
ANNALES DE L’INSTITUT FOURIER

B. BERNDTSSON

MATS ANDERSSON
Henkin-Ramirez formulas with weight factors
Annales de l’institut Fourier, tome 32, no 3 (1982), p. 91-110
<http://www.numdam.org/item?id=AIF_1982__32_3_91_0>

© Annales de l’institut Fourier, 1982, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1982__32_3_91_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
32,3 (1982), 91-110

HENKIN-RAMIREZ FORMULAS
WITH WEIGHT FACTORS

by B. BERNDTSSON and M. ANDERSSON

Introduction.

The method of explicit formulas for solving the 3-equation has
been much in use in later years, starting with the work of Henkin [5]
and Ramirez [8]. These formulas are based on the construction of
integral kernels, the so called Henkin-Ramirez or Cauchy-Leray kernels,
which can be constructed in any strictly pseudoconvex domain,
although more elementarily so for the case of a convex domain.

Notwithstanding the great success of this method, the resulting
kernels are not always well suited in applications. This is perhaps
most clearly seen in one complex variable where the Henkin-Ramirez

kernel always becomes K ( ? , z ) = c — — — — » i.e. the classical
? -^

Cauchy kernel. It is of course only very rarely that this kernel gives
good estimates. Therefore it could be of interest to find modifica-
tions of the kernels which contain "weight factors". One type of
such kernels has been given by Dautov and Henkin [4]. They use
weights which behave like a power of the distance to the boundary
(see also [2] and [ 1 ] for the case of the ball).
The aim of this note is to show a rather general (and simple)
method for constructing formulas with weights. The method is
based on a representation of the kernels as "Laplace transforms"
of "oscillatory integrals". This was inspired by a similar represen-
tation of the Bergman kernel as a Fourier integral operator by
Boutet de Monvel and Sjostrand. Our construction is however much
more elementary, and we don't know the theory of Fourier integral
operators well enough to know^svhether there is more than a super-
ficial analogy.
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As special cases we obtain weights of the Dautov-Henkin type,
weights with polynomial decrease in C'1 and weights which behave
roughly like exp-</? where <p is a convex function. The plan of the
paper is this: In section 1 we give the basic construction. In section 2
we write out the formulas more explicitly and modify the construc-
tion to find more general weights. Finally in section 3 we study some
examples in C" and show that we get minimal solutions in certain
L2-spaces, and also indicate some (known) estimates in other norms.
We have no essentially new estimates, but believe that the construc-
tion in itself may have some interest and hope to come back to the
question of estimates later.

As general background references we quote [11] and [7]. The
latter reference also contains a good bibliography.

The authors wish to thank the referee for several comments
which hopefully have made the exposition clearer.

Section 1.

First we briefly recall the classical construction. In the space
C" x C" = {($ , T?) ; f E C" , T? E C"} we consider the differential
form 11 = < ^ , rp~"a/(^) A o?(7?). Here

^'a)=i (-l);~l^^
n

CD(T?) == df]^ A . . . ̂  and < $ , 7 ? > = ^ ^ .
i

The form p. is well defined on E = { ( f , ^ 7 ) ; < ^ , 7 7 ) ^ : 0 } , and
one can readily verify that d^ = 0. Next, let D be domain in C",
and consider a map s = (^ , . . . , s^) : D x D—-^ C" satisfying the
condition < 5-, ? — z > ^ 0 for ? ̂  z (we use (?, z) as coordinates
on D x D ) .

