logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
François Lescure; Laurent Meersseman
Compactifications équivariantes non kählériennes d'un groupe algébrique multiplicatif
(Non Kählerian equivariant compactifications of an algebraic multiplicative group)
Annales de l'institut Fourier, 52 no. 1 (2002), p. 255-273, doi: 10.5802/aif.1885
Article PDF | Reviews MR 1881579 | Zbl 0995.32012
Class. Math.: 32J05, 32M12, 14M17
Keywords: group actions, compact holomorphic manifolds, algebraic groups

Résumé - Abstract

We use LV-M manifolds to give examples of equivariant holomorphic compactifications $M$ of $({\Bbb C}^*)^m$ which Albanese manifold is trivial but with $0<{\rm dim}_{{\Bbb C}}H^0(M,d{\cal O}_M)< {\rm dim}_{{\Bbb C}}H^1(M,{\cal O}_M)$

Bibliography

[1] A. Blanchard, “Sur les variétés analytiques complexes”, Ann. Sci. Ec. Norm. Sup. 73 (1956), p. 157-202 Numdam |  MR 87184 |  Zbl 0073.37503
[2] B. Grünbaum, Convex polytopes, London interscience publisher, 1967  MR 226496 |  Zbl 0163.16603
[3] F. Lescure, “Compactifications $\scriptstyle\Bbb C$-analytiques équivariantes par des courbes”, Mémoire de la S.M.F 115 (1987) no. 26 Numdam |  Zbl 0626.32031
[4] F. Lescure, “Sur les compactifications équivariantes des groupes commutatifs”, Ann. Inst. Fourier 38 (1988) no. 4, p. 93-120 Cedram |  MR 978242 |  Zbl 0644.32015
[5] F. Lescure, “Une compactification $X$ de $(\scriptstyle\Bbb C^*)^5$ de variété d'Albanese nulle et $H^0(X,$ $d\Cal O_X)$ $\not=0$”, Publ. interne Lille (IRMA) 23 (1991)
[6] S. López de Medrano & A. Verjovsky, “A new family of complex, compact, non symplectic manifolds”, Bol. Soc. Mat. Bra. 28 (1997) no. 2, p. 243-267  MR 1479504 |  Zbl 0901.53021
[7] L. Meersseman, “Construction de variétés compactes complexes”, C.R. Acad. Sci. Paris 325 (1997), p. 1005-1008  MR 1485619 |  Zbl 0893.32021
[8] L. Meersseman, “ A new geometric construction of compact, complex manifolds in any dimension”, Math. Ann. 317 (2000), p. 79-115 Article |  MR 1760670 |  Zbl 0958.32013
[9] A. Morimoto, “On the classification of non compact complex abelian Lie groups”, Trans. AMS 123 (1966), p. 200-228 Article |  MR 207893 |  Zbl 0144.07903
[10] T. Oda, Convex Bodies and Algebraic Geometry, Springer, Berlin, 1988  MR 922894 |  Zbl 0628.52002
[11] J. Potters, “On Almost Homogeneous Compact Complex Analytic Surfaces”, Inventiones Math. 8 (1969), p. 244-266 Article |  MR 259166 |  Zbl 0205.25102
[12] C. Vogt, “Line bundles on toroidal groups”, J. reine angew. Math. 335 (1982), p. 197-215 Article |  MR 667467 |  Zbl 0485.32020
[13] R.O. Wells, Differential Analysis on Complex Manifolds, Prentice Hall, Englewood Cliff, 1973  MR 515872 |  Zbl 0262.32005
top