logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Éric Balandraud
Une variante de la méthode isopérimétrique de Hamidoune, appliquée au théorème de Kneser
(A variant of the isoperimetric method of Hamidoune, applied to Kneser’s theorem)
Annales de l'institut Fourier, 58 no. 3 (2008), p. 915-943, doi: 10.5802/aif.2374
Article PDF | Reviews MR 2427515 | Zbl 1143.11039
Class. Math.: 11P70
Keywords: additive number theory, Kneser’s Theorem, isoperimetric method, set addition theory

Résumé - Abstract

In additive number theory, Kneser’s theorem is now a key element in a large number of proofs. Recently, Hamidoune developped a different approach, that he called the isoperimetric method, and that allowed him to provide news proofs and generalizations of classical results. However, until now there was no known proof of Kneser’s theorem by this method. We present here a new isoperimetric point-of-view that, among others, yields a second proof of Kneser’s theorem.

Bibliography

[1] E. Balandraud, “Quelques résultats combinatoires en théorie additive des nombres”, Thèse soutenue en mai 2006 à l’Université Bordeaux 1, http ://tel.archives-ouvertes.fr/tel-00172441/fr/
[2] L. V. Brailovsky & G. A. Freiman, “On a product of finite subsets in a torsion-free group”, J. Algebra 130 (1990), p. 462-476 Article |  MR 1051314 |  Zbl 0697.20019
[3] A.-L. Cauchy, “Recherches sur les nombres”, J. École Polytechnique 9 (1813), p. 99-116 Article
[4] I. Chowla, “A theorem on the additions of residue classes : application to the number $\Lambda (k)$ in the Waring’s problem”, Proc. Indian Acad. Sci. 2 (1937), p. 242-245  JFM 61.0149.03
[5] I. Chowla, H. B. Mann & E. G. Straus, “Some applications of the Cauchy-Davenport theorem”, Norske Vid. Selsk. Forh. (Trondheim) 32 (1959), p. 74-80  MR 125077 |  Zbl 0109.03206
[6] H. Davenport, “On the addition of residue classes”, J. Lond. Math. Soc. 10 (1935), p. 30-32 Article |  Zbl 0010.38905
[7] H. Davenport, “A historical note”, J. Lond. Math. Soc. 22 (1947), p. 100-101 Article |  MR 22865 |  Zbl 0029.34401
[8] G. T. Diderrich, “On Kneser’s addition theorem in groups”, Proc. Amer. Math. Soc. 38 (1973), p. 443-451  Zbl 0266.20041
[9] G. A. Freiman, “On the addition of finite sets. I”, Izv. Vysš. Učebn. Zaved. Matematika 6 (1959), p. 202-213  MR 126388 |  Zbl 0096.25904
[10] J. L. Gross & Yellen J. (éditeurs), Handbook of Graph Theory, Discrete Mathematics and its Applications (Boca Raton), CRC Press, 2004  MR 2035186 |  Zbl 1036.05001
[11] Y. ould Hamidoune, “Sur les atomes d’un graphe orienté”, C. R. Acad. Sci. Paris 284 (1977), p. 1253-1256  Zbl 0352.05035
[12] Y. ould Hamidoune, “On the connectivity of Cayley digraphs”, Europ. J. Combin. 5 (1984), p. 309-312  MR 782052 |  Zbl 0561.05028
[13] Y. ould Hamidoune, “An isoperimetric method in additive Theory”, J. Algebra 179 (1996), p. 622-630 Article |  MR 1367866 |  Zbl 0842.20029
[14] Y. ould Hamidoune, “Subsets with small sums in abelian groups I : the Vosper property”, Europ. J. Combin. 18 (1997), p. 541-556 Article |  MR 1455186 |  Zbl 0883.05065
[15] Y. ould Hamidoune, “On the diophantine Frobenius problem”, Portugal. Math. 55 (1998), p. 425-449  MR 1672114 |  Zbl 0923.11044
[16] Y. ould Hamidoune, “Some results in additive number theory I : the critical pair theory”, Acta arith. 96 (2000), p. 97-119 Article |  MR 1814447 |  Zbl 0985.11011
[17] Y. ould Hamidoune & A. Plagne, “A generalization of Freiman’s $3k-3$ Theorem”, Acta arith. 103 (2002), p. 147-155 Article |  Zbl 1007.11011
[18] Y. ould Hamidoune & A. Plagne, “A multiple set version of the $3k-3$ Theorem”, Rev. Mat. Iberoam. 21 (2005), p. 133-161 Article |  MR 2155017 |  Zbl 1078.11059
[19] J. H. B. Kemperman, “On small sumsets in an abelian group”, Acta Math. 103 (1960), p. 63-88 Article |  MR 110747 |  Zbl 0108.25704
[20] M. Kneser, “Abschätzung der asymptotischen Dichte von Summenmengen”, Math. Z. 58 (1953), p. 459-484 Article |  MR 56632 |  Zbl 0051.28104
[21] M. Kneser, “Ein Satz über abelschen Gruppen mit Anwendungen auf die Geometrie der Zahlen”, Math. Z. 61 (1955), p. 429-434 Article |  MR 68536 |  Zbl 0064.04305
[22] H. B. Mann, “An addition theorem for sets of elements of an abelian group”, Proc. Amer. Math. Soc. 4 (1953)  MR 55334 |  Zbl 0050.25703
[23] Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics 164, Springer-Verlag, New York, 1996, The classical bases  MR 1477155 |  Zbl 0859.11002
[24] A. Plagne, “À propos de la fonction $X$ d’Erdős et Graham”, Ann. Inst. Fourier (Grenoble) 54 (2004), p. 1717-1767 Cedram |  Zbl 1074.11009
[25] G. Vosper, “Addendum to “The critical pairs of subsets of a group of prime order””, J. Lond. Math. Soc. 31 (1956), p. 280-282 Article |  Zbl 0072.03402
[26] G. Vosper, “The critical pairs of subsets of a group of prime order”, J. Lond. Math. Soc. 31 (1956), p. 200-205 Article |  MR 77555 |  Zbl 0072.03402
[27] G. Zémor, “A generalisation to noncommutative groups of a theorem of Mann”, Discrete Math. 126 (1994), p. 365-372 Article |  MR 1264502 |  Zbl 0791.05055
top