With cedram.org
Table of contents for this issue | Previous article | Next article
Bernhard Elsner
Hyperelliptic action integral
Annales de l'institut Fourier, 49 no. 1 (1999), p. 303-331, doi: 10.5802/aif.1675
Article PDF | Reviews MR 2000f:14069 | Zbl 0935.32012

Résumé - Abstract

Applying the ``exact WKB method" (cf. Delabaere-Dillinger-Pham) to the stationary one-dimensional Schrödinger equation with polynomial potential, one is led to a multivalued complex action-integral function. This function is a (hyper)elliptic integral; the sheet structure of its Riemann surface above the plane of its values has interesting properties: the projection of its branch-points is in general a dense subset of the plane, and there is a group of symmetries acting on the surface. The distribution of the branch points on the surface is of crucial importance, because it gives the position for the obstacles to Borel-Laplace summation of the WKB-symbols. In ``Approche de la résurgence" by B. Candelpergher, J.-C. Nosmas et F. Pham, p. 103-105, an attempt has been made towards giving an explicit construction of the surface with paper, scissors and glue; here we give the correct construction and in addition we prove that each surface constructed in this way comes from a polynomial potential. Along the way we are lead to an elementary conjecture in the theory of holomorphic functions.


[1] B. CANDELPERGHER, J.C. NOSMAS, F. PHAM, Approche de la résurgence, Actualités Mathématiques, Hermann, 1993.  MR 95e:34005 |  Zbl 0791.32001
[2] E. DELABAERE, H. DILLINGER, F. PHAM, Résurgence de Voros et périodes des courbes hyperelliptiques, Ann. Inst. Fourier, 43-1 (1993), 163-199. Cedram |  MR 94i:34115 |  Zbl 0766.34032
[3] M.V. FEDORYUK, Asymptotic Analysis, Springer, 1993.
[4] S. KOBAYASHI, Hyperbolic Manifolds and Holomorphic Mappings, Pure and Applied Mathematics Monographs, Marcel Dekker, 1970.  MR 43 #3503 |  Zbl 0207.37902
[5] W. MAGNUS, A. KARRASS, D. SOLITAR, Combinatorial Group Theory, Interscience Publishers, 1966.
[6] D. MUMFORD, Tata Lectures on Theta II, Birkhäuser, 1984.
[7] A.N. VARCHENKO, Image of period mapping for simple singularities, Lecture Notes in Mathematics 1334, Springer, 1988.  MR 89j:32028b |  Zbl 0679.32023
[8] A. VOROS, Résurgence quantique, Ann. Inst. Fourier, 43-5 (1993), 1509-1534. Cedram |  MR 96a:58193a |  Zbl 0807.35105
[9] W. WASOW, Linear Turning Point Theory, Applied Mathematical Sciences 54, Springer, 1985.  MR 86f:34114 |  Zbl 0558.34049