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THE REPRESENTATIONS OF LINEAR FUNCT10NALS
BY MEASURES ON SETS OF EXTREME POINTS

by Errett BISHOP and Karel de LEEUW (1)

1. _ INTRODUCTION

Let X be a compact Hausdorff space. We shall denote by
C^(X) the real Banach space of continuous real valued func-
tions on X, and by Cc(X) the complex Banach space of conti-
nuous complex valued functions on X, supplied with norms
denoted by ||.|| and defined by

m=^p\f(x)\.
Suppose that B is some linear subspace of either Cr(X) or
Cc(X) that distinguishes points of X and that contains the
constant functions. We aye concerned in this paper with the
problem of representing the linear functionals in the dual
space B* of B by measures on X. It is well known that such
representations are always possible; if B is a linear subspace
of C^(X), by the Hahn-Banach theorem, any L in B* extends
to a continuous linear functional of Cp(X) and thus by the
Riesz representation theorem, there will be some signed Baire
measure (x on X so that

(1.1) L{f)=ffd^ all/* in B.

If B is a linear subspace of Cc(X), a similar argument shows

(1) The authors wish to thank the Sloan Foundation and the United States Air
Force Office of Scientific Research, respectively, for the support of this research.



306 ERRETT BISHOP ET KAREL DE LEEUW

that each L in B* has a representation of the form (1. 1) for
(JL a complex valued Baire measure.

There are cases in which it is possible to find a subset Y
of X which is such that each L in B* has a representation of
the form (1. 1) for some (A concentrated on Y. In this paper
we introduce such a subset, the Choquet boundary of B.

The Choquet boundary of B is denoted by M(B) and consists
of all points a? in X having the following property: there is
a unique positive Baire measure pi that represents, in the sense
of (1. 1), the linear functional L.p defined by

(1.2) W/-)=^), a l l /mB.
This unique (A will of course be the unit point mass at x. In
the case that B is a uniformly closed subalgebra of Cc(X) and
X is metrizable, M(B) is the minimal boundary of [3] and [4].

We show in Section 4 that the extreme points of the subset
t L : L e B * , L(1)==||L||==1|

of B" are those L,, defined by (1. 2) for x in M(B).
From this and the Krein-Milman theorem it follows easily

that any L in B* has a representation of the form (1. 1) with
(x a measure concentrated on the closure of M(B).

The question that concerns us is whether it is possible to
choose the measure (A so that it is concentrated on M(B) itself.
If X is metrizable, an application of the theorem of Choquet
in [7] shows that this is indeed possible. We proceed in the
reverse direction, showing directly that the measure can be
concentrated on M(B); this leads to a relatively simple proof
of the Choquet theorem.

In the case that X is not metrizable the situation is much
more complicated. We give examples in the concluding sec-
tion of the paper to show that M(B) need not even be a Borel
set. We prove nevertheless that each L in B* has a represen-
tation of the form (1. 1) for a measure (JL that is « concentrated
on M(B) » in following sense : it is a measure on the o--ring
generated by M(B) and the Baire sets of X, and is zero on
each set in this a-ring which is disjoint from M(B). Fur-
thermore if L(l) === ||L||, the measure (JL can be chosen to be
non-negative. This leads to an extension of the theorem of
Choquet to convex sets that are not metrizable.



THE REPRESENTATIONS OF LINEAR FUNCTIONALS 307

The existence of measures concentrated on the Choquet
boundary is obtained roughly as follows. An ordering relation
on the class of non-negative Baire measures on X is intro-
duced. We say that (A is a B-cover of IQ if

ffd^=ffd^ aliyinB,
and

(1. 3) ff2 dr^ ̂ ff2 rfjji, all fin B.

We say that (JL is a proper B-cover of r\ if (A is a B-cover of Y) and
furthermore the inequality in (1. 3) is strict for some f in B.
Y) is called B-maximal if it has no proper B-cover. A simple
argument using Zorn's Lemma and weak* compactness assures
for any given non-negative Baire measure Y], the existence
of a B-maximal (X that is a B-cover for Y). The crucial result
now is theorem 5. 3 which shows that ;x(S) == 0 if (A is B-maximal
and S is disjoint from M(B). From this it follows simply
that any B-maximal (JL can be extended to a measure « concen-
trated on M(B) » in the sense described above. Since each
linear functional in B* has a representation of the form (1. 1)
for some Baire measure pi on X, and such a (JL is a linear
combination of non-negative Baire measures, and each non-
negative Baire measure has a B-maximal B-cover that is
concentrated on M(B), it follows that any linear functional
in B* has a representation of form (1. 1) for some a concentrated
on M(B).

Section 6 is devoted to uniformly closed subalgebras of
C,(X). We give somewhat simpler proofs of some of the
results of [3] and [4] and remove the hypothesis of metriza-
bility of X imposed there. We show that if A is a uniformly
closed subalgebra of Cc(X) that distinguishes points of X
and contains the constant functions, the points x of M(A)
can be characterized by either of the following conditions :

I. For each neighborhood U of x there is a function f in

A with 11/11^1, f(x) > 3 and \f(y)\ < 1 for all y not in U.

II. If S is a closed G§ containing a?, then there is some f
in A with |/^)| = [I/I] and {y : \f{y)\ = \\f\\} c S.

A subset Y of X is said to be a boundary for A if for each f
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in A there is some y in Y with \f{y)\ = \\f\\. It is a simple
consequence of the Krein-Milman theorem that the Choquet
boundary of A is a boundary for A. Condition II shows
that in addition, any Baire subset of X that is a boundary
for A must contain M(A). Furthermore if X has the property
that each point is a G§ (in particular if X is metrizable), condi-
tion II shows that for each point x of M(A) there is some f
in A that « peaks » at x, so that M(A) is the smallest boundary
for A, that is, the minimal boundary (for X metrizable, this
was established in [3] and [4]). If not every point of X is
a G$, there may be no smallest boundary, even if A is all
of C,(X).