To be more precise, we assume s to be of class C1 and satisfy

1^0 , z ) |<C |? -z | and \ ( s , ? - z > | > c |? - z |2 (1)

uniformly for ? E D and z in any compact subset of D. Then
we define the map \p : D x D — A —> E, ^(?, z) = (^(?, z), ? — z)
(where A is the diagonal in D x D ) , and set K = ^*fi, the pullback
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of p. to D x D \ A . Let Kp ̂  be the component of K of bidegree
( p , q ) in z and (n - p , n - q - 1) in ?. If we suppose that s
also satisfies the condition

s(^ , •) is for ? G 3D fixed holomorphic in D , (2)
then the following theorem holds:

THEOREM (see e.g. [11]). - Let f be a (p, q)-form in C^D)
such that ^ = 0 , q>\. Then u = C p ^ ^ f ^ A K ^ _ ^ satisfies
the equation 9u = f (provided s satisfies ( 1 ) and ( 2 ) ) .

rfC
One sees that for n = 1 K^ o = -—— regardless of the choice

S ~ z

of s . Thus we get the classical Cauchy formula
_ l „ /Arf?/ =a 2,7X7-7 <3'

if / is a (0 ,1) form. One obtains other solution formulas simply
by multiplying with a function F(?, z), if F is holomorphic in
z , F == 1 for ? = z and of, say, class C1. Thus

^——/F^z)-^-.
27TZ ^D ? - Z

This is seen writing F(?, z) = 1 4- (^ - z) ^(?, z) and comparing
with (3). In several variables such a simple procedure is clearly not
possible, since the singularities of the kernel K , are more com-
plicated. It turns out that one has to add lower order terms, although
we shall do this in an implicit way.

We start by considering the form on C" x C"

A = exp < ^ , 77) o;($) A o?(77).

Let s = (^ , . . . , ̂ ): D x D —> C" satisfy condition (1) as before.
We introduce another map Q : (Q i , . . . , Q^): D x D —> C" , which
is to satisfy the sole condition of being holomorphic in z £ D for
? G D fixed (and be of, say, class C1). Then define

^ : (D x D\A) x (0 , oo) —> c" x C"

by ^ / a , z , ^ ) = ( Q + ^ , ? - z )

and put N = V/*A. We can v/rite N = N^ 4- N' where N^ is that
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component of N which contains dt. As A is a holomorphic form
of maximal degree dA = 0 . It follows that dN == 0 (for ? ̂  z) ,
and sorting out the terms that contain dt we get

r f ^N,=-^N\ (4)
Next we define K as

K = ^ ° ° N , . (5)

In order for this definition to make sense we make the temporary
assumption that Re {s , ? — z ) < 0 (for ^ =7^= z) , but we will see
later that this is not necessary. Then we can differentiate under the
sign of integration and get

^-f^^^^-C^-^^ (6)
= exp < Q , ? - z > GJ(Q) A G;(? - z) = P

outside the diagonal in D x D. (We use the convention of putting
dt to the far right side when integrating). The point is that P does
not contain s , so it is by the assumption on Q holomorphic in
z , and the components of positive degree in d~z~ are zero. Note that
for Q = 0 we get

N^ = -expr < 5 , ? - z>(^1 ̂ ( s ) A G D ( ? - Z ) ^dt)

so that K is — (n — 1) ! times the usual Cauchy-Leray form. In
general
N^ == - exp < Q , ? - z > expr { s , ? - z > (^-^'(^A co(?- z ) /\dt

n-2
+ ^ tka^^dt} (7)

fc=0

where a^ are forms that do not contain t . Hence K is essentially
exp <Q , ? — z > times the Cauchy-Leray form plus "lower order terms"
(i.e. terms whose singularity ( s , ? — z)"^0 is of lower order).
We can now prove

THEOREM 1 (Koppelman's formula). — Let f be a ( p , q)-form
in C^D). Then

f-CP^n\{^f^ (8)
( ''3D / /» _ _ /» \ \+ (_ i)p^i ̂  a/,K,,, - a^ /AK,,,_,)I
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for q> 0 and

f=c'''n IX/'^0 + (-l)p+l fj^^ ~ f/^ | (9)

for q = 0 . Here K is the component of K \vhich is of bidegree
(p , q) in z and (n - p , n - q - 1) in ?, and similarity for P.

Proof. — The proof is of course completely parallell to the proof
of the classical Koppelman's formula. However we think it is simpler
to repeat the whole proof, rather than just indicate the necessary
modifications.

