logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Georges Rhin; Carlo Viola
On the irrationality measure of $\zeta (2)$
Annales de l'institut Fourier, 43 no. 1 (1993), p. 85-109, doi: 10.5802/aif.1322
Article PDF | Reviews MR 94b:11065 | Zbl 0776.11036 | 2 citations in Cedram

Résumé - Abstract

We prove that 7. 398 537 is an irrationality measure of $\zeta (2)=\pi ^2/6$. We employ double integrals of suitable rational functions invariant under a group of birational transformations of ${\Bbb C}^2$. The numerical results are obtained with the aid of a semi-infinite linear programming method.

Bibliography

[1] K. ALLADI and M.L. ROBINSON, Legendre polynomials and irrationality, J. reine angew. Math., 318 (1980), 137-155. Article |  MR 81i:10036 |  Zbl 0425.10039
[2] E.J. ANDERSON and P. NASH, Linear Programming in infinite-dimensional spaces, Wiley-Interscience, 1987.  MR 88f:90180 |  Zbl 0632.90038
[3] R. APÉRY, Irrationalité de &ζ(2) et &ζ(3), Astérisque, 61 (1979), 11-13.  Zbl 0401.10049
[4] F. BEUKERS, A note on the irrationality of &ζ(2) and &ζ(3), Bull. London Math. Soc., 11 (1979), 268-272.  MR 81j:10045 |  Zbl 0421.10023
[5] D. V. CHUDNOVSKY and G. V. CHUDNOVSKY, Padé and rational approximations to systems of functions and their arithmetic applications, Lect. Notes in Math., 1052 (1984), 37-84.  MR 86a:11029 |  Zbl 0536.10028
[6] D. V. CHUDNOVSKY and G. V. CHUDNOVSKY, Transcendental methods and Theta-functions, Proc. Symp. Pure Math., 49 (1989), part 2, 167-232.  MR 91e:11080 |  Zbl 0679.10026
[7] G. V. CHUDNOVSKY, Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π, Lect. Notes in Math., 925 (1982), 299-322.  MR 83m:10051 |  Zbl 0518.41014
[8] R. DVORNICICH and C. VIOLA, Some remarks on Beukers' integrals, Colloquia Math. Soc. János Bolyai, 51 (1987), 637-657.  MR 91f:11050 |  Zbl 0755.11019
[9] M. HATA, Legendre type polynomials and irrationality measures, J. reine angew. Math., 407 (1990), 99-125.  MR 91i:11081 |  Zbl 0692.10034
[10] K. MAHLER, On the approximation of π, Proc. K. Ned. Akad. Wet. Amsterdam, A 56 (1953), 30-42.  MR 14,957a |  Zbl 0053.36105
[11] M. MIGNOTTE, Approximations rationnelles de π et quelques autres nombres, Bull. Soc. Math. France, Mémoire 37 (1974), 121-132. Numdam |  MR 51 #375 |  Zbl 0286.10017
[12] J.A. NELDER and R. MEAD, A simplex method for function minimization, Computer J., 7 (1965), 308-313.  Zbl 0229.65053
[13] W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, W.T. VETTERLING, Numerical Recipes. The art of scientific computing, Cambridge University Press, 1986.  Zbl 0587.65003
[14] G. RHIN, Approximants de Padé et mesures effectives d'irrationalité, Progr. in Math., 71 (1987), 155-164.  MR 90k:11089 |  Zbl 0632.10034
[15] E.A. RUKHADZE, A lower bound for the approximation of ln 2 by rational numbers (Russian), Vestnik Moskov Univ., Ser 1 Math. Mekh., 6 (1987), 25-29.  MR 89b:11064 |  Zbl 0635.10025
top