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CONFORMAL CURVATURE
FOR THE NORMAL BUNDLE

OF A CONFORMAL FOLIATION

by Angel MONTESINOS

1. Introduction.

In a previous paper [4], the present author proved the following
theorem: if V is a conformal foliation of codimension q, then
Pont^C^R) = 0 for k > q , being v the normal bundle of V.
This result generalizes Pastemack's theorem [6] for riemannian foli-
ations, and was previously proved for q > 3 by S. Nishikawa and
H.Sato[5].

Our technique suggested the existence of a conformal curvature
tensor for the normal bundle. We shall define it and derive some pro-
perties generalizing the usual ones. For instance, the normal bundle
is conformally flat if and only if its conformal curvature vanishes.
We also prove that the Pontrjagin ring of the normal bundle can be
expressed in terms of the conformal curvature. This provides an
alternative proof for the quoted theorem.

2. Double forms.

We will use the language of double forms, following a line that
generalizes the one introduced by G. de Rham [7], A. Gray [2] and
R.S.Kulkarni[3].

Let V be a distribution of codimension q on the riemannian
manifold (M,g) (all objects are C°°), and 9C its orthogonal
complement. We will always denote by A, B , . . . (resp. X, Y, Z, W, . . . )
the vector fields belonging to V (resp. 96) . Unrestricted vector
fields are written Q , S, T , . . .
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Let <S = ® Of'1 be the exterior associative algebra of (TM ,9€)-
double forms, that is, a(E(D1''1 is an r-form on M with values in
horizontal (namely, they annihilate vectors of V) s-foims If
ae®^ wd ^G®^, then a^ = (- l/"^ p A a. We shall
put a"' = a A ... A a (m times). The projectors that correspond
to the decomposition TM = V ® 9€ are denoted by v , h. Let V
be a metric linear connection on 96, i.e.

Q(^(X,Y)) = ̂ (VQX, Y) + g(X, VQY) ,

and {<?„} (u = 1 , . .. ,q) a local frame of orthonormal vector
fields of 96.

2.1. DEFINITIONS. - Let ^e®*'8

i) covariant differential D .-(D*-8 —>• (D^1-' :
D"(Ql , • . • ,Q. .^ ; )=Z(- l ) ( + l VQ^(Q, , . . . ,Q„ . . . ,Q^; )

+Z(- l ) '+ /c.( [Q, ,Q,] ,Q„. . . ,Q„, . ,Q^. , ,Q^^;

ii) contraction c : <3)'c'st —> (D* -l')^ -1

^(QI , . . . ,Q^_I ; X i , . . . , X e _ i )

=^(^,Qi , . . . , Q ^ _ i ; ^ , X i , . . . , X g . i )
(we sum over repeated indices);

iu)if aGO), then w^a=(^( ;^, ) A a( ;e^, ) .
Let R be the curvature of V , and put

K ( Q , S ; X , Y ) = ^ ( R ( Q , S ) X , Y ) .
Then, the Bianchi identity reads DK = 0. Also, if

N ( Q , S ; X ) = ^ ( V Q A S - V S A Q - / » [ Q , S ] , X )
stands for the torsion of 7 , we have Dg = N, where gG®1-1 is
defined by g(Q; X) = g(Q, X) = g(h Q, X).

2.2. PROPOSITION . - // u e® , then D2 co = K 7" a?.

^ Proof. - Since Dl®*'0^, we have for a,e®*-0:
D ^ = O = K ^ ( < } . Assume that the formula holds in CD*-6 and
let c^e®*-6, a (SOD0-1. Then
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D2 (co A a) = D2 co A a + c^ A D2 a = (K X co) A a + co A D2 a ,

because D(o) A a) = Da? A a + (- 1)^ a? A Da for every a E 6D.
Now (Da) (Q ; ) = V Q O , whence

(D^HQ^; ) = R ( Q , S ) a = K - A a ,
and our claim follows by substitution.

For each integer m > 0, we define the operators
^m ̂ m : (D ""> (D as follows. If m == 0, they are the identity.
If a ^ c y ' 5 and m>r, then h^a=v^a=0. If 0 < w < r ,
then:
^a(Qi,...,Q,; )= ^ a(Q^,...,i;Q, ,i;Q, ,. . . ,Q,; )

i«i<-..<^<r

^a(Qi,...,Q,; )= H a(Qi,...,/!Q, ,...,/iQ, , . . . ,Q,; ).
i<i i<-.-<^<r !