Let 0 be a smooth (p, q) form with compact support in D.
We have to show that the integral f 0 A/ equals the integral of the

^D
right hand side of (8) (or (9)) against 0. We may then replace K
(resp Pp q) by K (resp P), since no other component gives a con-
tribution for bidegree reasons. Put

D, = = D x D - { ( ? , z ) E D x D ; | ^ - z | < e } ,
and consider

/ 0 ( Z ) A / ( ? ) A K ( ? , Z ) = I .
^(DxD)

If e is small enough compared to the distance from supp 0 to 3D,
we can apply Stokes theorem to Dg and get

l = f r f 0 A / A K + (-1)^ f 0 A r f / A K + J 1 0 A / A P ^Q)

+ f 0 A / A K .
"IS-^e

It is easy to see that in (7) all the forms a^ , and a? \s), have coeffi-
cients that are 0( | s |) = 0( | ? - z |). Hence

K= 0(M/|<5;?-z>n =0( |?-z |1 -2" )

according to (1), uniformly for all z in the support of 0. Hence
the integrals in the first three terms in (10) are absolutely integrable
when e —> O.To see how the fourth term behaves we first need
to study K more carefully.

From (7) follows that

K = -(n- l ) ! ( e x p < Q , ? - z » (s , z - ̂ -n (^\s) A co(? - z) + T^
(11)

where the coefficients in T\ are 0(|? - z|2"2"). The first term in
(11) can be written
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- (n - 1) ! ( s , ? - z >-" o/(^) A G;(? - z) + T^ (12)

where ^=0(1?- zl2"2"). Hence, to compute

lim / 0 A / A K ,
e-»0 ^l^-zl^e

we can replace K by the first term in (12), i.e. the classical Cauchy-
Leray form times a constant. But then it is well known that the limit
equals Cp ̂  f^ 0A/ .

This fact, under the sole assumption (1), is implicit in [ I I ] ,
and also in [9] where however only the boundary values are consider-
ed. Since there appears to be no proof published we give one at the
end of this section.

Finally, an application of Stokes theorem with respect to the
variable z yields

f r f 0 A / A K = (-l)^^1 f 0 A f l L f / A K .
^D xD ^D "D

We also notice that we can replace d by 3 everywhere since K
is of degree at least n in d? and dz together, and so is 0 A /
Collecting, we have then

f 0 A f / A K = f 0A{(-1)^ f ' a / A K - 3 , f / A K }
JY) ^8D ^D "D ^D

+ f 0 A f / A P + C p ^ f 0 A / .
«/D ^D "D

This completes the proof of Theorem 1 if we remember that
P^ = 0 for q>0.

From Koppelman's formula we get in the usual way:

THEOREM 2. — Suppose s satisfies ( 1 ) and ( 2 ) , and that f is
a (p,q)-form with, coefficients in C^D), with q > 1 , such that
~9f = 0 . Then u == (- O^C., . „ f /A K , solves the equa-
_ — • ' »/[> P><7
a^ =/.

Proof. — Because of condition (2) the pullback of Kp ^ to
^ € 3D is zero for q > 1 . Hence the theorem follows from Koppel-
man's formula.

As seen in the proof our kernel K is
K = -(^-1)! e^-^K'^- T
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where K' is the classical Henkin-Ramirez kernel and T is "lower
order terms". This type of weights is however too special for many
purposes. We shall see that, essentially, the exponential function can
be replaced by any holomorphic function. This we will do in section
2 after having written K more explicitly.

Proof that

ô f^^^^^^f^^

As mentioned before it suffices to consider the case Q = 0.
Suppose s satisfies (1). We may also assume < s , ^ - z» 0 for

? ̂  z since otherwise we replace s by s ——'———— which does
\ < s , ? - z > |

not change the kernel (see [11] or Lemma 4, section 2). We still have
ds = 0(1).

Now, let b = ? —~z be the "Bochner-Martinelli section", and
put ^ = X^ + (1 - X) b , 0 < X < 1 . Consider the map

A(?, z , X ) : D x D x [ 0 , l ] —> C"

define^ by_ /?(?, z , \) = ^(?, z). Put H = /z*^, the puUback of
^ to D x D x [0,1]. Then dH = 0 for ? ^= z .

