logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Henri Gillet; Damian Rössler; Christophe Soulé
An arithmetic Riemann-Roch theorem in higher degrees
(Un théorème de Riemann-Roch arithmétique en degrés supérieurs)
Annales de l'institut Fourier, 58 no. 6 (2008), p. 2169-2189, doi: 10.5802/aif.2410
Article PDF | Reviews MR 2473633 | Zbl 1152.14023 | 1 citation in Cedram
Class. Math.: 14G40, 14C40, 58J52
Keywords: Arakelov Geometry, Grothendieck-Riemann-Roch theorem, analytic torsion form, arithmetic intersection theory

Résumé - Abstract

We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.

Bibliography

[1] S. Ju. Arakelov, “An intersection theory for divisors on an arithmetic surface”, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), p. 1179-1192  MR 472815 |  Zbl 0355.14002
[2] Nicole Berline, Ezra Getzler & Michèle Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, 2004, Corrected reprint of the 1992 original  MR 2273508 |  Zbl 1037.58015
[3] P. Berthelot, A. Grothendieck & L. Illusie, Théorie des intersections et théorème de Riemann-Roch, Springer-Verlag, 1971, Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre, Lecture Notes in Mathematics, Vol. 225  MR 354655 |  Zbl 0218.14001
[4] J.-M. Bismut, H. Gillet & C. Soulé, “Bott-Chern currents and complex immersions”, Duke Math. J. 60 (1990) no. 1, p. 255-284 Article |  MR 1047123 |  Zbl 0697.58005
[5] Jean-Michel Bismut, “Holomorphic families of immersions and higher analytic torsion forms”, Astérisque (1997) no. 244  MR 1623496 |  Zbl 0899.32013
[6] Jean-Michel Bismut, Henri Gillet & Christophe Soulé, “Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion”, Comm. Math. Phys. 115 (1988) no. 1, p. 49-78 Article |  Zbl 0651.32017
[7] Jean-Michel Bismut, Henri Gillet & Christophe Soulé, “Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms”, Comm. Math. Phys. 115 (1988) no. 1, p. 79-126 Article |  MR 929147 |  Zbl 0651.32017
[8] Jean-Michel Bismut, Henri Gillet & Christophe Soulé, “Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants”, Comm. Math. Phys. 115 (1988) no. 2, p. 301-351 Article |  MR 931666 |  Zbl 0651.32017
[9] Jean-Michel Bismut, Henri Gillet & Christophe Soulé, Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser Boston, 1990, p. 249–331  MR 1086887 |  Zbl 0744.14015
[10] Jean-Michel Bismut & Kai Köhler, “Higher analytic torsion forms for direct images and anomaly formulas”, J. Algebraic Geom. 1 (1992) no. 4, p. 647-684  MR 1174905 |  Zbl 0784.32023
[11] Jean-Benoît Bost, “Analytic torsion of projective spaces and compatibility with immersions of Quillen metrics”, Internat. Math. Res. Notices (1998) no. 8, p. 427-435 Article |  MR 1628231 |  Zbl 1048.14500
[12] Gerd Faltings, “Calculus on arithmetic surfaces”, Ann. of Math. (2) 119 (1984) no. 2, p. 387-424 Article |  MR 740897 |  Zbl 0559.14005
[13] Gerd Faltings, Lectures on the arithmetic Riemann-Roch theorem, Annals of Mathematics Studies 127, Princeton University Press, 1992, Notes taken by Shouwu Zhang  MR 1158661 |  Zbl 0744.14016
[14] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 2, Springer-Verlag, 1984  MR 732620 |  Zbl 0541.14005
[15] H. Gillet & C. Soulé, “Analytic torsion and the arithmetic Todd genus”, Topology 30 (1991) no. 1, p. 21-54, With an appendix by D. Zagier Article |  MR 1081932 |  Zbl 0787.14005
[16] Henri Gillet & Christophe Soulé, “Arithmetic intersection theory”, Inst. Hautes Études Sci. Publ. Math. (1990) no. 72, p. 93-174 (1991) Numdam |  MR 1087394 |  Zbl 0741.14012
[17] Henri Gillet & Christophe Soulé, “Characteristic classes for algebraic vector bundles with Hermitian metric. I”, Ann. of Math. (2) 131 (1990) no. 1, p. 163-203 Article |  MR 1038362 |  Zbl 0715.14018
[18] Henri Gillet & Christophe Soulé, “Characteristic classes for algebraic vector bundles with Hermitian metric. II”, Ann. of Math. (2) 131 (1990) no. 2, p. 205-238 Article |  MR 1043268 |  Zbl 0715.14006
[19] Henri Gillet & Christophe Soulé, “An arithmetic Riemann-Roch theorem”, Invent. Math. 110 (1992) no. 3, p. 473-543 Article |  MR 1189489 |  Zbl 0777.14008
[20] Walter Gubler, “Moving lemma for $K_1$-chains”, J. Reine Angew. Math. 548 (2002), p. 1-19 Article |  MR 1915208 |  Zbl 1016.14002
[21] Serge Lang, Introduction to Arakelov theory, Springer-Verlag, 1988  MR 969124 |  Zbl 0667.14001
[22] Pierre Lelong, “Intégration sur un ensemble analytique complexe”, Bull. Soc. Math. France 85 (1957), p. 239-262 Numdam |  MR 95967 |  Zbl 0079.30901
[23] Damian Roessler, “An Adams-Riemann-Roch theorem in Arakelov geometry”, Duke Math. J. 96 (1999) no. 1, p. 61-126 Article |  MR 1663919 |  Zbl 0961.14006
[24] C. Soulé, Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics 33, Cambridge University Press, 1992, With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer  MR 1208731 |  Zbl 0812.14015
[25] Y. Zha, A General Arithmetic Riemann-Roch Theorem, thesis, Chicago University, 1998
top