logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Olivier Biquard
Sur les variétés CR de dimension 3 et les twisteurs
(On 3-dimensional CR manifolds and twistors)
Annales de l'institut Fourier, 57 no. 4 (2007), p. 1161-1180, doi: 10.5802/aif.2290
Article PDF | Reviews MR 2339324 | Zbl 1124.53014
Class. Math.: 53C26, 53C28
Keywords: Twistors, selfdual metric, CR manifold

Résumé - Abstract

We prove that any real analytic strictly pseudoconvex CR 3-manifold is the boundary (at infinity) of a unique selfdual Einstein metric defined in a neighborhood. The proof uses a new construction of twistor space based on singular rational curves.

Bibliography

[1] M. F. Atiyah, N. J. Hitchin & I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A 362 (1998) no. 1711, p. 425-461  MR 506229 |  Zbl 0389.53011
[2] O. Biquard, “Métriques d’Einstein asymptotiquement symétriques”, Astérisque 265 (2000)  Zbl 0967.53030
[3] O. Biquard, “Métriques autoduales sur la boule”, Invent. math. 148 (2002) no. 3, p. 545-607 Article |  MR 1908060 |  Zbl 1040.53061
[4] O. Biquard, “Autodual Einstein versus Kähler-Einstein”, Geom. Funct. Anal. 15 (2005) no. 3, p. 598-633 Article |  MR 2221145 |  Zbl 1082.53026
[5] O. Biquard, Cauchy-Riemann 3-Manifolds and Einstein Fillings, in V. Apostolov, A. Dancer, N. Hitchin, M. Wang, ed., Perspectives in Riemannian Geometry, CRM Proceedings and Lecture Notes, American Mathematical Society, 2006, p. 27-46  MR 2251002 |  Zbl 05066641
[6] D. M. J. Calderbank & M. A. Singer, “Einstein metrics and complex singularities”, Invent. Math. 156 (2004) no. 2, p. 405-443 Article |  MR 2052611 |  Zbl 1061.53026
[7] S. S. Chern & J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math. 133 (1974) no. 3, p. 219-271 Article |  MR 425155 |  Zbl 0302.32015
[8] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 1961  MR 1841091 |  Zbl 0978.14001
[9] C. L. Fefferman, “Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains”, Ann. of Math. (2) 103 (1976) no. 2, p. 395-416 Article |  MR 407320 |  Zbl 0322.32012
[10] B. Feix, “Hyperkähler metrics on cotangent bundles”, J. Reine Angew. Math. 532 (2001), p. 33-46 Article |  MR 1817502 |  Zbl 0976.53049
[11] N. J. Hitchin, “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Reine Angew. Math. 42 (1995) no. 1, p. 30-112  MR 1350695 |  Zbl 0861.53049
[12] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete., Springer-Verlag, Berlin, 1996  MR 1440180 |  Zbl 0877.14012
[13] C. LeBrun, “$\mathcal{H}$-space with a cosmological constant”, Proc. Roy. Soc. London Ser. A 380 (1982) no. 1778, p. 171-185 Article |  MR 652038 |  Zbl 0549.53042
[14] C. LeBrun, “Twistor CR manifolds and three-dimensional conformal geometry”, Trans. Amer. Math. Soc. 284 (1984) no. 2, p. 601-616 Article |  MR 743735 |  Zbl 0513.53006
[15] J. M. Lee & R. Melrose, “Boundary behaviour of the complex Monge-Ampère equation”, Acta Math. 148 (1982), p. 159-192 Article |  MR 666109 |  Zbl 0496.35042
top