logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Pascal Lambrechts; Don Stanley
The rational homotopy type of configuration spaces of two points
(Le type d'homotopie rationnel des espaces de configuration de deux points)
Annales de l'institut Fourier, 54 no. 4 (2004), p. 1029-1052, doi: 10.5802/aif.2042
Article PDF | Reviews MR 2111020 | Zbl 1069.55006
Class. Math.: 55P62
Keywords: configuration space, Sullivan model

Résumé - Abstract

We prove that the rational homotopy type of the configuration space of two points in a $2$-connected closed manifold depends only on the rational homotopy type of that manifold and we give a model in the sense of Sullivan of that configuration space. We also study the formality of configuration spaces.

Bibliography

[1] F. Cohen & L. Taylor, Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Lecture Notes in Math., Springer, 1978, p. 106-143  Zbl 0398.55004
[2] P. Deligne, P. Griffiths, J. Morgan & D. Sullivan, “Real homotopy theory of Kähler manifolds”, Invent. Math 29 (1975), p. 245-274  MR 382702 |  Zbl 0312.55011
[3] Y. Félix, S. Halperin & J.-C. Thomas, Rational homotopy theory, Graduate Text in Mathematics vol. 210, Springer-Verlag, 2001  MR 1802847 |  Zbl 0961.55002
[4] W. Fulton & R. Mac Pherson, “A compactification of configuration spaces”, Annals of Math 139 (1994), p. 183-225  MR 1259368 |  Zbl 0820.14037
[5] J. Klein, “Poincaré duality embeddings and fiberwise homotopy theory”, Topology 38 (1999), p. 597-620  MR 1670412 |  Zbl 0928.57028
[6] J. Klein, “Poincaré duality embeddings and fiberwise homotopy theory, II”, Quart. Jour. Math. Oxford 53 (2002), p. 319-335  MR 1930266 |  Zbl 1030.57036
[7] I. Kriz, “On the rational homotopy type of configuration spaces”, Annals of Math 139 (1994), p. 227-237  MR 1274092 |  Zbl 0829.55008
[8] P. Lambrechts, “Cochain model for thickenings and its application to rational LS-category”, Manuscripta Math 103 (2000), p. 143-160  MR 1796311 |  Zbl 0964.55013
[9] P. Lambrechts & D. Stanley, “Algebraic models of the complement of a subpolyhedron in a closed manifold (submitted)”, , http://gauss.math.ucl.ac.be/$\sim$topalg/preprints/preprint-top
[10] P. Lambrechts & D. Stanley, “$DG$module models for the configuration space of $k$ points (in preparation)”,
[11] N. Levitt, “Spaces of arcs and configuration spaces of manifolds”, Topology 34 (1995), p. 217-230  MR 1308497 |  Zbl 0845.57021
[12] J. Milnor & D. Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete Band 73, Springer-Verlag, 1973  MR 506372 |  Zbl 0292.10016
[13] B. Totaro, “Configuration spaces of algebraic varieties”, Topology 35 (1996) no. 4, p. 1057-1067  MR 1404924 |  Zbl 0857.57025
[14] J. Stasheff, “Rational Poincaré duality spaces”, Illinois J. Math 27 (1983), p. 104-109 Article |  MR 684544 |  Zbl 0488.55010
[15] D. Sullivan, “Infinitesimal computations in topology”, Inst. Hautes Études Sci. Publ. Math. (1977) no. 47, p. 269-331 Numdam |  MR 646078 |  Zbl 0374.57002
top