logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article
Hubert Goldschmidt; Shlomo Sternberg
The Hamilton-Cartan formalism in the calculus of variations
Annales de l'institut Fourier, 23 no. 1 (1973), p. 203-267, doi: 10.5802/aif.451
Article PDF | Reviews MR 49 #6279 | Zbl 0243.49011 | 1 citation in Cedram

Résumé - Abstract

We give an exposition of the calculus of variations in several variables. The introduction of a linear differential form studied by Cartan makes possible an invariant treatment of the Hamiltonian formalism. Noether’s theorem, the Hamilton-Jacobi equation and the second variation are discussed and a Poisson bracket is defined.

Bibliography

[1] C. CARATHEODORY, Variationsrechnung und partielle Differential-gleichungen erster Ordnung, Teubner, Leipzig, 1935.  Zbl 0011.35603 |  JFM 61.0547.01
[2] E. CARTAN, Leçons sur les invariants intégraux, Hermann, Paris, 1922.
[3] Th. De DONDER, Théorie invariantive du calcul des variations, Hayez, Brussels, 1935.  Zbl 0013.16901
[4] H. GOLDSCHMIDT, Integrability criteria for systems of non-linear partial differential equations, J. Differential Geometry, 1 (1967), 269-307.  MR 37 #1746 |  Zbl 0159.14101
[5] R. HERMANN, Differential geometry and the calculus of variations, Academic Press, New York, London, 1968.  MR 38 #1635 |  Zbl 0219.49023
[6] E.L. HILL, Hamilton's principle and the conservation theorems of mathematical physics, Rev. Modern Phys., 23 (1951), 253-260.  MR 13,503g |  Zbl 0044.38509
[7] Th. LEPAGE, Sur les champs géodésiques du calcul des variations, Acad. Roy. Belg. Bull. Cl. Sci., (5) 22 (1936), 716-729, 1036-1046 ; Sur le champ géodésique des intégrales multiples, Acad. Roy. Belg. Bull. Cl. Sci., (5) 27 (1941), 27-46 ; Champs stationnaires, champs géodésiques et formes intégrables, Acad. Roy. Belg. Bull. Cl. Sci., (5) 28 (1942), 73-92, 247-265.  Zbl 0016.26201 |  JFM 62.1329.01
[8] J. MILNOR, Morse Theory, Annals of Mathematics Studies, n° 51, Princeton University Press. Princeton, N. J., 1963.  Zbl 0108.10401
[9] C.B. MORREY, Jr., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, Heidelberg, New York, 1966.  MR 34 #2380 |  Zbl 0142.38701
[10] S. SMALE, On the Morse index theorem, J. Math. Mech., 14 (1965), 1049-1055.  MR 31 #6251 |  Zbl 0166.36102
[11] S. STERNBERG, Lectures on differential geometry, Prentice Hall, Englewood Cliffs, N. J., 1964.  MR 33 #1797 |  Zbl 0129.13102
[12] L. VAN HOVE, Sur la construction des champs de De Donder-Weyl par la méthode des caractéristiques, Acad. Roy. Belg. Bull. Cl. Sci., (5) 31 (1945), 278-285.  Zbl 0033.12202
[13] H. WEYL, Geodesic fields in the calculus of variations for multiple integrals, Ann. of Math., 36 (1935), 607-629.  Zbl 0013.12002 |  JFM 61.0554.04
top