Applying Stokes theorem to the integral

I = f 0 A / A H
t /^({lS•-z|=e}x[0.1])

we get
L == f d ( 0 A / ) A H . (*)

"{l^l^xIO,!])

On the other hand, since the boundary of { I ? - z| = e} is zero
(remember 0 has compact support) we have

^/^i-0^1^-^-.,^ ^AK^ (**)
where K(s) = k and K(6) is the kernel defined by the choice s = b.

Observe that in (*) only occur terms of H which contain dX.
This shows that

^ /———. I^KM+m) , _ , x
' ' ^ ( \<^-z>+( i - \ ) i r -z i 2 ) " uusl zl ' ) •

Since the surface measure of { | ? — z | = e } is 0(e2""1) we get
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lim I = 0 . In view of (**) this shows that it suffices to prove our
e-*0 €

claim for the case s == b. Then it is proved easily by making the
substitution ? - z = x or consulting the litterature [11].

It is clear from the proof that (1) actually can be relaxed consi-
derably.

Section 2.

Remember that K == / 1SL whereJ o r

N = e x p « Q , ? - z > + t ( s , S - z ) ) co(Q + ts) A o?(? - z)

and N^ is the component of N which contains d t . With Q and s
we associate the (1,0)-forms

H ^0,-z,) and iQ,d(?y-z;)
i i

which we also denote by s and Q respectively.

LEMMA 3. — Let ( ^ ^ , . . . , a ^ ) &^ complex numbers and set
a/(a,S) = SC-l)7-1^ A r f f , . 77^2

o/Oz, S) A ^(ri) = €„ S a, rf7?, A (2 ̂ , A d7?,)"-l (13)

wA^ C^ = (- l)"01-1^2/^ - 1)! .

Proo/ - Define a vector a == 2 a. — • Then o?'(a , {) = a J o?(^)
"S/

where J denotes interior multiplication of a form with a vector.
Now

n! <<;({) A o;(7?) = (- 1 )"<" -1)/2 (2 dS, A d^T .
Taking the interior product of both sides with a and using the fact
that interior multiplication is an antiderivation we get

n\ 0/(fl,S)AG;(7?) = (-D^-^/^S^d^ACS^/AdT?,)"-1.

This is the assertion.
Now observe that

N^ = exp«Q, ? - z > + t ( s , ? - z» r i rAc j^ ,Q + ^) A o;(? - z)
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so Lemma 3 gives

N^ = C^exp«Q, ? - z > + t ( s , ? - z » ^ A ^ A ( d Q + ^)"-1

M-I <
=€„ exp«Q,? -z>+ r < 5 , r - z » d r A 5 A ^ ( , ) (W

fc=0 Ac

AW)"-1-^-^-1

The definition of K now shows that

K»-C,e.p<0,,-.2;^i^^-,H)

For the associated "projection kernel", P , we get

P = e x p < Q , ? - z > co(Q) A ̂  - z) ^^
= (- i y(n -i)/2/^! exp < Q , ? - z > (dQY1.

Before continuing let us note that since we are only interested in
components of bidegree = n in d^ and dz together we can replace
d by 3 every where in (14) and (15).

LEMMA 4. - Let ^ : D x D —> C\{0} be any ^-function.
Then if we replace s by ^ps in ( 1 4 ) we obtain the same kernel.

Proof — (ps A (d^psy = ^ps A (d^p A s + </?^)7 = ^/+1 5 A (rf^)7 since
5 A 5 = 0 .

This shows that our kernels have the same homogeneity property
as the usual Henkin-Ramirez kernels, and thus we can remove the
previous assumption R e < 5 , ? — z > < 0 .

One simple choice of Q is as follows. Let {? be a convex func-
tion in D and put Qy = — 23^/3^ . The inequality

^) - ̂ (?) > 2 Re 2 ^ (z, - ̂ ) (16)
o$/

shows that in this case the weight exp < Q, ? — z > satisfies

| exp<Q, ? - z > | <exp^?(z) exp- <^(?).