Since each L in A* has a representation of the form (1. 1)
for (x a measure concentrated on M(A), it is reasonable to inquire
whether for any set Y that is a boundary for A, a measure can
be found that represents L and is concentrated on Y. We
show by example in Section 7 that this cannot be done for
linear subspaces of Cc(X) that are not subalgebras. Never-
theless we are able to show that for subalgebras such measures
can always be found. The existence of these measures was
suggested to us by Irving Glicksberg, who studied essentially
the same problem for the case A = Cc(X) in [8].

In all that follows, by « subspace of C^(X) » (or « of Cc(X) »)
we shall mean a linear subspace containing the constant func-
tions, but not necessarily closed or distinguishing points of X.
For applications it is useful to have results concerning not
necessarily closed linear subspaces; furthermore it is necessary
for technical reasons for us to consider linear subspaces that
do not distinguish points of X. By « measure » in the follo-
wing, we shall always mean finite measure.

II. — THE BASIC DEFINITIONS

In the following X is a fixed compact Hausdorff space. We
shall denote by H the class of all non-negative Baire measures
on X. This class H will be identified in the usual manner
with a subset of the dual space of C,.(X). By the weak*
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topology of H we shall mean the restriction to H of the
weak* topology on the dual space of Cr(X). The basic fact
concerning the weak* topology that we shall need is that boun-
ded closed subsets of H are weak* compact.

The following allows us to reduce questions concerning
linear functionals on subspaces of Cp(X) or Cc(X) to questions
about the Baire measures in H.

LEMMA 2. 1. — Let B be a subspace of Cr(X) or Cc(X). Then
each L in B* has a representation of the form

(2.1) L{f)=ffd^ all/* in B;

where (A is a Baire measure which is of the form
(2. 2) (^i—^2, ^ H in H,

ifB is a subspace o/*C,.(X), and of the form
P-i — P-2 + ^8 — ^4, (^i, • • • , [̂ 4 in H,

if B is a subspace of Cc(X). Furthermore the y. in (2. 1) can
be chosen to be in H if and only if L(l) = (IL||.

PROOF. — We shall treat the case of B a subspace of C^(X);
the proof for C<;(X) is completely analogous. By the Hahn-
Banach theorem, L can be extended to all of Cp(X) with
preservation of norm; i.e. there is a linear functional L' on
C,(X) with

L\f) = L(f), a l iy inB,
and IJL ' I ) == ||L||. By the Riesz representation theorem, there
is a signed Baire measure pi on X so that

L\f)=ffd^ all/inC^X).

Each signed Baire measure on X is of the form (2. 2). If
L(l) = i|L||, then

IHj = iii/ii = HL|| = L(I) == a(X),
so (A must be non-negative and thus in H. Conversely if (JL
is in H, the L defined by (2. 1) clearly satisfies L(l) == ||L[|.

If B is a subspace of Cr(X) or Cp(X), and x is a point of X,
we define Ha;(B) to be the subset of H consisting of all {A with

(2, 3) ffdy. = f{x), all fin B.



310 ERBETT BISHOP ET KAREL DE LEEUW

Ha;(B) is always non-empty since it must contain at least
the unit point mass at x. Since subspaces are assumed to
contain the constant functions, by (2. 3) each (JL in H.p(B)
satisfies (^(X) == 1.

If S is any subset of X and B is any collection of functions
on X, we define IB(S) to be the subset of X consisting of those
points that cannot be distinguished from points of S by the
functions in B$ i.e. ie{S) is

\y : f{y) = f{x) for some x e Sand all /eBj.

If (JL is any Baire measure in H, we denote by (1 its regular
Borel extension. This is the unique regular Borel measure
on X that agrees with pi on the Baire sets of X. It is defined by

PL(S) == Inf (A(U),

where U runs over all open Baire sets that contain S.
If B is a subspace of either Cr(X) or Cc(X), the Choquet

boundary of B, denoted by M(B), is defined to consist of those
points x in X which are such that any (A. in H.c(B) satisfies
(l(iB(^)) ==1. If B contains sufficiently many functions to
distinguish a point x from all other points of X, i^(x) = \x\^
so that x will be in the Choquet boundary of B if and only
if the unit point mass at x is the only pi in H.y(B).

If B is a subspace of Cc(X), we shall denote by Br the subspace
of Cr(X) consisting of real parts of the functions in B. The
following is immediate.

LEMMA 2. 2. — M(By.) == M(B), and for each x in X,
H,(B,) = H,(B).

We next introduce some ordering relations on H which are
basic to the constructions that follow.

If B is a subspace of Cr(X) and (JL and Y] are in H, we shall
say that [x is a B-coper of Y] if

ffdf\=ffd^ all/* in B,
uiid

(2. 4) ff2 dr^ ̂ ff2 d^ all f in B.

We shall say that (A is a proper B'cover of Y) if (x is a B-cover of Y)
and furthermore the inequality (2. 4) is strict for some f in B.
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A measure Y) will be called B-maximal if it has no proper
B-cover.

Much of the work done in the remainder of the paper goes
into demonstrating that any B-maximal measure must be
concentrated on the Choquet boundary of B.

The following two lemmas will be applied later.

LEMMA 2. 3. — Let x be a point of X and Y] in H be the unit
point mass at x. Let B be a subspace of C^(X). Then any
pi in H.p(B) is a B-cover of Y).

PROOF. — By the Schwarz inequality, for each f in B,

ff2 ̂  = ff2 d^fl2 ̂  >\ffd^\ = {f(x))2 = ff^ rfy).

Furthermore
ffd^=f{x)=ffd^

for all f in B.

LEMMA 2. 4. — Let B be a subspace of C,.(X). Then each
Y) in H has a B-cover that is B-maximal.