By induction it is straightforward to prove

2.3. PROPOSITION.
j) ̂ n = ̂ ^ . ^m^ = ̂ m . ^ A^ = h^ ;

ii)if coeO)^^, r^n (h + t;) a? = k^ (where h=h^v=v^),

and c^= ^ ^m^-m^;
m^O

i i i )^ (aA^)= ^ i;,aA^_^ , ̂  (a A <3) = ^ h,a^h^_^;
r^O rsQ

iv) t̂  = w^ + (m 4- 1)^^ , hh^ = mA^, + (m + l)/^ ;

mo^ generally, ^ - — — S S^1, A, = -L ̂  s^1, w/z^
w • /=! W • ,= i

S^ ar^ rt^ Stirling numbers of the first kind [1 ], and v1 == v . . . v ,
^ = A ... h (i times);

v)i^=0 ^ w > l ; ci^=i^c, ch^ = A ^ c + A ^ . , c ;

vi) A^ (^J A c^ a>) = ̂ J A c^A^ <^ .

3. The conformal operator.

The main purpose of this section is to generalize the conformal
map defined by Kulkarni [3].
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In the following, if cjec^1'^1, we put b = q - k - 6.

3.1. LEMMA.

i) c ' ( g A co) = 5- A c^o? + r(b + r - S)^"1 co + rc'1-1^ ;

ii) y c(g A co) = 0, ^z i^o? = 0 /or s > 2 - b .

Proof. — i) By direct computation one gets
c(g A u) = g A ccj + (6 - 2) cj + uco .

The general result follows by induction.
ii) Since c(g A co) = 0, we have c(g A i^cj) = 0 for s > 0.

On the other hand, it is clear that (/i^o? = 0 if r + 5 > fe + 1 .
Assume that c'v, GJ = 0 for r -h 5 > r < k + 1, and let r + 5 = t .
Then i) gives:

0 ̂ ^(^A^)

=g A c^1 i^o) + ( r + 1)(6 + r - 2)0^0; + (r 4- Oc^iw cj

= (r + \)(b + ^ - 2)c r^;,a?,

by 2.3.iv). Thus, by induction we have c^o^O if b+r-\-s—2>Q\
our claim follows by taking r = 0 .

By induction one can also prove

3.2. LEMMA. - c(gr+l A c'4-1 cj) = ^ r + l A c^2 o;

+ (r + 1) (b + r)^ A c^ a; + (r + 1)^ A c^11:0;.

3.3. THEOREM. - Let c^efi)^1^1 m^ & = ^ - y f c - e > o .
Then, there is a unique element dev cj € fi)^'8 satisfying

c(co — ^ A dev a;) = 0 .
It is given by

k ( - l y ^ ^ h - l ) \ ( r + s ) \
devo;= V ——-——-—————————^ ^ ,,r+i

r,^o ( & + r + 5 ) ! ( r + l ) ! r ! ^ A c ^a;-

Proo/. — The uniqueness proceeds from 3.1.ii). It is enough to
prove that c(g A dev co) = co;. By 3.2 and the relation

^=^ + (5 + l)i^
(2.3.iv), we have:
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cteAdev<.)= f (-1)-(Z>-1)! (.+.)!
^ ( & + r + ^ ! ( / - + l ) ! r ! ^ A c ^

+ (/•+ IXA+^^AC^1!;^ +5(r+l)^ ' •AC'• + l l^

+ ( 5 + l ) ( r + l ) ^ A C r + l l ^ ^ c o )

^ (-1) ' '^(Z>-1)!(/-+^)!
(rT=o (&+/ •+5- l ) ! r ! r !

_ ^ .fc ( - l / ^ ^ - D K r + ^ - l ) !
r^i /?o ( b + r + s - l ) \ r \ ( r - l ) \

- <- <- ( - l /^^-Di^+.- l ) !^ „
^o1. (6+r+,-l)!r!r!——J^^"^^

= COJ .

The conformal operator "con" is defined by
Con u=G;—^Adeva).

3.4. PROPOSITION. - Let a? G ff^ +1 • f i +l , and 6 = ^ - A : - £ = 1 .
rA^n A^ ^.^ con co = 0 .

Proo/. - Is a direct consequence of the corresponding result of
Kulkami [3], having in mind the formula 3.3 and 2.3.vi).

4. Conformal change of the metric.

We emphasize that in the previous process, the riemannian metric
on M has been only used to define the normal bundle of V as a
subbundle of TM. All our results on double forms depend only on
the riemannian metric on 9€, namely on g E ( 0 1 ' 1 .

Classically, the operator con, acting upon curvatures, associates
a tensor field to each class of conformally equivalent riemannian
connections. Thus, in order to generalize this concept, we need to
define the corresponding classes of connections on 36 .