Hence our kernel gives a solution M to 9u •= f for which we can
estimate \u\ exp - (^ with | / | exp-</? . Of course, the precise
form of the estimates will depend on the choice of s and also involve
the Hessian 3 3<^ and we shall not pursue these questions here.
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Instead we shall look for more general weights. Replace Q in
(14) by XQ where X is a positive parameter and denote the result
K^. Let g be a function, or even a distribution, on [0, oo) and
set K = F K^e-^gWdX/a where a = F e-^gW d\. Here

^o ^o
of course we have to assume that the integrals converge and that
a ^ = 0 . Let G(a) = f e~^g(\)d\ be the Laplace transform of*^o
g , and normalize so that a = G(l) = 1. Then (14) gives

K--C.|-^^(<Q,.-P.O^^

and if we define P in a corresponding way, (15) gives

P = = (-ly^-D/^! G^((Q,z - P + 1) (W. (18)

Now, conversely, suppose G is a holomorphic function of one
variable in a simply connected domain that contains the image of
D x D under the map (?, z) —> <Q , z - ?> + 1, and that G(l) = 1.
Then we can define K and P using (17) and (18). We then get the
principal result of this paper.

THEOREM 5. — With G as above Koppelman's formula (Theo-
rem 1 ) holds wth K and P replaced by K repectively P.

Proof. — In case G is a nice entire function, e.g. a polynomial,
this is clear from the above. Namely if we take g to be a combination
of derivatives of the Dirac measure at the origin, and use Koppelman's
formula for each K^. The general case follows since G can be
approximated by polynomials uniformly on the image of

(? ,^) —^ < Q , z - ? > + l .
Of course, one could also verify by direct computation that K and P
satisfy the required identities and then repeat the proof of Koppelman's
formula.

Since the kernel K is the special case of the above construction
with G(a) = exp(l — a ) , we will drop the tildes in the sequel and
write simply K and P for the kernels in (17) and (18).

For each choice of Q and G Theorem 5 gives a solution ope-
rator for the 8-equation and representation formulas for holomorphic
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functions (provided s satisfies (1) and (2)). We shall now consider
some concrete examples.

Example 1. — Let \p be a negative convex function in D and
1 3<^se•Q '°^-

<Q,,_P+1,^^__IM»
^

so by inequality (16)
<z?(z) + (^(O

Re«Q, z - ? > + ! ) > yv ; ^) > 0 .
2^(?)

Hence G(a) = c '̂, N > 0, will do in Theorem 4, and we obtain
the kernel

K = -C "V / ^ ^ ^A(rfQ)^A(3^-1^"V / ^ ^+k s^dQ)^^)—1^
^h 7fc ^o^-r>+^ (..z-?)^^ ^ lo^^-p+^y <.,z-?>^ "^

Note that

(dQ)fc = [̂ 2 ^rf(?/ -z/) ~ ̂  ^A 2 ̂ d(r/ -z/)]
so that all coefficients in this form are 0(\^p\~k~l). Hence we can
relax the assumption that ^ be strictly negative on D, and only
assume ^ < 0, (replace ^ by ^ — e and let e ^ 0). In particular,
if D is a convex domain with C^boundary we can choose </? = p — e
where D = {? E C" ; p (?) < 0} where p is convex defining func-

1 9<^tion for D. Then dQ = — d2 —— d(^, — z.) when restricted to
^ 3?y / /

z G 3D, since dp = 0 there.
Hence the coefficients of (dQ)^ are then (Xl^ l "^ ) , which

implies that after letting e —> 0 we get a kernel, K , which res-
tricted for ? G 3 D vanishes, even if s does not satisfy condition 2.
Moreover in this case the representation formula for holomorphic
functions which we get from Koppelman's formula will contain only
the kernel P and no integral over the boundary.