PROOF. — Consider subsets ^pi^ aej of H indexed by totally
ordered sets J, where the ordering is such that pip is a B-cover
of (Xa if a < p. By Zorn's lemma there is a maximal such
subset |(Xaj aej that contains Y). Since B contains the
constant functions, each pi^ is in

(2.5) | v :veH, V(X)==Y)(X)|.
(2. 5) is compact in the weak* topology and thus contains
a weak* cluster point pi for the net |piaJ aej. It is clear that
(A is a B-cover of Y) and that pi is B-maximal.

III. — REPRESENTATION OF LINEAR FUNCTIONALS
IN THE SEPARABLE CASE.

The main result in this section is Theorem 3. 2. Using it
we establish in Theorem 3. 4 the possibility of representing
linear functionals on B by measures on the Choquet boundary
of B in the case that B is separable, that is, has a countable
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dense subset. Theorem 3. 2 will also be applied later in the
non-separable case.

We shall need the following well known lemma.

LEMMA 3. 1. — Let S be a closed subset of X. Then for
each positive real number c, the subset
| p.: (JL e H, (^(X) = p.(T) = c, for some finite T c S|

of H is dense in
t a : ( x e H , ^(X) == fl(S) = c\

in the weak* topology.
We can now prove

THEOREM 3. 2. — Let B be a subspace of C^(X), and ^ in H
be a B-maximal measure. Let S be a closed subset of X which
has the following property: there is a separable subspace D
of B so that for each x in S there is some o- in H;p(B) with
^(x)} < 1. Then p.(S) == 0.

The statement of this theorem is necessarily complicated
as it must be applied later to the situation where B is not
separable. In that case D will necessarily be a proper subspace
of B and will not distinguish points of X. In the application
in this section however D = B, and in this case the hypo-
thesis on S in the theorem becomes simply that it be disjoint
from the Choquet boundary of B.

PROOF OF THEOREM 3. 2. — Let |/*n: n = 1, 2, ... j be a
countable subset of D that is dense in D. For each pair
of positive integers n and m define L^n to be the subset of X
consisting of all x for which there is some (A in H.p(B) with.

(3.1) J'/^^+O'nW.

L^ is closed. For if \Xy,\ is a net of points in L^ converging
to a point x in X, and if for each a a measure (Xa is chosen in
H^(B) so that

frnd^^+(fn{x^2,

by the weak* compactness of
| ( A : f . e H , (X(X)==1S
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the net i (JLaj will have a weak* cluster point (A in H.p(B), and (A
will satisfy (3. 1).

We will show next that
(3.2) ScjL^.

Let a; be a point of X that is in none of the L^. Let o- be in
H.c(B). By the definition of the L^»,

(3.3) Snd^{Ux)^=\ff^\.

On the other hand, by the Schwa rz inequality,

(3. 4) ff, <fo == ffi rfajp <fo ̂ ]J7, d^,

with equality if and only if f^ is constant a.e. with respect
to o". Comparing (3.3) and (3.4) we see that each /*„ must
be constant a.e. with respect to a. Since also fjix) == ff^ AT,
it follows that fn is equal to fn{x) a.e. with respect to o- for each n.
Thus the set

W=[y^n{y)=fnW, n=l,2,...]
has o" measure 1. Since this holds for each o" in HLp(B), x cannot
be in S. This completes the proof of the inclusion (3. 2).

We now show that (1(S) > 0 contradicts the B-maximality
of pi. Suppose that pl(S) >0. Then by (3. 2), (l(L^) >0 for
some L^. Let v be the measure in H that is the restriction
of (JL to L^ : i.e., v(T) = pl(T n L^) for all Baire sets T. Now ^ =f=0
since v(X) = p-(L^) ^= 0. By Lemma 3. 1, v is the limit in
the weak* topology of a net [va] of measures in H with
^(X) == v(X) and each v, concentrated on a finite subset of L^.
By Lemma 2. 3 and the definition of L^ it follows that there
exists a corresponding net [vja] of measures in H such that
each Yja is a B-cover of Va and in addition that

fr.^^+fr.^..
If Y) is any weak* cluster point of the net [Y],], Y) is a B-cover
of v and

^ , ^ v^X;fr.^+f^.
Thus Y) is a proper B-cover of v and it follows that ((JL — v) + Y)

m
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is a proper B-cover of pi. This contradicts the B-maximality
of (x and shows that p.(S) must be 0. This completes that
proof of Theorem 3. 2.

COROLLARY 3. 3. — Let D be a separable subspace of Cr(X).
Then the Choquet boundary of D is a G§. If Y) is any measure
in H, then there is some measure [x in H with

(3.5) ffdy.=ffd^ all/* in D,

and which is concentrated on M(D); i.e. satisfies (1(M(D)) == p'(X).
PROOF. — Let !/„: n = 1, 2, ... j be a countable subset

of D that is dense in D. Define the closed subsets L^ of X
as in the proof of theorem 3. 2. We shall show that M(D)
is the complement of U L^ and is thus a G§. Let x be any
point which is not in M(D). Then that part of the hypothesis
of theorem 3. 2 which concerns B, D, and S is satisfied if B
is taken to be D and Sto be \x\. The proof of Theorem 3. 2
shows that x is in U L^. Conversely, from the definition of
the L^ it is clear that no point in U L^ can be in M(D). Thus
M(D) is a G§ as claimed.

Now let Y) be any measure in H. Let (JL be a D-maximal
measure in H that is a D-cover of Y], The existence of such
a p. is guaranteed by Lemma 2. 4. Equality (3. 5) holds since
(JL is a D-cover of Y). To show that (1(M(D))= p-(X), by regu-
larity of p. it suffices to show that (1(S) == 0 for each closed S
that is disjoint from M(D). That this holds is a consequence
of Theorem 3. 2 for the special case D == B. This completes
the proof of Corollary 3. 3.