4.1. DEFINITION. - Let g be a riemannian metric on 9€, and
V a linear connection on 9€. We say that V is g-riemannian if it
is g-metric and /^N == ° •
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Let g be a riemannian metric on M such that V 1 96. If
V is its Levi-Civita connection on TM and we put V Q X = ^ V p X ,
then V is ^-riemannian. However, not all the riemannian connections
on 96 come in this way from connections on TM. Also, in general
there are many ^-riemannian connections on 96.

Nevertheless, if V is a ^-riemannian connection on 96 and
'g = e20 g , where a is a function on M, there is a unique ?-
riemannian connection ^ on 96 whose torsion is given by
N = ^(N - g A vda), with da G 6D1'0 . We have

^QX = VQX + Q(or)X + X(a)/zQ -^ (Q,X)Z , (1)

where Z = g ^ l ( d a h , ). We call V the connection conformally
associated to V by the conformal transformation ^= e20 g . This
defines the equivalence classes on which we want to define the
conformal curvature.

Let KG® 2 ' 2 be the curvature of (1). After calculation we get

K = e^^K- NAdcrA + gA(Ddah + -j- ^(Z, Z)g - hda Adah) I ,

(2)
where dorAGCD0 '1 and AdorGCD1 '0 . Since con is a linear map,
we have for q > 3 : con K = ^2a con(K — N A da/z).

In fact, note that ^r A ^r = ̂  A cf , whence con = con.
Also, con(g A 17) = 0.

We define the tensor C by ^(C(Q, S)X,Y)= con K(Q,S ;X,Y).
We recall that a conformal foliation can be characterized in the

following manner [4]. Let V be a foliation on M. It is conformal
iff there exist some riemannian metric g on M (it defines 96 = V1)
and vertical 1-form X such that (L^g) (X, X) = g(X, X) X(A).

Then, one can define a ^-riemannian connection V on 96 by

V Q X = A V Q X - A V x i ; Q + i -X(Q)X, (3)

where V is the Levi-Civita connection of g on TM. That is the

Bott connection except the term — X ( Q ) X . Some properties
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derived in [4] for (3) are written in the language of double forms as
follows:

Dg = N = — X A g (4)

1 .^K = —— vd\Ag (5)

i^K = 0

K ( X , Y ; Z , W ) - K ( Z , W ; X , Y ) = - i - ( d X A ^ ) ( X , Y ; Z , W ) , (6)

where d\ G CD1'1 . The last formula derives from

cyclK(Q,S;AT, ) == ^ cycldX(Q, S)^(AT, ) .

The following theorem shows that the existence of a conformally
invariant conformal curvature for the normal bundle of a distribution
is an exclusive property of conformal foliations.

4.2. THEOREM. - Let q > 3. // C is a conformal invariant,
then V is a conformal foliation. Conversely, if (V,g,\) is a
conformal foliation, 9€ admits a unique g-riemannian connection
such that C is a conformal invariant.

Proof. - C is a conformal invariant iff con(NAdaA) = 0 for
every function or on M. By using the formula 3.3 we have then:

1
N A dor A = ———gA(c^Adah - N(Z, ; )). (7)

Since cN(Z, ; ) = 0 because / ^ N = = 0 , left contraction of

(7) with Z gives N(Z , ; ) A dah = ——— N(Z, ; ) A dah .
q - 1

Thus N(Z, ; ) A r f o r A = 0 and N(Z, ; ) must be a multiple
of dah. Therefore there must be some 1-form X such that
N(Z, ; ) = ^ \,\dah, and X is vertical because A^N = 0.

6y substitution in (7) we get N = —— g A fcN - -1- X ) .
q — 1 ^ 2 /

q 1
Hence, cN = — X and N = - X A g . Now
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N(A, X ; Y) = g^^X - [A, X], Y) = ^ X(A) ̂ (X, Y) .

Therefore V^X = A[A, X] 4- ^- X(A)X, and

(L^ ) (X ,Y)=^ (X ,Y)X(A) .
Also

0 = VQ/^S - Vg/zQ - A[Q, S] - ̂  X(Q) AS + ̂  X(S) AQ=/i[i;Q,i;S],

because /^N = 0. Hence V is integrable, and therefore a conformal
foliation.

Conversely, if (V, g , X) is a conformal foliation, the connection
(3) solves the problem. The uniqueness is obvious because V must

be ^-riemannian and with torsion N = — X A g .

In the next, (V, g , X) will be a conformal foliation.
For the study of the case q = 3, we shall need the element

coUoK = D d e v K .

