logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Franc Forstnerič
On complete intersections
(Sur les intersections complètes)
Annales de l'institut Fourier, 51 no. 2 (2001), p. 497-512, doi: 10.5802/aif.1830
Article PDF | Reviews MR 1824962 | Zbl 0991.32008
Class. Math.: 32C25, 32Q28, 32Q55, 57R40
Keywords: complete intersections, homotopy principle

Résumé - Abstract

We construct closed complex submanifolds of ${\Bbb C^n}$ which are differential but not holomorphic complete intersections. We also prove a homotopy principle concerning the removal of intersections with certain complex subvarieties of ${\Bbb C}^n$.

Bibliography

[Bis] E. Bishop, “Differentiable manifolds in complex Euclidean space”, Duke Math. J. 32 (1965), p. 1-21 Article |  MR 200476 |  Zbl 0154.08501
[BK] J. Bochnak & W. Kucharz, “Complete intersections in differential topology and analytic geometry”, Boll. Un. Mat. Ital.B (7) 10 (1996) no. 4, p. 1019-1041  MR 1430164 |  Zbl 0904.57013
[Car] H. Cartan, Espaces fibrés analytiques, Oeuvres, Springer, 1979, p. 97-121  Zbl 0121.30503
[Chi] E.M. Chirka, Complex analytic sets, Kluwer Academic Publishers Group, Dordrecht, 1989  MR 1111477 |  Zbl 0683.32002
[DE] P.G. Dixon & J. Esterle, “Michael's problem and the Poincaré--Fatou--Bieberbach phenomenon”, Bull. Amer. Math. Soc. (N.S.) 15 (1986), p. 127-187 Article |  MR 854551 |  Zbl 0608.32008
[EGr] Y. Eliashberg & M. Gromov, “Embeddings of Stein manifolds”, Ann. Math. 136 (1992), p. 123-135  MR 1173927 |  Zbl 0758.32012
[FRa] O. Forster & K.J. Ramspott, “Analytische Modulgarben und Endromisbündel”, Invent. Math. 2 (1966), p. 145-170 Article |  MR 218618 |  Zbl 0154.33401
[For1] F. Forstnerič, “Complex tangents of real surfaces in complex surfaces”, Duke Math. J. 67 (1992), p. 353-376 Article |  MR 1177310 |  Zbl 0761.53032
[For2] F. Forstnerič, “Interpolation by holomorphic automorphisms and embeddings in $\C^n$”, J. Geom. Anal. 9 (1999) no. 1, p. 93-118 Article |  MR 1760722 |  Zbl 0963.32006
[FP1] F. Forstnerič & J. Prezelj, “Oka's principle for holomorphic fiber bundles with sprays”, Math. Ann. 317 (2000), p. 117-154 Article |  MR 1760671 |  Zbl 0964.32017
[FP2] F. Forstnerič & J. Prezelj, “Oka's principle for holomorphic submersions with sprays”, Preprint, 1999 arXiv |  Zbl 1011.32006
[FRo] F. Forstnerič & J.-P. Rosay, “Approximation of biholomorphic mappings by automorphisms of $\C^n$”, Invent. Math. 112 (1993), p. 323-349 Article |  MR 1213106 |  Zbl 0792.32011
[GRe] H. Grauert & R. Remmert, Theory of Stein Spaces, Grundl. Math. Wiss. 227, Springer, New York, 1977  MR 513229 |  Zbl 0433.32007
[Gro] M. Gromov, “Oka's principle for holomorphic sections of elliptic bundles”, J. Amer. Math. Soc. 2 (1989), p. 851-897  MR 1001851 |  Zbl 0686.32012
[GR] C. Gunning & H. Rossi, Analytic functions of several complex variables, Prentice--Hall, Englewood Cliffs, 1965  MR 180696 |  Zbl 0141.08601
[Ham] H.A. Hamm, “Zur Homotopietyp Steinscher Räume”, J. Reine Angew. Math. 338 (1983), p. 121-135 Article |  MR 684017 |  Zbl 0491.32010
[Hus] D. Husemoller, Fibre bundles, Graduate Texts in Mathematics 20, Springer-Verlag, New York, 1994  MR 1249482 |  Zbl 0794.55001
[RRu] J.-P. Rosay & W. Rudin, “Holomorphic maps from ${\Bbb C}^n$ to ${\Bbb C}^n$”, Trans. Amer. Math. Soc. 310 (1988), p. 47-86  MR 929658 |  Zbl 0708.58003
[Sch] M. Schneider, On the number of equations needed to describe a variety, Proc. Sympos. Pure Math., Amer. Math. Soc., 1984, p. 163-180  Zbl 0539.32009
[Schür] J. Schürmann, “Embeddings of Stein spaces into affine spaces of minimal dimension”, Math. Ann. 307 (1997), p. 381-399 Article |  MR 1437045 |  Zbl 0881.32007
[Whi] G.W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer, New York--Berlin, 1978  MR 516508 |  Zbl 0406.55001
[Gra] H. Grauert, “Analytische Faserungen über holomorph-vollständigen Räumen”, Math. Ann. 135 (1958), p. 263-273 Article |  MR 98199 |  Zbl 0081.07401
[<L>FRo</L>] F. Forstnerič & J.-P. Rosay, “Erratum: ``Approximation of biholomorphic mappings by automorphisms of $\C^n$”, Invent. Math. 118 (1994), p. 573-574 Article |  MR 1296357 |  Zbl 0808.32017
top