The following is an immediate consequence of Lemma 2. 1
and Corollary 3. 3.

THEOREM 3. 4. — Let D be a separable subspace of C^(X)
or Cc(X). Then any linear functional L in D* has a represen-
tation of the form

(3.6) L{f)=ffd^ a l l f inD ,

for pi a Baire measure on X that is concentrated on M(D) in
the sense that p.(S) == 0 for each Borel set S disjoint from
M(D). Furthermore the (x in (3. 6) can be chosen to be in H
if and only if L(l) == ||L||.
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IV. — EXTREME POINTS AND THE CHOQUET THEOREM

Let E be a real locally convex topological linear space with
dual space E*. Let X be a compact convex subset of E and
B the linear subspace of C^(X) consisting of all functions f
having the form

f{x) = F{x) + c, all x in X,

for some F in E* and some real constant c.
If pi is a real-valued measure on X whose domain includes

the Baire sets of X and if S is a Baire subset of X, we shall
denote by

(4.1) f,ydy.{y)

the unique element v of E that satisfies F(^) = /g F d^ for
each F in E*. We shall use standard properties of the vector
valued integral (4. 1) that are discussed for example in [6].
The following lemma was announced by Bauer in [2].

LEMMA 4. 1. — Let x be a point of X. Then the following
are equivalent:

1. x is an extreme point of X.
2. x is in M(B).

PROOF. — To show that 2 implies 1, let a? be a point of X
^

that is not extreme. Then x = ^~ {u + ^) for some u and v2t
in X with u =7^= v. Thus the measure (JL in H that satisfies

pl( \ u \) = pL( | v \) = 1 and (1(X) = 1 is in H^B) by the defini-Z
tion of B. Since the functions of B distinguish points of X,
i^x) = \x\ so y-(iB(x)) = 0 and x is not in M(B).

To show that 1 implies 2, suppose that x is an extreme point
of X. Let p. be in H.c(B). We shall show that (JL is the unit
point mass at x so that x is in the Choquet boundary of B.
Since pi is in Ha;(B), x = j y d[^(y). If S is any Baire subset
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of X with 0 < (x(S) < 1; and T = X — S, x has a representa-
tion as a convex combination

(4. 2) , = ,(S) ̂ y W) + ̂ (T) (^y ̂ (y))

of points in X. Since x is an extreme point of X,

(4. 2) y.{S)x =f^y rf(x(y), all Baire S c X.

Equivalently,

(4. 3) ^(S)F(^) = Jg F rfm, all Baire S c X, F e E*.

(4. 3) is possible only if

(4.4) (x(|y:F(y)=F(a:)0=l, all F e E*.

If C((Ji) is the carrier of (x, that is, the smallest closed subset
of X whose complement has p. measure 0, (4. 4) shows that

C(ix)c |y:F(y)=F(^, aIlFeE*.

But since the functions in E* distinguish points of X, C(a)
must be |a^ and [JL must be the unit point mass at x. Thus
x is in M(B) and the proof of Lemma 4. 1 is completed.

We can now establish the Choquet theorem by using our
Theorem 3. 4.

THEOREM 4. 2. — Let X be a compact convex metrizable
subset of a locally convex topological linear space. E. Let X^
be the set of extreme points of X. Then X<, is a Gg in X and
every x in X has a representation of the form

(4.5) x = f y d y . ( y )

for some non-negative Baire measure (JL on X satisfying

fx(X,) = y.(X) = 1.

PROOF. — Let B be the subspace of Cr(X) defined earlier.
Since X is metrizable, B is separable, so X^ = M(B) is a G$
in X. Let v be a point in X and L the linear functional of
B defined by

L{f)^f{x), all/1 in B.
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Then L(l) = |jL[] = 1, so by Theorem 3. 4 there is a non-nega-
tive Baire measure a with (Ji(M(B)) = pi(X) = 1 and

(4. 6) L(F) =.fF dy., all F in E\

But (4. 6) is simply a restatement of (4. 5). And ;x(X^) = 1
since by Lemma 4. 1, X<, = M(B). This completes the proof.

LEMMA 4. 1. gives a characterization of the Choquet boun-
dary in terms of extreme points in a very special situation.
It will be necessary for our later work to have a suitable
replacement of this in the general case.

LEMMA 4. 3. — Let X be a compact Hausdorff space^ B a
subspace of C^(X). Let Lg be a linear functional in B*. Then
the following are equivalent:

1. Lo is an extreme point of
(4.7) ^L:LeB^, L(l)=| |L| |=lj
2. There is a point x in M(B) so that

L,(f)=f(x), allf in B.
PROOF. — To show that 2 implies 1, suppose that L»o is not

4
an extreme point of (4.7). Lo = -7.-(Li + Lg), with Li and2t
Lg in (4. 7), L^ =7^ Lo. By Lemma 2. 1 there are measures
(J4 and ^ m H with p4(X) = p^(X) = 1 and

L,{f)=ffd^ all/-in B, ; = 1, 2.
^

Since Lo=^Li, ^{i^x)) < 1. Let ^= y(p4+t^)- Then (A
is in H.c(B) and ^(^(aO) < 1, so x is not in M(B). This completes
the proof that 2 implies 1.

To show that 1 implies 2, suppose that Lo is an extreme
point of (4. 7). By Lemma 2. 1 there is a measure (JL in H
so that

L,{f)=ffd^ all/-in B.

Let Si be any Baire subset of X with 0 <; ^(^i) < I? and
Sg = X — S .̂ Then if the linear functionals Li and Lg in
(4. 7) are defined by

L,(f)=^^fdu., all fin B,
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we have a representation of Lo as a convex combination
Lo = (x(S,) 4 + ̂ ) L,

of points in (4. 7). Since Lo is an extreme point of (4. 7), this
must be a trivial representation, so

fjd^=^S)ffd^

for all fin B and all Baire S in X. Thus each j f inBis constant
almost everywhere with respect to (JL, and if x is chosen to be
in the carrier C((x), of (x, that constant value must be f{x).
This shows that Lo(/*) = f{x) for all fin B and that

(4. 8) C(^) c \y : f{y) = f{x), all f in B j = i^x).
Since (A could have been chosen to be any measure in HJB),
(4. 8) shows that x is in M(B). This completes the proof of
the lemma.

