldots
$$

which is a closed absolutely convex subset of E such that $\bigcup_{n=1}^{\infty} \mathrm{Z}_{n}=\mathrm{E}$. There is a positive integer p such that Z_{p} is a neighbourhood of the origin in E. We find a positive integer q such that $U_{q} \subset Z_{p}$. Then
$z \in \mathrm{~V}_{p, q}$. We can find positive integers r, s such that $\mathrm{V}_{r, s}$ is a neighbourhood of the origin in F . If $\psi: \mathrm{E} \times \mathrm{F} \rightarrow \mathrm{E} \otimes \mathrm{F}$ is the canonical bilinear mapping then $\psi\left(\mathrm{U}_{s} \times \mathrm{V}_{r, s}\right) \subset \mathrm{W}_{r}$ and thus W_{r} is a neighbourhood of the origin in $\mathrm{E} \otimes_{\pi} \mathrm{F}$.
q.e.d.

Proposition 3. - If E is a metrizable suprabarrelled space and if F is an unordered Baire-like space, then $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is suprabarrelled.

Proof. - Let $\left(G_{n}\right)$ be an increasing sequence of subspaces of $\mathrm{E} \otimes_{\pi} \mathrm{F}$ covering $\mathrm{E} \otimes \mathrm{F}$ and let us suppose G_{n} is not barrelled, $n=1,2, \ldots$ We can find in each G_{n} a barrel T_{n} which is not a neighbourhood of the origin in G_{n}. Let W_{n} be the closure of T_{n} in $\mathrm{E} \otimes_{\pi} \mathrm{F}, n=1,2, \ldots$ We use $\mathrm{V}_{n, m}$ and Z_{n} with the same meaning as before. We set

$$
\mathrm{S}_{n}=\left\{x \in \mathrm{E}: x \otimes z \in \mathrm{G}_{n}\right\}, \quad n=1,2, \ldots
$$

$\left(S_{n}\right)$ is an increasing sequence of subspace of E covering E and therefore there is a positive integer p such that S_{p} is barrelled and dense in E. If $x \in \mathrm{~S}_{p}$ there is a real number $h>0$ such that $h(x \otimes z) \in \mathrm{T}_{p} \subset \mathrm{~W}_{p}$ and thus $h z \in \mathrm{Z}_{p}$, i.e., Z_{p} is absorbing and thus a barrel in E . It follows that $Z_{p} \cap S_{p}$ is a barrel in S_{p} and therefore a neighbourhood of 0. But S_{p} is dense in E, so $Z_{p}=\overline{Z_{p} \cap S_{p}}$ is a neighbourhood of the origin in E. Reasoning as we did in the proposition above, we obtain a positive number r such that W_{r} is a neighbourhood of the origin in $\mathrm{E} \otimes_{\pi} \mathrm{F}$, which is a contradiction. According to Proposition 1 there is a positive integer n_{0} such that G_{n} is dense in $\mathrm{E} \otimes_{\pi} \mathrm{F}, n \geqslant n_{0}$. q.e.d.

Proposition 4. - $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is a Baire space if and only if one of the following two conditions is satisfied:

1. $\operatorname{dim} \mathrm{E}<\infty$ and $\mathrm{F}^{\mathrm{dim} \mathrm{E}}$ is a Baire Space;
2. $\operatorname{dim} \mathrm{F}<\infty$ and $\mathrm{E}^{\operatorname{dim} \mathrm{F}}$ is a Baire space.

Proof. - If the dimension of E is finite then $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is isomorphic to $\mathrm{F}^{\mathrm{dim} \mathrm{E}}$. Analogously if F is finite dimensional then $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is isomorphic to $E^{\operatorname{dim} F}$. Suppose that E and F are infinite dimensional and $E \otimes_{\pi} F$ is a Baire space. We can find a positive integer n_{0} such that $R_{n_{0}}(E, F)$ is of second category in $\mathrm{E} \otimes_{\pi} \mathrm{F}$. According to Corollary 2.1, $\mathrm{R}_{n_{0}}(\mathrm{E}, \mathrm{F})$ is closed in $\mathrm{E} \otimes_{\varepsilon} \mathrm{F}$ and thus it is closed in $\mathrm{E} \otimes_{\pi} \mathrm{F}$ hence $\mathrm{R}_{2 n_{0}}(\mathrm{E}, \mathrm{F})$ is a neighbourhood of the origin in $\mathrm{E} \otimes_{\pi} \mathrm{F}$ which is a contradiction since $\mathrm{R}_{2 n_{0}}(\mathrm{E}, \mathrm{F})$ is not absorbing in $\mathrm{E} \otimes \mathrm{F}$.

The following Theorem is an immediate consequence of the preceding results, having in mind that every infinite dimensional Fréchet spaces has dimension larger or equal than $2^{x_{0}}$, [6].

Theorem 5. - If E and F are infinite dimensional Fréchet spaces the following is true for $\mathrm{E} \otimes_{\pi} \mathrm{F}$:

1. is unordered Baire-like;
2. is not a Baire space;
3. has not $a \mathscr{C}$-web.

If E and F are separable then
4. $\mathrm{E} \otimes_{\pi} \mathrm{F}$ is a Suslin space.

We gratefully thank Prof. H. Horváth for his valuable suggestions.

BIBLIOGRAPHY

[1] I. Amemiya and Y. Komura, Über nich-vollständinge Montelräume, Math. Ann., 177 (1968), 273-277.
[2] N. Bourbaki, Éléments de Mathématique, Topologie Générale Chap. IX, Hermann, Paris, 1974.
[3] N. Bourbaki, Éléments de Mathématique, Espaces vectoriels topologiques, Act. Sci. et Ind., Paris, vol. 1929 (1955).
[4] M. De Wilde, Réseaux dans les espaces linéaires à semi-normes, Mém. Soc. Royale Sci. Liège, 18 (5), 2 (1969), 1-144.
[5] G. Köthe, Topological Vector Spaces II, Springer-Verlag, New York-Heidelberg-Berlin, 1979.
[6] H. Löwig, Über Die dimension linearer Räume, Studia Math., (1934), 18-23.
[7] A. Martineau, Sur le théorème du graphe fermé, C. R. Acad. Sci., Paris, 263 (1966), 870-871.
[8] L. Schwartz, Sur le théorème de graphe fermé. C.R. Acad. Sci., Paris 263 (1966), 602-605.
[9] M. Valdivia, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, Grenoble, 21, 2 (1971), 3-13.
[10] M. Valdivia, On suprabarrelled spaces. Functional Analysis, Holomorphy and Approximation Theory. Proocedings, Rio de Janeiro 1978, Lecture Notes in Math., 843 (1981), 572-580, Springer-Verlag, New York-Heidelberg-Berlin.

Manuscrit reçu le 20 août 1981.
Manuel Valdivia,
Facultad de Matemáticas
Dr. Moliner s.n.
Burjasot (Valencia) Espagne.