One way to make suitable choices of s is as follows. Let
A=(A^) be a C1-function from D x D with values in the space
of positively semidefinite hermitian matrices. Suppose A is (uni-
formly) positively definite on compacts in D x D and moreover
that for ?E3D
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2 A/^/ - z/) (^ - ̂ ) > 0 for ^ D.
Then .̂ = 2A^(^ - z^) will satisfy (1). As A we can take:

i) A = I = identity, s = Y- z".

ii) in D = { ? ; p ( ? ) < 0 } A=AO)=-p(?) I+(^J^L) .
_ _ va?/ ^/

Then for ? G 3D 5 = < 3p ; ? - z~> 3p which by Lemma 4 is equiva-
lent to 3p , and so is holomorphic in z E D .

i i i )A=A(z)=-p(z)I+(^^).<az, az^/
The matrices in ii) and iii) have for ? resp z near 3D roughly the
same behaviour as the coefficient matrix of the Bergman metric, ii)
always gives a solution operator, whereas iii) will do in case the weight
is zero on 3D. To conclude this example let us show that iii) gives
a particularily simple formula in case of (0,l)-forms. Thus we shall
consider K ^ o , the component of K ofbidegree (0,0) in z . Then

(^)o.o = - 2 A^ d^ A d^ = - QL

(3Q)o.o =-33" log- -

<., r - z> = 2 A^O, - z,) (F, - z-,) = n-z\^
and ^0,0 = ^n-z HI.

Hence (19) becomes ^
^_ . . p ^-^(^log-})^"-^

^o ^op,z-?>+p^ iir-zii^)
ForzG3Da=2^^d?,.^

and ,=^||?_^=2;^ (^_r,)S-^-^.
" /

This implies s A ff = 0 so

/_____^-. ^ll?-^lliA(a3iog-^)"-1

00 v < 8 p , z - r > + p / ii?-^iii ^i)
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The corresponding projection operator is

^-<^T^-r^^-^- <">
It is not difficult to see that, if D is strictly convex, we can take
limits when z —> 3D in Koppelman's formula and so obtain

PROPOSITION 6. - Let _D be a convex C^-domain with defining
function p. Let f be a 9-closed (0,\)-form in C^D), and u a
holomorphic function in C^D). Then

v(z)=C, f / A K o o (*)
^D

is a solution to the equation 9v = f and u(z) = Cy, / ^ Poo for^D
z G D. KQQ and P^ are given in (20) and (22). If D is strictly
convex, v has boundary values given by ( * ) with Koo as in ( 2 1 ) .

This kernel easily gives the L1-estimates on the boundary, that
first were obtained by Skoda [9] and Henkin [6]. Notice that the
difference in dependence on the "tangential" and "normal" parts of

/ is exhibited by the form 33 log — — = — 33p + —^ 3p A 3p .

When D is the unit ball and p = | ? |2 - 1

P 1-1_?12

< 3 p , z - ?> + p 1 - ? - z

and (33' log- -)" = const. (1 - l?!2)"^^.

Hence, for N = 1 , P^ ^ is just the Bergman kernel, and the
solution to the 3-equation given by (20) in the interior and (21)
on the boundary is the minimal solution in L2. This solution has
been found earlier by Charpentier [2], in the interior and on the
boundary already in [9]. Intuitively (22) (N = 1) could be viewed
as an approximate Bergman kernel, in the same way as the Cauchy-
Leray kernel is an approximate Szego kernel.

As mentioned in the introduction, kernels with similar behaviour
as (20) have been found earlier in [4]. See also [3] for a different
method.
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A similar proposition also holds for strictly pseudoconvex do-
h,

mains, just put Q = —L , where {h,} is the section of Henkin and
P J

Ramirez (see [11]), and proceed in the same way,

Example 2. — Let /i,. . . , /p be holomorphic in D and of class
C1 (D). Then one can write

400 - W) = f j^W + ̂  - ?)) dt = Z^(z, - ?,) (23)

(if D is convex), where the g ^ : s are holomorphic in ? ^d z '
Then set __

n-iA^
' SI/^W+e

We get

(Q.z-^l.^t"^'
SI/^D^+e

If we then take G(a) = c^ , we get weights which may be of use
in two connections. Firstly, if w is a 3-closed form which vanishes
to a high enough degree on the set of common zeros of f^ , . . . , fp ,
we can let e ——^ 0 and get a solution to 9u = w which also
vanishes there (we even get u = 2/j^ u^ for some forms u^).