LEMMA 4. 3. allows us to draw a useful conclusion concer-
ning the relation between M(B) and (CM) where B is a sub-
space of Cr(X) and C is a subspace of B.

For this we need the following.
LEMMA 4. 4. — Let Ei and Eg be real locally convex topological

linear spaces and f : Ei -> Eg a continuous linear transformation.
Let Y be a compact convex subset of Ei. Then for each extreme
point v o/'y(Y) there is some extreme point u o/*Y with y(u) = v.

PROOF. — Let u be an extreme point of 9~l(^) n Y. Such
exist because of the Krein-Milman theorem. Then u will be
extreme in Y and satisfy <p(u) == p.

COROLLARY 4. 5. — Let B be a subspace of C^(X) and C a
subspace of B. Then

M(C) c ic(M(B)).
PROOF. — Let y : B* -^ C* be the adjoint map of the natural

injection of C into B; 9 is continuous in the weak* topologies.
Because of the Hahn-Banach theorem, the image of the weak*
compact set

(4.9) {L:L^B\ L(l)==| |L | |=l j
under y is

(4.10) j L : L e C * , L(l)=| |L| l=lj .
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Let x be a point in M(C). Then by Lemma 4. 3 the linear
functionnal La; in C* defined by

L.(/*)=A^ all/* in C,
is an extreme point of (4. 10). By Lemma 4. 4, L, is the
image under 9 of an extreme point of (4. 9), which must by
Lemma 4. 3 be of the form Lp

4(/1) = f{y\ all fin B,
for some y in M(B); f{Ly) = L^ means simply that Ly when
restricted to C agrees with Ly, that is,

(4.11) f{x}=f{y\ all/-in C.

Since y is in M(B), (4.11) shows that x is in i'c(M(B)). Since x
was any point in M(C), it follows that M(C) c ic(M(B)), as was
to be proved.

It is worth noting that under the hypotheses of Corollary
4. 5, neither M(C) c M(B) nor M(B) c M(C) holds in general.

V. — REPRESENTATION OF LINEAR FUNCTIONALS
IN THE GENERAL CASE

The purpose of this section is to extend our Theorem 3. 4
on the representation of linear functionals to the case of
subspaces that are not separable, and to use this result to
remove the hypothesis of metrizability in the Choquet theorem.

If B is a subspace of C^(X) that distinguishes points of X,
the fact that any linear functional in B* can be represented
by a measure concentrated on the Choquet boundary of B
follows simply from the following (which is our Theorem 5. 3) :
If (A in H is B-maximal and S is a Baire set disjoint from M(B),
then (A(S) = 0. This in turn is an immediate consequence
of Theorem 3. 2 if it is possible to find for each x in S a measure
(T in H,(B) with cr(S) < 1. It is the establishment of the
existence of these measures that is the main work of this
section. This is accomplished by a reduction to the separable
case and an application of Corollary 3. 3.
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For each subset S of X, we shall denote by ^s the charac-
teristic function of S,

, v _^1, x in S
XsW-jo^notinS.

LEMMA 5. 1.— Let B be a subspace o/*C,.(X), S a closed subset
of X and x a point of S. Then the following are equivalent:

1. Each a in H^B) has pi(S) = 1,
2. For each g in C^(X) with g^t 755

Sup{f(x):f^B, /^gj>l. ^
PROOF. — Suppose that 2 holds. Let y. be in H.p(B). Then

for each g in C^(X) with g^7,s,

/g^^supijy^^eB, /^gj==
Sup|^):/eB, /^>1.

But [1(S) = Infj/g rf(x : g €= C,(X), g>y,sj,

so (1(S) ̂  1.
For the converse suppose that 2 does not hold. Let g be

a function in C^(X) with g ̂  y^g and
Sup^^eB, /^g^l-6.

Define the linear functional L^ on B by
(5.1) L^(f)=f(x), all/* in B.

La; is a positive linear functional on B (that is, non-negative
on non-negative functions) and thus by a standard result
(see [10], p. 22) on the extension of such functionals, there is
a positive linear functional L on Cr(X) with

(5.2) L{f) = L^f), all/* in B,
and L(g) ==1 — £. By the Riesz representation theorem,
there is a y. in H with

(5.3) L{f)=ffd^ all/-inC,(X).

Because of (5. 1), (5. 2) and (5. 3), pi is in H.p(B) and

^(S) = //.s^^/g ̂  = 1 — e < 1.

This completes the proof of Lemma 5. 1.
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LEMMA 5. 2. — Let B be a subspace of C^(X) and S a closed
G§ in X. Let x be a point of S. Suppose that each (JL in H^(B)
satisfies (JL(S) = 1. Then there is a separable subspace C of B
which is such that each (A in HL(C) satisfies pi(S) === 1.

PROOF. — Since S is a closed Gg, there is a sequence
^ :n=l ,2 , . . . I

in Cr(X) decreasing point wise to ^s. By « 1 implies 2 » of
Lemma 5. 1, for each positive n and m it is possible to find
some fnm in B with fnm ̂  gn ^d fnmW ±^1 — m""1- Let C be
the subspace of B generated by the f^m ^d the constant
functions. C is a separable subspace. If pi is in Ha?(C), then

a(S) = Inf J^ dy. > Inf (S^p J/^ ̂ a) = Inf ( S^p /^(rr)) > 1,

so (x(S) must be 1.

THEOREM 5. 3. — Let B be a subspace of Cr(X) that distin-
guishes points of X. If S 15 a Baire set disjoint from M(B),
and [A in H 15 B'maximal, then [x(S) = 0.