4.3. THEOREM. - If q > 3 and con K = 0, then h^ con^K = 0.
// q = 3, then h^ con^K is a conformal invariant.

Proof. — If q > 3 we have

D c o n K = - ^ X A ^ A d e v K + ^ A con^IC .

If c o n K = 0 , then g A (conoK + ^ X A dev K:) = 0 . Since
coUoK GO)2'1 , b = q - 1 , 2 - b = 3 - q < 0 ; thus, 3.1.ii) says

that couo K + ^ X A dev K = 0. Therefore h^ con^ K = 0 because
h\ = 0.

Let q > 3 . If g = e20g , we have: dev K = dev K + 77

where T? = -^\Adah + Ddah + -j- g ( Z , Z ) g - h d a / ^ d a h .

If / iGQ)1 '1 , we have

Dp. = DJLI - t e A / x ) ( ; Z , ) - u r f a A j n + (e^i) AdaA ,

where e^i(Q, S) = jn(Q ; AS) - AI(S ; AQ). Hence
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cohoK = con^K + DT? - ( ^ A d e v K ) ( ; Z , ) - ( ^ A T ? ) ( ; Z , )

— urfa A dev K — vdo A 17 + <S dev K A daA + (° 17 A rfaA.
But

Dr? = K( ; Z , ) + (g A T?) ( ; Z , ) + -j- X A hda A da/z

- -^ g(Z, Z) X A g + ^ dX A dah - d(hdo) A dah - ^- X A Ddah ,

677 = d(hda),

and (3 dev K = — — rfX, as it is easily derived from (6). Hence

^ — 1COHQ K = con^ K + con K( ; Z, ) + — X A hda A daA

— -. g(Z ,Z)\ A g — — X A Ddah — vda A dev K — udor A 17.

Therefore h^ COHQ K = /^ cono K + /^ con K( ; Z , ).
If 4 = 3 , h^ con K = 0 by 3.4. Then h^ con^ K = A^ cono K.

5. Conformally flat normal bundle.

The purpose of this section is to generalize the Weyl-Schouten
theorem.

5.1. DEFINITION. — Let (V,g,\) be a conformal foliation and
V the connection defined in (3). We say that 9€ is con formally
flat if for each m € M there is a neighborhood U of m and afunc-i^ f>^
tion a on U such that K = 0, "where K is the curvature corres-
ponding to "g == e10 g.

5.2. THEOREM. — Let (V,g,\) be a conformal foliation. If
q < 2, then 9€ is conformally flat. For q = 3, 9€ is conformally
flat iff A 2 couo K = 0. For q > 3, 9€ is conformally flat iff
con K = 0 .

Proof. — A conformal foliation is locally conformally riemannian,
that is, we can assume that X = 0 in a neighborhood of m [4]. Then,
one can choose local coordinates such that V is the vertical foliation
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of a riemannian submersion TT : U —> B. We consider three connec-
tions: the Levi-Civita connection V* on B; the Levi-Civita connec-
tion V on U, and the connection on 9€: v X = A V ^ X - V uQ.

If X^ is a vector field on B, we denote by X its (horizontal)
lift to U. Then, we have ^(X^, YJ = g(X, Y). As it is well
known, A V ^ Y and A [ X , Y ] are the lifts of V^Y^ and [X,,,YJ,
respectively; if A is vertical, then A [ A , X ] = 0 whenever X is
an horizontal lift of some vector field on B .

Thus, let X , Y , Z , W be the lifts of X^ , Y^ , Z^ , W^ . Then
K ( X , Y ; Z , W ) = ^ ( R ( X , Y ) Z , W ) , and

^(Vx Vy Z, W) = ^ (AV^AVy Z, W) = ̂ (V^ V^Z^ , W^)

^(v(x.Y]Z,W)=5 r(V^,Y]Z,W)+^(V^x.YlZ,W)

"^^.YjZ^WJ+^CV^.YiZ-V^tX.Yl.W).
The last term is zero because

^(x.YjZ- V^ [X,Y] )=A[ i ; [X ,Y] ,Z ]=0.

Hence we have proved K(X, Y; Z , W) = K*(X^ , Y^ ; Z^ , WJ.
If ^7 > 3 , we have

con K(X, Y; Z, W) = con K*(X^ , Y^ ; Z^ , W^).

Also dev K(X ; Y) = dev K*(X^ ; Y^), and t; dev K = 0. because
X = 0. Therefore co^ K(X, Y; Z) = con^ K* (X^ , Y^ ; Z^).

