logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Motohico Mulase; Josephine T. Yu
Non-commutative matrix integrals and representation varieties of surface groups in a finite group
(Intégrales matricielles non-commutatives et variétés de représentations du groupe d'une surface dans un groupe fini)
Annales de l'institut Fourier, 55 no. 6 (2005), p. 2161-2196, doi: 10.5802/aif.2157
Article PDF | Reviews MR 2187951 | Zbl 1092.15020
Class. Math.: 15A52, 20C05, 32G13, 81Q30
Keywords: Random matrices, non-commutative matrix integral, Feynman diagram expansion, ribbon graph, Moebius graph, von Neumann algebra, representation variety

Résumé - Abstract

A new formula is established for the asymptotic expansion of a matrix integral with values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which are orientable or non-orientable.

Bibliography

[1] M. Adler & P. van Moerbeke, “Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum”, Ann. of Math. (2) 153 (2001) no. 1, p. 149-189 Article |  MR 1826412 |  Zbl 1033.82005
[2] J. Baik, P. Deift & K. Johansson, “On the distribution of the length of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc. 12 (1999), p. 1119-1178 Article |  MR 1682248 |  Zbl 0932.05001
[3] J. Baik, P. Deift & K. Johansson, “On the distribution of the length of the second row of a Young diagram under Plancherel measure”, math.CO/9901118, http://arxiv.org/abs/math.CO/9901118, 1999 arXiv |  Zbl 0963.05133
[4] J. Baik & E. Rains, “Symmetrized random permutations”, math.CO/9910019, http://arxiv.org/abs/math.CO/9910019, 1999 arXiv |  Zbl 0989.60010
[5] G.V. Belyi, “On galois extensions of a maximal cyclotomic fields”, Math. USSR Izvestija 14 (1980), p. 247-256 Article |  MR 534593 |  Zbl 0429.12004
[6] D. Bessis, C. Itzykson & J.B. Zuber, “Quantum field theory techniques in graphical enumeration”, Advances Applied Math. 1 (1980), p. 109-157 Article |  MR 603127 |  Zbl 0453.05035
[7] P.M. Bleher & A.R. Its, Random matrix models and their applications, Math. Sci. Research Institute Publications 40, Cambridge University Press, 2001  MR 1842779 |  Zbl 0967.00059
[8] A. Borodin, A. Okounkov & G. Olshanski, “On asymptotics of Plancherel measures for symmetric groups”, math.CO/990532, http://arxiv.org/abs/math.CO/9905032, 1999 arXiv |  Zbl 0938.05061
[9] C. Brézin, C. Itzykson, G. Parisi & J.-B. Zuber, “Planar diagrams”, Comm. Math. Physics 59 (1978), p. 35-51 Article |  MR 471676 |  Zbl 0997.81548
[10] W. Burnside, Theory of groups of finite order, 2nd ed., Cambridge University Press, 1991  JFM 28.0118.03
[11] P. Deift, “Integrable systems and combinatorial theory”, Notices AMS 47 (2000), p. 631-640  MR 1764262 |  Zbl 1041.05004
[12] R.P. Feynman, “Space-time approach to quantum electrodynamics”, Phys. Review 76 (1949), p. 769-789 Article |  MR 35687 |  Zbl 0038.13302
[13] D.S. Freed & Frank Quinn, “Chern-Simons theory with finite gauge group”, Communications in Mathematical Physics 156 (1993), p. 435-472 Article |  MR 1240583 |  Zbl 0788.58013
[14] G. Frobenius, “Über Gruppencharaktere”, Sitzungsberichte der königlich preussischen Akademie der Wissenschaften (1896), p. 985-1021  JFM 27.0092.01
[15] G. Frobenius & I. Schur, “Über die reellen 11arstellungen der endlichen Gruppen”, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (1906), p. 186-208  JFM 37.0161.01
[16] F.P. Gardiner, Teichmüller theory and quadratic differentials, John Wiley \& Sons, 1987  MR 903027 |  Zbl 0629.30002
[17] I.P. Goulden, J.L. Harer, J.L. & D.M. Jackson, “A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves”, Trans. Amer. Math. Soc. 353 (2001), p. 4405-4427 Article |  MR 1851176 |  Zbl 0981.58007
[18] D.J. Gross & W. Taylor, “Two dimensional QCD is a string theory”, Nucl. Phys. B 400 (1993), p. 181-210  MR 1227260 |  Zbl 0941.81580
[19] J.L. Gross & T.W. Tucker, Topological graph theory, John Wiley \& Sons, 1987  MR 898434 |  Zbl 0621.05013
[20] A. Grothendieck, “Esquisse d’un programme”, reprinted in [46], 7–48, 1984
[21] J.L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math. 84 (1986), p. 157-176 Article |  MR 830043 |  Zbl 0592.57009
[22] J.L. Harer & D. Zagier, “The Euler characteristic of the moduli space of curves”, Invent. Math. 85 (1986), p. 457-485 Article |  MR 848681 |  Zbl 0616.14017
[23] A. Hatcher, “On triangulations of surfaces”, Topology and Appl. 40 (1991), p. 189-194 Article |  MR 1123262 |  Zbl 0727.57012