PROOF. — By regularity of [JL we can assume S closed Baire
and thus a G§. B distinguishes points of X so there will be
a separable subspace D of B that distinguishes the points of S
from those of X — S; i.e. that satisfies ID(S) = S. We consider
two cases.

Case 1: For each a; in S there is a (T in H^(B) with (T(S) < 1.
Case 2 : For some x in S, and all o- in H^B), o-(S) = 1.
We shall use Theorem 3. 2 to show that [x(S) = 0 follows

in case 1, and then use Corollories 3. 3 and 4. 5 and Lemma 5. 2
to show that case 2 cannot occur.

Case 1: Since ID(S) = S, for each x in S, i^{x) c S. Thus
for each a; in S there is some a- in H^(B) with ff{ij^{x)) ̂  o-(S) < 1,
so by Theorem 3. 2, (x(S) = 0.

Case 2: If each or in H^(B) satisfies o-(S) = 1, then by
Lemma 5. 2 there is a separable subspace C of B (which
can be chosen to contain D) so that each a in H.c(C) satisfies
o-(S) == 1. We shall now use Corollary 3. 3 to contradict this
by showing that there actually is a a- in H.p(C) with o-(S) = 0.
Since D c C and in(S) = S, i'c(S) = S, and S will be disjoint
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from i'c(M(B)) since it is disjoint from M(B). But by Corollary
4. 5, M(C) c tc(M(B)), so S is disjoint from M(C). By Corol-
lary 3. 3 applied to the unit mass Y] at x, there is a (T in H^(C)
with &(M(C)) = 1 and thus with (r(S) = 0. This contradicts
the earlier assertion that each (T in H^(C) must satisfy o-(S) = 1.
Thus Case 2 cannot occur, and Theorem 5. 3 is completely
proved.

COROLLARY 5. 4. — Let B be a subspace of C,(X) that distin-
guishes points of X. Let [f. in H be B-maximal. Then pi can
be extended to a measure that is concentrated on M(B); to be
precise, there is a measure p. on the fj-ring generated by M(B)
and the Baire sets that satisfies

[1(S) = pi(S), all Baire S,
and pWB)) = pi(X) = 1.

PROOF. — Any set T in the a-ring generated by M(B) and
the Baire sets has a representation of the form

(5.4) T = ^ n M ( B ) ^ u |S, n (X-M(B))|, S^Baire.

It is simple to check, using Theorem 5. 3, that if pi. is defined by

(1(T) = (x(Si), with Si as in (5. 4),

p. is well defined and satisfies the conditions claimed.
The following is now an immediate consequence of Lemmas

2. 1, 2. 4 and Corollary 5. 4.

THEOREM 5. 5. — Let B be a subspace of C,(X) or C,(X) that
distinguishes points of X. Let if be the v-ring generated by
M(B) and the Baire sets of X. Then any linear functional L
in B* has a representation of the form

(5.5) uf^ff^ al iyinB,

for ;x a measure on if that satisfies (x(T) = 0 for each T e if
disjoint from M(B). Furthermore the a in (5. 5) can be chosen
to be non-negative if and only if L(l) = ||L|[.

We can now state the generalized Choquet theorem. Its
proof is identical with that of Theorem 4. 2, except that
Theorem 5. 5 is used instead of Theorem 3. 4.



THE REPRESENTATIONS OF LINEAR FUNCTIONALS 323

THEOREM 5. 6. — Let X be a compact convex subset of a real
locally convex topological linear space. Let Xg he the set of
extreme points of X and if the fs-ring ^generated by Xg and the
Baire subsets of X. Then each x in X has a representation
of the form

fv d^{y)

for some non-negative measure (JL on if that satisfies

^(X,) = ^(X) = 1.

VI. — ALGEBRAS

If B is a subspace of C^(X) or Cc(X), a subset Y of X will
be called a boundary for B if for each f in B there is some y
in Y with l((t/)|=||/1|.

The following lemma was announced by Bauer [2].

LEMMA 6. 1. — If B is a subspace of C^(X) or Cc(X), M(B)
is a boundary for B.

PROOF. — If B is a subspace of Cc(X), and Bp is the subspace
of C^(X) consisting of the real parts of the functions in B, then
M(Bp) == M(B) and also any boundary for Bp will be a boundary
for B. Thus it suffices to consider the case of B a subspace
of C,(X).

The subset K of B* defined by
(6. 1) K == {L: L e B*, L(l) = ||L|| = I j

is convex and weak* compact.
Choose any function A in B. Let Lo be a point of K with

|Lo(A) |=max | |L( / i ) | :LeK| ,andKo=tL:LeK,L(A)==Lo(A)^ .
By the Krein-Milman theorem, the compact convex set Ko
has an extreme point. This extreme point must also be an
extreme point of K. By Lemma 4. 3, such an extreme point
will be of the form Ly,

4(/")=/M all/-in B,
for some y in M(B). Since for each x in X, the Ly defined by

W=fW, all/-in B,
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is in K, it follows from the choice of Ly that

| |A| |==max {\h{x)\:x^X}
==max | |L , (A)i :^eXj == |L,(A)1 = \h{y)[

Since y is a point of M(B), and h is an arbitrary function in B,
M(B) is a boundary for B.

Throughout the remainder of this section, A is a uniformly
closed subalgebra of Cc(X) that distinguishes the points of X
and contains the constant functions. It is well known that
there is a smallest closed boundary for the algebra A, the Silov
boundary (the Silov boundary has been related to extreme
points in [I], [2] and [5]). We are concerned here with boun-
daries that are smaller than the Silov boundary, and in parti-
cular with the question of whether if B == A, Lemma 6. 1
is the strongest result possible; i.e., whether any boundary
for A must contain the Choquet boundary of A. We show
that this is indeed so if each point of X is a Go, while we show
in the general case that any boundary for A that is a Baire
set must contain the Choquet boundary of A.