Thus, the conditions of the theorem imply that B is conformally
flat. In other words, there is some function a on B (reduce B if
necessary) such that e20 g^ gives a Hat connection on B. Since
then the pair e20g and e^g^ also^defines a riemannian submersion,
we conclude that h^ K = 0, being K the curvature of the connection
on ge|U defined by g ' = e20 g . Now,

(L^g) (X, X) = e20 (L^g) (X, X) = 0 ;

hence ^ = 0, i;K = 0 and K == 0 on U.
Since the imposed conditions are obviously necessary, the theorem

is proved.
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6. Pontrjagin classes.

For q > 3 we can express the Pontrjagin classes of 3€ in terms
of the conformal curvature.

6.1. LEMMA. — v con K = 0.

Proof. - We have

eonK=K-^,AcK+^_^_^^-^1^^^,

and our claim follows directly having in mind (5) and 2.3.v).

6.2. LEMMA. - con K7 g = 0.

Proof. — This formula holds in B (see 5.2) as it is well known; in
fact, in B it becomes the first Bianchi identity. Since con K = h^ con K
by 6.1., it also holds in M .

Let ^ denote the module of differential forms on M with values
in horizontal covariant tensor fields. We define the product ® in §?
as follows: if a, j3 are forms on M and a, b are horizontal covariant
tensor fields, then a ® a and j3 ® b are in ^. Thus, we put
(a ® a) ® (j3 ® b) = (a A j3) ® (fl ® b).

Let a? G <D^1 , 0 G CD^1 . Then

cj A 0 = oj®0 + (-l)^^®^.

If ^ , 0 e g ? , we put ^ • 0 = c < ; ( ; , ^ ) ® 0 ( ;^, ). And
if a) is a form with values in 2-covariant horizontal tensor fields,
we put tr c^ = co( ; e^ , e^). Then, as it is well known, the Pontrjagin
ring of 9€ is generated by the elements tr(K* . . . • K).

6.3. THEOREM. -

tr(K- .. . -K) == tr(conK- . . . -con K) + 2~ ( 2 r"• l )dX A .. . A ^ X

(2r copies in each term). Hence t r (K" . . . • K) = tr(con K* .. . • con K)
in the de Rham cohomology.
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Proof. — We have

con K = K - g A dev K = K - g ® dev K - dev K ® g .

Also g - g = 0, dev K - dev K = 0, and

g • dev K == - dev K - g = - ̂  d\ C(D210 .
Then,
K- .. . -K == conK- .. . -conK 4- 2 - 2 r d X A . . . ,\d\

® (g ® dev K — dev K ® g) 4- terms of the form

d\ A . . . A d\ ® (g ® con K* . . . • con K" dev K

+ con K' . . . • con K* dev K ® g).
In fact,

K • K = (con K + g ® dev K + dev K ® g)
- (con K + g ® dev K + dev K ® g)

== con K' con K + con K- dev K ® g + g ® con K- dev K

+ - d\ ® ̂  ® dev K - ̂ - dX ® dev K ® ^ ,

because con K • g = 0 by 6.2, and con K- dev K = dev K- con K.
In the same way one gets the general formula by induction.

Therefore
tr(K- . . . -K) = tr(conK- .. . •conK) + 2"(2r- l )dX A . . . A ^ X ,

because tr(g ® dev K) = g • dev K , and

ir(g ®con K * . . . •con K" devK) = g • con K- . . . •con K- dev K = 0 .

In other words, one can substitute the curvature by the conformal
curvature tensor in the computation of Font (9C; R) .

6.4. THEOREM. — Let ( V , ^ , X ) be a conformal foliation of
codimension q. Then Pont^O^C; R) = 0 for k > q .

Proof. — If q = 1, the result follows from Bott's theorem.
If q > 3, it is a direct consequence of 6.3 and 6.1. If q = 2 , it
is enough to prove that in cohomology t r ( K * K ) = 0 . Since
tr(K • K) G <jD4'0 , we have by 2.3.ii):



CONFORMAL CURVATURE 273

t r (K-K)= ^ h^v^tr(K'K).
m^O

Now, h^ = 0 for m > 2 because q = 2. Hence

tr(K • K) = 1:4 tr(K • K) + hv^ tr(K • K) + /^ ̂ (K - K)

= h^ir(vK-vK) = ̂  h^r(vd\ ,\g-vd\ ^ g) = ^-h^(vd\ AudX),

where udXGQ) 2 ' 0 . But

I I 4 1-d\^d\=- ^ ^^_^(dX A d X ) = - h^(vd\ Avd\) .
L ^ m=Q 2

Hence tr(K • K) = \. d(\ A dX) ,

and the theorem is proved.

6.5. THEOREM. - If (V,g,\) is a con formally flat conformal
foliation, then PontO^; R) = 1.
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