logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Oliver Baues; Vicente Cortés
Abelian simply transitive affine groups of symplectic type
(Groupes abéliens affines simplement transitifs du type symplectique)
Annales de l'institut Fourier, 52 no. 6 (2002), p. 1729-1751, doi: 10.5802/aif.1932
Article PDF | Reviews MR 1952529 | Zbl 1012.22013
Class. Math.: 22E25, 22E45, 53C26
Keywords: affine transformations, flat symplectic connections, special Kähler manifolds

Résumé - Abstract

The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. \noindent Similarly, we classify the complete global model spaces for flat special Kähler manifolds with a constant cubic form.

Bibliography

[A] L. Auslander, “Simply Transitive Groups of Affine Motions”, Amer. J. Math 99 (1977) no. 4, p. 809-826 Article |  MR 447470 |  Zbl 0357.22006
[ACD] D. V. Alekseevsky, V. Cortés & C. Devchand, “Special complex manifolds”, J. Geom. Phys 42 (2002), p. 85-105 Article |  MR 1894078 |  Zbl 1004.53038
[BC] O. Baues & V. Cortés, “Realisation of special Kähler manifolds as parabolic spheres”, Proc. Amer. Math. Soc 129 (2001) no. 8, p. 2403-2407 Article |  MR 1823925 |  Zbl 1031.53020
[Ca] E. Calabi, “Improper affine hypersurfaces of convex type and a generalization of a theorem of Jörgens”, Michigan Math. J 5 (1958), p. 105-126 Article |  MR 106487 |  Zbl 0113.30104
[D] B. Dubrovin, Geometry of $2D$ topological field theories, Lecture Notes in Math, Springer, 1996, p. 120-348  Zbl 0841.58065
[DO] K. Dekimpe & V. Ongenae, “On the number of abelian left symmetric algebras”, Proc. Amer. Math. Soc 128 (2000) no. 11, p. 3191-3200 Article |  MR 1695151 |  Zbl 0953.17001
[F] D. S. Freed, “Special Kähler manifolds”, Commun. Math. Phys 203 (1999) no. 1, p. 31-52 Article |  MR 1695113 |  Zbl 0940.53040
[FGH] D. Fried, W. Goldman & M.W. Hirsch, “Affine manifolds with nilpotent holonomy”, Comment. Math. Helv 56 (1981) no. 4, p. 487-523 Article |  MR 656210 |  Zbl 0516.57014
[K] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, 1972  MR 355886 |  Zbl 0246.53031
[L] Z. Lu, “A note on special Kähler manifolds”, Math. Ann 313 (1999) no. 4, p. 711-713 Article |  MR 1686939 |  Zbl 1021.53046
[NS] K. Nomizu & T. Sasaki, Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge, 1994  MR 1311248 |  Zbl 0834.53002
[S] D. Segal, “The structure of complete left-symmetric algebras”, Math. Ann 293 (1992) no. 3, p. 569-578 Article |  MR 1170527 |  Zbl 0766.17005
[VLS] L. Vrancken, A. M. Li & U. Simon, “Affine spheres with constant affine sectional curvature”, Math. Z 206 (1991) no. 4, p. 651-658 Article |  MR 1100847 |  Zbl 0721.53014
top