In order to do this we must study two properties of points
of X that are equivalent to being in M(A).

We shall say that a point x of X satisfies Condition I if
for each open neighborhood U of X there is some f in A with

\\f\\^ 1/^)1 >|- and \f{y)\<^ for all y outside of U.

We shall say that a point x of X satisfies Condition I I if
for each closed set S containing x that is a G§, there is some
function f in A with \f(x)\ == \\f\\ and

\y''\f{y}\-\\f\\\^
Note that if \x\ is a G§, Condition II simply states that

there is some f in A « peaking » at x.

LEMMA 6. 2. — If x is in M(A), x satisfies Condition I .

PROOF. — Let Ar be the subspace of real parts of functions
in A. Let U be any neighborhood of x. Choose a function g
in Cr(X) with 0 < g < 1, g{x) == 1 and g(y) = 0 for y outside
of U. Since M(A) = M(Ar), any pi in Ha,(A^) must satisfy
uL( |^ j ) == 1. Thus by « 1 implies 2 » of Lemma 5. 1. applied
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to S === [x^ and B == Ay, there is some Ao in Ay with Ao ̂  g

and Ao(a0 > f0— Let A = (log 8) {ho — 1). Since A is in A^
logo

there is a A* in Ap so that h -{- ik is in A, and since A is a uni-
formly closed subalgebra, the function f defined by

f^^ik)

is in A (the use of the exponential function at this point was
suggested to us by H. Royden). It is simple to check that f

f* Q

satisfies the conditions wanted; i.e. ||^[|^1? |/*(^)|> o~= "y'
1 1and \f{y)\<.^<, for y not in U.

LEMMA 6. 3. — If x satisfies Condition J, it must satisfy
Condition I I .

PROOF. — Let S be a closed G§ containing x. Let |V^
be a decreasing sequence of open sets with S == fIV^. The
construction of a function f in A with \f{x)\ = \\f\\ and

|y:l/'(y)l= 1 1 / 1 1 1 <=s
is identical with the construction in Theorem 2 of [4], if the
sets J)n{x) used in that construction are taken to be the X — V^.

LEMMA 6. 4. — Ifx satisfies Condition J7, it must be in M(A).

PROOF. — Let pi be in H.c(A). Let S be any closed G§
containing x. By Condition II there is an fin A with

(6.2) ^ |i/: 1/^)1 =11 /11^ S-

Since (JL is in Ha;(A), jfd^=f(x), which by (6. 2) is possible
only if (JL(S) == 1. Thus by the regularity of p-, P-Q^O = I? so

x is in M(A).
Thus we have established.

THEOREM 6. 5. — Let x be a point of X. Then the following
are equivalent:

1° x satisfies Condition I ;
2° x satisfies Condition I I ;
3° x is in M(A).
This equivalence for the case X metrizable is contained in [4].
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COROLLARY 6. 6. — If each point of X is a Gg, M(A) is the
smallest boundary for A.

PROOF. — By Lemma 6. 1, M(A) is a boundary for A. By
Condition II, at each point x of M(A) there is some f in A
with

IAy)KI/NI, aiiy^o;.
Thus any boundary for A must contain M(A).

This result for X metrizable was established in [4].

COROLLARY 6. 7. — Let Y he any Baire subset of X that is
a boundary for A. Then Y contains M(A).

PROOF. — Suppose on the contrary that there is some point
x in M(A) that is not in Y. Then there is a closed set S
containing x that is a G§ and is disjoint from Y. By Condition
II there is an f in A with

^ ^l/^)!-11/11^ s.
This f does not attain its maximum modulus on Y, contra-
dicting the fact that Y is a boundary for A.

It is however not true that M(A) is the intersection of all
of the Baire boundaries for A, as can be seen from some of the
examples in the next section.

COROLLARY 6. 7. will now be used to show that if Y is
any boundary for A, all linear functionals in A* can be repre-
sented as measures on Y. To establish this result we need
first a lemma.

LEMMA 6. 8. — Let Y be a boundary for A. Let (x be any
^-maximal measure in H. If S is a Baire set disjoint from Y,
(x(S) = 0.

PROOF. — Since Y c X — S, the set X — S is a Baire boun-
dary for A. By Corollary 6. 7, M(A) c X — S, so that S is
disjoint from M(A). It follows from Theorem 5. 3 that pt,(S) == 0.

THEOREM 6. 9. below now follows from Lemma 6. 8 in the
same manner that Theorem 5. 5 follows from Theorem 5. 3.
We omit the details.
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THEOREM 6. 9. — Let Y be a boundary for A, and tf the
(j-ring generated by Y and the Baire setsof\. Then each linear
functional L in A* has a representation of the form

(6. 3) L(f) = ffdy., all f in A,

for (JL a measure on if that satifies pi(T) == 0 for each T in if that
is disjoint from Y. Furthermore the [A in (6. 3) can be chosen
to be non-negative if and only if L(l) == ||L||.

VII. — EXAMPLES

We present in this section a class of examples showing
that the Choquet boundary, which must be a G§ in the sepa-
rable case, can be arbitrarily bad in general. We also show
that Theorems 5. 3 and 5. 5 cannot be strengthened to assertions
about Borel sets rather than Baire sets. Finally there is a
simple example which shows that the analogue of Theorem
6. 9 for subspaces rather than subalgebras is false.

Let |Y.c^ex be a family of disjoint non-empty topological
spaces indexed by a topological space X. Let Y == ^ J Ya;

a;ex
and IT : Y -> X be the projection map defined by ^(y) = x
if y is in Y,p. Let s: X —> Y be a cross-section; i.e., v:s{x) = x
for all x in X.