Secondly, we can use the representation formula for holo-
morphic functions to solve a division problem. Namely Koppelman's
formula gives in this case

^"(.L^-X^l (24)
provided / vanishes sufficiently rapidly on the common zeros of
/\ , . . . , / . This gives an explicit representation of / as / = /^ g^
with g^ holomorphic.

Similar formulas exist for strictly pseudoconvex domains,
although (23) then must be replaced by a less elementary analog.
Finally, the boundary integral in (24) can be suppressed if we combine
this method with the one in Example 1, but we don't go into details
since we only aim at indicating possible applications.

Added in proof. — This choice of Q also turns out to give
kernels supported on the set of common zeros of /,,..., /p . A
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more detailed analysis will be the object of a forthcoming paper
"A formula for interpolation and division in C"", by one of the
authors.

Section 3.

In this section we use Theorem 5 to derive some kernels, by
means of which we obtain explicit solution formulas for the equation
Qu ==/ , where / is a 3-closed (p, q + l)-form in C1. Such for-
mulas have previously been obtained by Skoda in [10]. Our kernels
give roughly the same estimates as in [10], which are essentially the
best possible. Moreover in the case when / is a (0,l)-form, the solu-
tions will be minimal in certain I^-spaces. At the end of this section
we briefly discuss the case when / has growth of infinite order.

Now, consider formula (17). We choose Q. = — — / and

-y; = Sy ~ Zf . Furthermore, for each non-negative integer m, we
may take G(a) = c^ .

We define the kernels K^ as those which are obtained from
formula (17), with the special choices of Q, s and G stated above.

m! o^m~k

Since Gk(a) equals -————— when ; < w and zero otherwise,_ (m — k)\ 9

? • z + 1
and < Q , z - ?> = » the explicit expression for K'" is

K/" = c """^-^ .m. /I + r>zyn - ^
h ^^i+iri27

air-zl^a'ai^-zi2^-1-^^
i r-zi2^-^

Keeping in mind formula (18), the associated projection forms P'"
can be written

^—(^r"(w
when m > n. When m < n the projection forms are identically
zero. A simple computation shows that the component P^o of
bidegree (0,0) in z has the simple appearence

fl + ^« zV"""p^ = r . s / r^n iM^r"0 ,0 c ^ ^. |^|2)m+l ^ISl )

when m > n .
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Now we shall see that the Koppelman's formula is still valid in
this case although D , being C", is not bounded. Since

\ 9 ^ - Z \ 2 \ < \ ^ - Z \ , |^Q|<(1 + |?|2)-1

and | 3 3 | ^ - z |21 < 1 K^ can be estimated by

R ^ ^. C """ '̂̂  I 1 ^Yz\m-k 1
m h (1-HW |7-z|2-2^r-

For a smooth (p, ^)-form / the following "Koppelman's for-
mula" holds.

PROPOSITION 7. - Suppose

f\W^\Rm(^z)<^ (25)
for every fixed z .

a) // q > 0 ^d /!/(?) | R^?, z) < oo for every fixed z, r/z^

/^)=/9/(?)AK^(?,z)-^ / / (?)AK^,_, (? ,z)

b) // qr = 0 ^rf /!/(?)! IP^r, z)| < oo /o^ ̂ ^ ̂ ^ ^^
^/Z^72

/(^) = /yO) A K^o (? , Z) +//(?) A P^o(r , Z) .

7^ particular ( 2 5 ) is satisfied when f is ^-closed, and hence
J / A K ^ _ ^ is a solution to 9u = f if the hypothesis of a) is
satisfied.

