logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Mark Pollicott; Richard Sharp
Linear actions of free groups
(Actions linéaires des groupes libres)
Annales de l'institut Fourier, 51 no. 1 (2001), p. 131-150, doi: 10.5802/aif.1819
Article PDF | Reviews MR 1821072 | Zbl 0967.37016 | 2 citations in Cedram
Class. Math.: 37C35, 37C85, 37D35, 20G20
Keywords: linear action, free group, projective space, thermodynamic formalism, orbit counting

Résumé - Abstract

In this paper we study dynamical properties of linear actions by free groups via the induced action on projective space. This point of view allows us to introduce techniques from Thermodynamic Formalism. In particular, we obtain estimates on the growth of orbits and their limiting distribution on projective space.

Bibliography

[1] J. Dani, “Density properties of orbits under discrete groups”, J. Indian Math. Soc. 39 (1976), p. 189-217  MR 444570 |  Zbl 0428.22006
[2] W. Ellison & F. Ellison, Prime Numbers, Wiley, New York, 1985  MR 814687 |  Zbl 0624.10001
[3] L. Greenberg, Flows on homogeneous spaces, Ann. Math. Studies, Princeton Univ. Press, 1963, p. 85-103  Zbl 0106.36802
[4] P. de la Harpe, “Free groups in linear groups”, Enseign. Math. 29 (1983), p. 129-144  MR 702736 |  Zbl 0517.20024
[5] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin, 1976  MR 407617 |  Zbl 0148.12601
[6] S. Lalley, “Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits”, Acta. Math. 163 (1989), p. 1-55 Article |  MR 1007619 |  Zbl 0701.58021
[7] W. Parry & M. Pollicott, “Zeta functions and the periodic orbit structure of hyperbolic dynamics”, Astérisque (1990) no. 187-188, p. 1-268  MR 1085356 |  Zbl 0726.58003
[8] S.J. Patterson, “The limit set of a Fuchsian group”, Acta. Math. 136 (1976), p. 241-273 Article |  MR 450547 |  Zbl 0336.30005
[9] M. Pollicott & R. Sharp, “Comparison theorems and orbit counting in hyperbolic geometry”, Trans. Amer. Math. Soc. 350 (1998), p. 473-499 Article |  MR 1376553 |  Zbl 0909.20023
[10] D. Ruelle, Thermodynamic Formalism, Addison Wesley, Redding, Mass., 1978  MR 511655 |  Zbl 0401.28016
[11] D. Sullivan, “The density at infinity of a discrete group of hyperbolic motions”, Inst. Hautes Études Sci. Publ. Math. 50 (1979), p. 171-202 Numdam |  MR 556586 |  Zbl 0439.30034
[12] J. Tits, “Free subgroups in linear groups”, J. Algebra 20 (1972), p. 250-270 Article |  MR 286898 |  Zbl 0236.20032
[13] M. Wojtkowski, On uniform contraction generated by positive matrices, Contemp. Math., Amer. Math. Soc., 1986, p. 109-118  Zbl 0584.60017
top