We shall describe a topology (called the porcupine topology)
for Y. Let % be the class of all subsets U of Y that satisfy
the following: there is some re in X so that U is an open subset
of Y,c not containing s[x). Let if be the class of all subsets
S of Y that satisfy the following : there is some x in Y so that S
is a closed subset of Ya; not containing s{x). Let T) be the
class of all subsets of Y of the form ^^(V) — (Si u ... u S^),
where V is an open subset of X and the Si are in tf. The
collection U u T) is closed under intersections and thus is the
basis for a topology for Y. This is our porcupine topology.
In this topology a net \Uy,\ of points in Y converges to a point
y in Y.c — \s(x) \ if and only if the net is ultimately in Y.p and
converges in the original topology of Ya; to y. If none of the
Uy, are in Y.p, \Ug\ converges to s{x) if and only if the net
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j 're(ua)^ converges to x in the topology of X. If X and the Y.p
are compact Hausdorff, then Y is compact Hausdorff.

Suppose now that X and the Y.̂  are compact Hausdorff.
Let D be a subspace of C^(X) and for each x in X, let Ba; be
a subspace of Cr(Ya;). Let B be the subspace of Cp(Y) consis-
ting of all fin Cp(Y) such that fos is in D, and for each x in X,
f restricted to Y.p is in B,p. If D and all the B^ are closed sub-
spaces and distinguish points, B will be a closed subspace
and distinguish points. It is simple to check that the Choquet
boundary M(B) of B is

(7.1) j(jM(B^-S(X-M(D)).
. xGY

We shall now consider a special case of the above construc-
tion. Let X be an arbitrary compact Hausdorff space and K
an arbitrary subset of X. For each x in K, let Ya; consist
of the one point s^ and for each x in X-K, let Y.̂  be the
discrete topological space consisting of the three points
\^x^ ^? ^x} • Define s : X —> Y by s(x) == s^ all x in X. Let
D be C^(X), and if x is in K, let B^ = Cr(Yay). If x is in
X—K, let B,p be the subspace of C,.(Y;p) consisting of those f
that satisfy

/•(^--j- (/•('.) +/W
The construction described above applied to D and the Ba,

yields a closed subspace B of C^(Y) that distinguishes points.
Its Choquet boundary is (7. 1) and is therefore easily seen to
satisfy Y — M(B) == ^(X — K). Since K was an arbitrary
subset of X, this shows that the Choquet boundary can be
arbitrarily bad. An example of a bad boundary has also
been given by Choquet in [8].

Suppose now that in this example we take X to be the unit
interval with the usual topology and K to be the void set.
Let v be Lebesgue measure on X, and let (A be the Baire
measure on Y defined by

;x(S) = v(^(X) n S))

for all Baire subsets S of Y. Then (JL is B-maximaL Never-
theless its regular Borel extension p. satisfies (1(M(B)) == 0.
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This is in contrast to Theorem 5. 3 which shows that a B-maxi-
mal measure must be « concentrated on M(B) » in the sense
that p-(S) == 0 for each Baire set S disjoint from M(B). The
example shows that the conclusion of the theorem cannot be
strengthened to p.(S) being 0 for each Borel set S disjoint
from M(B), even if M(B) itself is Borel. It also shows
that the measures (JL appearing in Theorem 5. 5 may not be
regular.

In order to obtain a more striking example, we take X
to. be the subset of the complex plane

X=[z:\z\^i\
in the usual topology, and take K to be the set

K= { z : z\<i^

For each x in K, let Ya; consist of one point s^ and for each x
in X — K, let Ya; be the discrete topological space consisting
of the three points \ r^, s^ and t^ \.

Define 5: X —> Y by s{x) == s^ all x in X. Let D consist
of all functions in Cp(X) which are harmonic on K. If x is
in K, let B, == C, (Y,).

If re is in X — K, let Ba, be the subspace of Cr(Ya;) consis-
ting of those f that satisfy

/"(,,)= 1/2 (/-(r,)+/•((,)).

The construction above applied to D and the Ba; yields a
closed subspace B of Cr(Y) that distinguishes points. Its
Choquet boundary is easily seen by (7.1) to be

M(B) == Y — 5 ( X ) .

Let i/o be the point 5(0) = So of Y. We shall prove that

p.(M (B)) = 0

for all (JL in Hy, (B).
To this end, we first note that the only compact subsets

of M(B) are finite, by the definition of the topology on Y.
It follows that in order to show that p. (M (B)) ==0, it will
be sufficient to show that p. (\ rgc \) = y- {{ tx 0 == 0 tor each
x in X — K. Assume that this is not the case, so that
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P'( \ r^ 0 == C > 0, say, for some XQ in X — K. Let h be any
non negative harmonic function on X with h(xo) > 1 and
h (0) == C. Define the function f in B by

f(y) = h(x), for all y in Y,.

Since (x e H ,̂ it follows that

Ayo) =/^>A^,)^(1^0 = Wt^(|rj) > c.
Since also

/•(yo) = A(0) == C,

this gives a contradiction. Thus

pl(M(B)) = Q.

This points up Theorem 5. 5, which states that there exists
(A in H^ which can be extended to a measure on the a-ring
generated by M(B) and the Baire sets so as to have (x(M(B)) == 1.
The point is that the extension of (JL does not agree with the
regular Borel extension p. of (X.

The next example demonstrates that the analogue of
Theorem 6. 9 for subspaces is false. Let X be the subset

{ z : \ z — i \ ^ l } u {z:\z+i\=l}

of the plane. Let B be the space of all functions f on X of
the form

f(x, y) = ax + by + c, {x, y) in X,

for a, b and c real. Then each fin B that attains its maximum
on X at p == (1, 1) also attains its maximum at (— 1, 1), so
X — ipi is a boundary for B. However the linear functional
L in B* defined by

L(/-) =/•(?), f inB,

has no representation of the form

L(f)=ffdv., f inB,

for (A a non-negative measure on X-|pj.
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