Proof. - Choose a (^EC^CC") such that <^= 1 for |?| < 1

and ^ = 0 when i n > 2 . Put ^(?) = ^(^). The Koppelman's
formula implies, if q > 0

^=/^^AK^+/a-^A/AK^-a , /^ /AK^. , .
Since | a<^ | < const _ the assumptions about / and 3/ imply that
<^/ and the first two integrals converge uniformly to /, f 3/A K'"
and 0, respectively when z belongs to a compact set. Hence a)
follows. In a similar way b) is proved.
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By L^l we denote the space L 2^ , |2y^i) and by

A^+i, the intersection of L^ and the space of entire functions.

THEOREM 8. —
a) U^ u(z) = fu(S) P^o(^z) is the orthogonal projec-

tion of L^i onto A^.
b) Assume f is a smooth (0,l)-form satisfying

/!/(?)! R^?, 2) <-
/or ^iw^ /fcc^f z . If 9u = f has a solution in L^, ^ minimal
one v is given by v(z) == ^/(?) A K^o(?, z).

/^oo/: - a) In fact A^+^ is nothing but the space of polyno-
mials of degree at most m — n. Since ?—^ (1 + ?, zy""" belongs
to L^+^, n^M is defined and is in A^+^ when u is in L^.

By the appearent anti-symmetry property of P^Q —————T~m^T
an application of the Fubini Theorem shows that Ti^ is self-adjoint.
Hence u — n^ u is orthogonal to A^+^ .

b) Suppose u is a solution in L;̂  . By Prop. b)

K = / ^ A K ^ + / ^ P ^ = / / A K ^ + / ^ P ^ ,

and hence from a) we get that v == f / A K ^ o is the minimal
solution.

As was mentioned above, when /G C1 x , or even /E L^ , one
gets essentially the same estimates as in [10], with appropriate choices
of m. We state two theorems to this effect, the first of which is
formulated in terms of the growth-function

^(t)=^2n [ |/(?)|dX(?),
"I^Kr

which is useful in many applications.

THEOREM 9. - Suppose f^L^(p,q + 1), '9/= 0, and for
some a> — 2n E^(t) < (1 + t^ . Then there exists a solution u,
u E ̂ (p^). to 9u =f satisfying

EJrXA^Jl+O^d +log(l +0).
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THEOREM 9'. - Suppose f is in C^ ̂ , '9f=0, and for
some a>-2n |/(z)| <(1 +12 ! ) " . Then there exists a solution
u E ̂ (P.I) to 9U = f satisfying

1"001<A^(1 + \z\)a+l(l +log(l + |z|).

The proofs are nothing but straight-forward estimates, and we
omit them. Given a > - 2n, one only has to choose m such that
m>0t+n>m+ mm(n - 1, m) - n.

The logarithm actually occurs only when a is an integer, and
the forms 9z\ log(l + |z|2) show that the logarithm cannot be
dispensed with. When n > 1 and / is a (0,l)-form a small addi-
tional argument shows that Theorem 9' holds for all a G R .

As was pointed out in section 2, if y(^) is convex in C" then
2Re ( 9 y , z - ?> < ^(z) - ̂ ). With the same proof as in Pro-
position 6 we obtain

PROPOSITION 10. -If fec^^, is 'b-closedand

C V 1^1 ^^ \^W
J S IA?)1 ,,J-^-, <°°

p<n P • \\ ~ Z\ •

for every fixed z , then a solution u to 3u = f, satisfying

I«(Z)K^) f v iA?)i^»i2^ip
J p<n P' I^-ZI2"-2"-'

is given by

u(z) = f e<2^^-?> V > 9 '? ~ z 1 2 A (2y^^)p A (Ya I {• - z l^y-'-p
J /"n ?! \ ^ - Z \ 2 n - l P '

In the^ special case when ^ = |?|2/2 the solution is minimal
in L2^-'21 dX), as one can see by inspection of the corresponding
projection operator. However, in general these estimates are quite
awkward, and the problem to obtain good estimates in the case of
growth of infinite order remains.
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