logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Hélène Esnault; Phùng Hô Hai
The fundamental groupoid scheme and applications
(Le groupoïde fondamental et applications)
Annales de l'institut Fourier, 58 no. 7 (2008), p. 2381-2412, doi: 10.5802/aif.2418
Article PDF | Reviews MR 2498355 | Zbl 1167.14011
Class. Math.: 14F05, 14L17, 18D10
Keywords: Finite connection, tensor category, tangential fiber functor

Résumé - Abstract

We define a linear structure on Grothendieck’s arithmetic fundamental group $\pi _1(X, x)$ of a scheme $X$ defined over a field $k$ of characteristic 0. It allows us to link the existence of sections of the Galois group $\operatorname{Gal}(\bar{k}/k)$ to $\pi _1(X, x)$ with the existence of a neutral fiber functor on the category which linearizes it. We apply the construction to affine curves and neutral fiber functors coming from a tangent vector at a rational point at infinity, in order to follow this rational point in the universal covering of the affine curve.

Bibliography

[1] P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over ${\bf Q}$ (Berkeley, CA, 1987), Springer, 1989, p. 79–297  MR 1012168 |  Zbl 0742.14022
[2] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Birkhäuser, 1990, p. 111–195  MR 1106898 |  Zbl 0727.14010
[3] P. Deligne & J. Milne, “Tannakian Categories”, Lectures Notes in Mathematics, Springer-Verlag 900 (1982), p. 101-228  Zbl 0477.14004
[4] H. Esnault, P.H. Hai & X.-T. Sun, “On Nori group scheme”, Progress in Math., Birkhäuser 265 (2007), p. 375-396
[5] Hélène Esnault & Phùng Hô Hai, “The Gauss-Manin connection and Tannaka duality”, Int. Math. Res. Not. (2006), Art. ID 93978
Article |  MR 2211153 |  Zbl 1105.14012
[6] A. Grothendieck, “Revêtements étales et groupe fondamental, SGA 1”, Lectures Notes in Mathematics, Springer-Verlag 224 (1971)  MR 354651
[7] Alexander Grothendieck, Brief an G. Faltings, Geometric Galois actions, 1, Cambridge Univ. Press, 1997, p. 49–58  MR 1483106 |  Zbl 0901.14002
[8] P.H. Hai, “A construction of a quotient category”, 24 pages, preprint, 2006
[9] Nicholas M. Katz, “On the calculation of some differential Galois groups”, Invent. Math. 87 (1987) no. 1, p. 13-61
Article |  MR 862711 |  Zbl 0609.12025
[10] Madhav V. Nori, “On the representations of the fundamental group”, Compositio Math. 33 (1976) no. 1, p. 29-41
Numdam |  MR 417179 |  Zbl 0337.14016
[11] Madhav V. Nori, “The fundamental group-scheme”, Proc. Indian Acad. Sci. Math. Sci. 91 (1982) no. 2, p. 73-122
Article |  MR 682517 |  Zbl 0586.14006
top