[24] I.M. Isaacs, Character theory of finite groups, Academic Press, 1976  MR 460423 |  Zbl 0337.20005
[25] K. Johansson, “Discrete orthogonal polynomial ensembles and the Plancherel measure”, math.CO/9906120, http://arxiv.org/abs/math.CO/9906120, 1999 arXiv |  Zbl 0984.15020
[26] G.A. Jones, Characters and surfaces: a survey, Lecture Note Series 249, London Math. Soc., 1998  MR 1647416 |  Zbl 0922.30031
[27] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Physics 147 (1992), p. 1-23 Article |  MR 1171758 |  Zbl 0756.35081
[28] K. Liu, “Heat kernel and moduli space”, Math. Research Letters 3 (1996), p. 743-762  MR 1426532 |  Zbl 0871.58014
[29] K. Liu, “Heat kernel and moduli space II”, Math. Research Letters 4 (1996), p. 569-588  MR 1470427 |  Zbl 0886.58013
[30] K. Liu, “Heat kernels, symplectic geometry, moduli spaces and finite groups”, Surveys Diff. Geom. 5 (1999), p. 527-542  MR 1772278 |  Zbl 1001.53060
[31] A.D. Mednykh, “Determination of the number of nonequivalent coverings over a compact Riemann surface”, Soviet Math. Doklady 19 (1978), p. 318-320  Zbl 0395.30034
[32] M. Lal Mehta, Random matrices, 2nd ed., Academic Press, 1991  MR 1083764 |  Zbl 0780.60014
[33] M. Mulase, Algebraic theory of the KP equations, Perspectives in Mathematical Physics, Intern. Press Co., 1994, p. 157-223  Zbl 0837.35132
[34] M. Mulase, Matrix integrals and integrable systems, Topology, geometry and field theory, World Scientific, 1994  Zbl 0903.15007
[35] M. Mulase, “Asymptotic analysis of a hermitian matrix integral”, Int. J. Math. 6 (1995), p. 881-892 Article |  MR 1353999 |  Zbl 0870.14019
[36] M. Mulase, Lectures on the asymptotic expansion of a hermitian matrix integral, Springer Lecture Notes in Physics, 1998  Zbl 0901.35092
[37] M. Mulase & M. Penkava, “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline{\mathbb{Q}}$”, Asian J. Math. 2 (1998), p. 875-920  MR 1734132 |  Zbl 0964.30023
[38] M. Mulase & A. Waldron, “Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs”, math-ph/0206011, http://arxiv.org/abs/math-ph/0206011, 2002 arXiv |  MR 2005857 |  Zbl 1033.81062
[39] M. Mulase & J.T. Yu, “A generating function of the number of homomorphisms from a surface groupin to a ?nite group”, math.QA/0209008, http://arxiv.org/abs/math.QA/0209008, 2002 arXiv
[40] A. Okounkov, “Random matrices and random permutations”, math.CO/9903176, http://arxiv.org/abs/math.CO/9903176, 1999 arXiv |  MR 1802530 |  Zbl 1018.15020
[41] A. Okounkov & R. Pandharipande, Mapcolor theorem, Springer-Verlag, 1974
[42] A. Okounkov & R. Pandharipande, “The equivariant Gromov-Witten theory of $P^1$”, math.AG/0207233, http://arxiv.org/abs/math.AG/0207233, 2002 arXiv |  Zbl 1105.14077
[43] R.C. Penner, “Perturbation series and the moduli space of Riemann surfaces”, J. Diff. Geom. 27 (1988), p. 35-53  MR 918455 |  Zbl 0608.30046
[44] G. Ringel, Map color theorem, Springer-Verlag, 1974  MR 349461 |  Zbl 0287.05102
[45] L. Schneps, The Grothendieck theory of dessins d'enfants, Lecture Notes Series 200, London Math. Soc., 1994  Zbl 0798.00001
[46] L. Schneps, P. Lochak & eds., Geometric Galois actions: around Grothendieck's esquisse d'un programme, Lecture Notes Series 242, London Math. Soc., 1997  Zbl 0868.00041
[47] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, 1987  MR 450380 |  Zbl 0355.20006
[48] R.P. Stanley, Enumerative combinatorics 2, Cambridge University Press, 2001  Zbl 0978.05002
[49] K. Strebel, Quadratic differentials, Springer-Verlag, 1984  MR 743423 |  Zbl 0547.30001
[50] G. 't Hooft, “A planer diagram theory for strong interactions”, Nuclear Physics B 72 (1974), p. 461-473 Article
[51] C.A. Tracy & H. Widom, “Fredholm Determinants, Differential Equations and Matrix Models, hep-th/9306042”, Comm. Math. Physics 163 (1994), p. 33-72 Article |  MR 1277933 |  Zbl 0813.35110
[52] P. van Moerbeke, Integrable lattices: random matrics and random permutations, MSRI Publications, 2001, p. 321-406  Zbl 0987.15014
[53] E. Witten, “On quantum gauge theories in two dimensions”, Comm. Math. Physics 141 (1991), p. 153-209 Article |  MR 1133264 |  Zbl 0762.53063
[54] E. Witten, “Two dimensional gravity and intersection theory on moduli space”, Surveys Diff. Geom. 1 (1991), p. 243-310  MR 1144529 |  Zbl 0808.32023
[55] J. Yu, Graphical expansion of matrix integrals with values in a Clifford algebra, Explorations: A Journal of Undergraduate Research, University of California, Davis, 2003
top