logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Bernard Malgrange
Déformations isomonodromiques, forme de Liouville, fonction $\tau$
(Isomonodromic deformations, Liouville form, $\tau $ function)
Annales de l'institut Fourier, 54 no. 5 (2004), p. 1371-1392, doi: 10.5802/aif.2052
Article PDF | Reviews MR 2127851 | Zbl 1086.34071 | 2 citations in Cedram
Class. Math.: 34M55
Keywords: isomonodromic deformations, Liouville form, $\tau $ function

Résumé - Abstract

In this paper, one improves previous results by Miwa and the author on the ``$\tau $ function'' of the Schlesinger equation. One relates this function with the Liouville form of a loop group naturally associated to this equation.

Bibliography

[B] L. Boutet de Monvel, Problème de Riemann-Hilbert. III., Progress in math., Birkhäuser, 1983  Zbl 0556.32017
[Bo1] P. Boalch, “Symplectic manifolds and isomonodromic deformations”, Adv. in Math 163 (2001), p. 137-205  MR 1864833 |  Zbl 1001.53059
[Bo2] P. Boalch, “Stokes matrices, Poisson Lie groups and Frobenius manifolds”, Inv. Math. 146 (2001), p. 479-506  MR 1869848 |  Zbl 1044.53060
[H] N. J. Hitchin, Frobenius manifolds (notes by D. Calderbank), Nato ASI series C: Math \& Phys., Kluwer, 1995  Zbl 0867.53027
[J-M-M-S] M. Jimbo, T. Miwa, Y. Mori & M. Sato, “Density matrix of an impenetrable Base gas and the fifth Painlevé transcendant”, Physica 1D (1980), p. 80-158
[Ma1] B. Malgrange, Sur les déformations isomonodromiques. I: singularités régulières, Progress in Math., Birkhäuser, 1983  Zbl 0528.32017
[Ma2] B. Malgrange, “Déformations isomonodromiques et fonction $\tau $ (extrait d'une lettre à J. Bost)”, non publié, 1986
[Ma3] B. Malgrange, “Connexions méromorphes 2 : le réseau canonique”, Inv. Math. 124 (1996), p. 367-387  MR 1369422 |  Zbl 0849.32003
[Ma4] B. Malgrange, “Deformations of differential systems, 2”, J. Ramanujan Math. Soc 1 (1987), p. 3-15  MR 945599 |  Zbl 0687.32019
[Ma5] B. Malgrange, “Le groupoïde de Galois d'un feuilletage”, Monographies de l'Enseignement mathématique 38 (2001), p. 465-501  MR 1929336 |  Zbl 1033.32020
[Ma6] B. Malgrange, “On non-linear differential Galois theory”, Chinese Ann. of Math 23B (2002) no. 2, p. 219-226  Zbl 1009.12005
[Mi] T. Miwa, “Painlevé property of monodromy preserving equations and the analyticity of $\tau $ function”, Publ. RIMS, Kyoto University 17 (1981) no. 2, p. 709-721 Article |  MR 642657 |  Zbl 0605.34005
[Ok1] K. Okamoto, “On the $\tau $-function of the Painlevé equations”, Physica 2D (1981), p. 525-535  MR 625451
[Ok2] K. Okamoto, “Sur les feuilletages associés aux équations du second ordre à points critriques fixes de P. Painlevé”, Jap. J. Math 5 (1979), p. 1-79  MR 614694 |  Zbl 0426.58017
[P] J. Palmer, “Zeroes of the Jimbo-Miwa-Ueno tau function”, J. Math. Phys 40 (1999) no. 12, p. 6638-6681  MR 1725878 |  Zbl 0974.34081
[Pa] P. Painlevé, “Démonstration de l'irréductibilité absolue de l'équation $y''=6y^2+x$”, C. R. Acad. Sc. Paris 135 (1902), p. 642-647  JFM 33.0347.01
[P-S] A. Pressley & G. Segal, Loop groups, Oxford Math. Monographs, Oxford, 1986  MR 900587 |  Zbl 0618.22011
[S-M-J] M. Sato, T. Miwa & M. Jimbo, “Aspects of holonomic quantum fields”, Springer Lect. Notes in Physics 126 (1980), p. 429-491  Zbl 0451.34008
[S-W] G. Segal & G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. I.H.É.S 61 (1985), p. 5-65 Numdam |  MR 783348 |  Zbl 0592.35112
[W] A. Weinstein, “The local structure of Poisson manifolds”, J. Diff. Geometry 18 (1983), p. 523-557  MR 723816 |  Zbl 0524.58011
top