logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Emil Straube
Geometric conditions which imply compactness of the ${\overline\partial}$-Neumann operator
(Conditions géométriques qui entraînent la compacité de l'opérateur ${\overline\partial}$-Neumann)
Annales de l'institut Fourier, 54 no. 3 (2004), p. 699-710, doi: 10.5802/aif.2030
Article PDF | Reviews MR 2097419 | Zbl 1061.32028
Class. Math.: 32W05
Keywords: $\overline{\partial}$-Neumann operator, compactness, geometric conditions

Résumé - Abstract

For smooth bounded pseudoconvex domains in ${\Bbb C}^{2}$, we provide geometric conditions on the boundary which imply compactness of the $\overline{\partial}$-Neumann operator. It is noteworthy that the proof of compactness does {\sl not} proceed via verifying the known potential theoretic sufficient conditions.

Bibliography

[1] Harold P. Boas, “Small sets of infinite type are benign for the $\bar\partial$-Neumann problem”, Proceedings of the American Math. Soc 103 (1988), p. 569-578  MR 943086 |  Zbl 0652.32016
[2] Harold P. Boas & Emil J. Straube, Global regularity of the $\bar\partial$-Neumann problem: a survey of the $\cl L^¨2$-Sobolev theory, MSRI Publications, Cambridge University Press, 1999  Zbl 0967.32033
[3] David W. Catlin, “Boundary behavior of holomorphic functions on weakly pseudoconvex domains”, Princeton University Ph.D. Thesis, 1978  Zbl 0484.32005
[4] David W. Catlin, Global regularity of the $\bar\partial$-Neumann problem, Proc. Symp. Pure Math., 1984, p. 39-49  Zbl 0578.32031
[5] David W. Catlin, “Subelliptic estimates for the $\bar\partial$-Neumann problem on pseudoconvex domains”, Annals of Mathematics (2) 126 (1987), p. 131-191  MR 898054 |  Zbl 0627.32013
[6] So-Chin Chen & Mei-Chi Shaw, Partial Differential Equations in Several Complex Variables, Studies in Advanced Mathematics, American Mathematical Society/International Press, 2001  MR 1800297 |  Zbl 0963.32001
[7] Michael Christ & Siqi Fu, “Compactness in the $\bar\partial$-Neumann problem, magnetic Schrödinger operators, and the Aharonov--Bohm effect”, preprint, 2003 arXiv |  MR 2166176 |  Zbl 1098.32020
[8] John P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993  MR 1224231 |  Zbl 0854.32001
[9] M. Derridj, “Regularité pour $\bar\partial$ dans quelques domaines faiblement pseudo-convexes”, Journal of Differential Geometry 13 (1978), p. 559-576  MR 570218 |  Zbl 0435.35057
[10] G.B. Folland & J.J. Kohn, The Neumann Problem for the Cauchy--Riemann Complex, Annals of Mathematics Studies 75, Princeton University Press, 1972  MR 461588 |  Zbl 0247.35093
[11] Siqi Fu & Emil J. Straube, “Compactness of the $\bar\partial$-Neumann problem on convex domains”, Journal of Functional Analysis 159 (1998), p. 629-641  MR 1659575 |  Zbl 0959.32042
[12] Siqi Fu & Emil J. Straube, Compactness in the $\bar\partial$-Neumann problem, Math. Research Inst. Publ., 2001, p. 141-160  Zbl 1011.32025
[13] Siqi Fu & Emil J. Straube, “Semi-classical analysis of Schrödinger operators and compactness in the $\bar\partial$-Neumann problem”, Journal of Math. Analysis and Applications 271 (2002) no. 1, p. 267-282  MR 1923760 |  Zbl 01836752
[14] Torsten Hefer & Ingo Lieb, “On the compactness of the $\overline\partial$-Neumann operator”, Ann. Fac. Sci. Toulouse Math (6) 9 (2000), p. 415-432 Cedram |  MR 1842025 |  Zbl 1017.32025
[15] Peter Matheos, “A Hartogs domain with no analytic discs in the boundary for which the $\bar\partial$-Neumann problem is not compact”, University of California Los Angeles Ph.D. Thesis, 1997
[16] Jeffery D. McNeal, “A sufficient condition for compactness of the $\bar\partial$-Neumann problem”, Journal of Functional Analysis 195 (2002), p. 190-205  MR 1934357 |  Zbl 1023.32029
[17] Nessim Sibony, “Une classe de domaines pseudoconvexes”, Duke Math. Journal 55 (1987), p. 299-319 Article |  MR 894582 |  Zbl 0622.32016
[18] Emil J. Straube, “Plurisubharmonic functions and subellipticity of the $\hbox\bar\partial$-Neumann problem on non-smooth domains”, Mathematical Research Letters 4 (1997), p. 459-467  MR 1470417 |  Zbl 0887.32005
[19] William P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, 1989  MR 1014685 |  Zbl 0692.46022
[<L>13</L>] Siqi Fu & Emil J. Straube, “Semi-classical analysis of Schrödinger operators and compactness in the $\bar\partial$-Neumann problem. (correction)”, J. Math. Anal. Appl. 280 (2003) no. 1, p. 195-196  MR 1972203 |  Zbl 01836752
top