logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Alexander I. Bobenko; Ivan Izmestiev
Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes
(Théorème d’Alexandrov, triangulations de Delaunay pondérées et volumes mixtes)
Annales de l'institut Fourier, 58 no. 2 (2008), p. 447-505, doi: 10.5802/aif.2358
Article PDF | Reviews MR 2410380 | Zbl 1154.52005 | 1 citation in Cedram
Class. Math.: 52B10, 53C45, 52A39, 52C25
Keywords: Singular Euclidean metric, convex polytope, total scalar curvature

Résumé - Abstract

We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex polytopes with positive singular curvature. This Hessian is shown to be equal to the Hessian of the volume of the dual generalized polyhedron. We prove the non-degeneracy by applying the technique used in the proof of Alexandrov-Fenchel inequality. Our construction of a convex polytope from a given metric is implemented in a computer program.

Bibliography

[1] A. D. Alexandrov, “On the theory of mixed volumes II”, Mat. Sbornik 44 (1937), p. 1205-1238
[2] A. D. Alexandrov, “Existence of a convex polyhedron and of a convex surface with a given metric”, Mat. Sbornik, N. Ser. 11(53) (1942), p. 15-65, (Russian. English summary)  MR 13540 |  Zbl 0061.37603
[3] A. D. Alexandrov, Convex polyhedra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, Translated from the 1950 Russian edition  MR 2127379 |  Zbl 1067.52011
[4] Franz Aurenhammer & Rolf Klein, Voronoi diagrams, Handbook of computational geometry, North-Holland, 2000, p. 201–290  MR 1746678 |  Zbl 0995.65024
[5] W. Blaschke, “Ein Beweis für die Unverbiegbarkeit geschlossener konvexer Flächen.”, Nachr. Ges. Wiss. Göttingen (1912), p. 607-610 Article |  JFM 43.0697.01
[6] W. Blaschke & G. Herglotz, “Über die Verwirklichung einer geschlossenen Fläche mit vorgeschriebenem Bogenelement im Euklidischen Raum”, Sitzungsber. Bayer. Akad. Wiss., Math.-Naturwiss. Abt. No.2 (1937), p. 229-230  Zbl 0018.23501
[7] A. Bobenko & B. Springborn, “A discrete Laplace-Beltrami operator for simplicial surfaces”, arXiv:math.DG/0503219, to appear in Discr. Comp. Geom. arXiv
[8] Brian H. Bowditch, “Singular Euclidean structures on surfaces”, J. London Math. Soc. (2) 44 (1991) no. 3, p. 553-565 Article |  MR 1149015 |  Zbl 0748.57003
[9] Max Dehn, “Über die Starrheit konvexer Polyeder.”, Math. Ann. 77 (1916), p. 466-473 Article |  MR 1511873 |  JFM 46.1115.01
[10] Herbert Edelsbrunner, Geometry and topology for mesh generation, Cambridge Monographs on Applied and Computational Mathematics 7, Cambridge University Press, Cambridge, 2001  MR 1833977 |  Zbl 0981.65028
[11] Maksym Fedorchuk & Igor Pak, “Rigidity and polynomial invariants of convex polytopes”, Duke Math. J. 129 (2005) no. 2, p. 371-404 Article |  MR 2165546 |  Zbl 1081.52012
[12] François Fillastre, “Polyhedral realization of hyperbolic metrics with conical singularities on compact surfaces”, Ann. Inst. Fourier (Grenoble) 57 (2007) no. 1, p. 163-195 Cedram |  MR 2313089
[13] P. Filliman, “Rigidity and the Alexandrov-Fenchel inequality.”, Monatsh. Math. 113 (1992) no. 1, p. 1-22 Article |  MR 1149057 |  Zbl 0765.52017
[14] S. Fortune, Voronoi diagrams and Delaunay triangulations, Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, 1997, p. 377–388  MR 1730176 |  Zbl 0907.68190
[15] I. M. Gelʼfand, M. M. Kapranov & A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994  MR 1264417 |  Zbl 0827.14036
[16] D. Glickenstein, “Geometric triangulations and discrete Laplacians on manifolds”, arXiv:math.MG/0508188 arXiv
[17] C. Indermitte, Th. M. Liebling, M. Troyanov & H. Clémençon, “Voronoi diagrams on piecewise flat surfaces and an application to biological growth”, Theoret. Comput. Sci. 263 (2001) no. 1-2, p. 263-274, Combinatorics and computer science (Palaiseau, 1997) Article |  MR 1846934 |  Zbl 0974.68222
[18] H. Liebmann, “Beweis zweier Sätze über die Bestimmung von Ovaloiden durch das Krümmungsmass oder die mittlere Krümmung für jede Normalenrichtung.”, Nachr. Ges. Wiss. Göttingen (1899), p. 134-142  JFM 30.0547.02
[19] J. Milnor, The Schläfli differential equality, Collected papers, Publish or Perish Inc., 1994, p. x+295
[20] Hermann Minkowski, “Allgemeine Lehrsätze über die konvexen Polyeder”, Nachr. Ges. Wiss. Göttingen (1897), p. 198-219 Article |  JFM 28.0427.01
[21] L. Nirenberg, “The Weyl and Minkowski problems in differential geometry in the large”, Comm. Pure Appl. Math. 6 (1953), p. 337-394 Article |  MR 58265 |  Zbl 0051.12402
[22] Igor Pak, “Rigidity and polynomial invariants of convex polytopes”, Sib. Math. J. 47 (2006) no. 5, p. 859-864  MR 2265287 |  Zbl 1150.52311
[23] T Regge, “General relativity without coordinates”, Nuovo Cimento 19 (1961), p. 558-571 Article |  MR 127372
[24] Igor Rivin, “Euclidean structures on simplicial surfaces and hyperbolic volume”, Ann. of Math. (2) 139 (1994) no. 3, p. 553-580 Article |  MR 1283870 |  Zbl 0823.52009
[25] Jean-Marc Schlenker, “Circle patterns on singular surfaces”, arXiv:math.DG/0601531 arXiv
[26] Jean-Marc Schlenker, “Small deformations of polygons and polyhedra”, Trans. Amer. Math. Soc. 359 (2007) no. 5, p. 2155-2189 (electronic) Article |  MR 2276616 |  Zbl 05120631
[27] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge, 1993  MR 1216521 |  Zbl 0798.52001
[28] Boris A. Springborn, “A variational principle for weighted Delaunay triangulations and hyperideal polyhedra”, arXiv:math/0603097, to appear in J. Diff. Geom. arXiv
[29] Yu. A. Volkov, “An estimate for the deformation of a convex surface in dependence on the variation of its intrinsic metric”, Ukrain. Geometr. Sb. 5–6 (1968), p. 44-69  MR 283734 |  Zbl 0207.20801
[30] Yu. A. Volkov & E. G. Podgornova, “Existence of a convex polyhedron with prescribed development”, Taškent. Gos. Ped. Inst. Učen. Zap. 85 (1971), p. 3-54, 83, (Russian)  MR 328776
[31] H. Weyl, “Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement”, Zürich. Naturf. Ges. 61 (1916), p. 40-72  JFM 46.1115.03
[32] G. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics 152, Springer-Verlag, Berlin, 1995  MR 1311028 |  Zbl 0823.52002
top