logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Next article
Mattias Jonsson; Elizabeth Wulcan
On Bochner-Martinelli residue currents and their annihilator ideals
(Sur les courants résiduels de type Bochner-Martinelli et leurs idéaux annihilateurs)
Annales de l'institut Fourier, 59 no. 6 (2009), p. 2119-2142, doi: 10.5802/aif.2485
Article: subscription required (your ip address: 54.89.20.246) | Reviews MR 2640915 | Zbl 1189.32003 | 1 citation in Cedram
Class. Math.: 32A26, 32A27, 32S45
Keywords: Residue current, annihilator ideal, Rees valuation

Résumé - Abstract

We study the residue current $R^f$ of Bochner-Martinelli type associated with a tuple $f=(f_1,\dots ,f_m)$ of holomorphic germs at $0\in \mathbf{C}^n$, whose common zero set equals the origin. Our main results are a geometric description of $R^f$ in terms of the Rees valuations associated with the ideal $(f)$ generated by $f$ and a characterization of when the annihilator ideal of $R^f$ equals $(f)$.

Bibliography

[1] M. Andersson, “Uniqueness and factorization of Coleff-Herrera currents”, Preprint, to appear in Ann. Fac. Sci. Toulouse Math arXiv
[2] M. Andersson, “Residue currents and ideals of holomorphic functions”, Bull. Sci. Math. 128 (2004) no. 6, p. 481-512 Article |  MR 2074610 |  Zbl 1086.32005
[3] M. Andersson, “Residues of holomorphic sections and Lelong currents”, Ark. Mat. 43 (2005) no. 2, p. 201-219 Article |  MR 2172988 |  Zbl 1103.32020
[4] M. Andersson & E. Götmark, “Explicit representation of membership of polynomial ideals”, Preprint, Göteborg, available at arXiv:0806.2592 arXiv
[5] M. Andersson, H. Samuelsson & J. Sznajdman, “On the Briancon-Skoda theorem on a singular variety”, Preprint, to appear in Ann. Inst. Fourier arXiv
[6] M. Andersson & E. Wulcan, “Decomposition of residue currents”, to appear in Journal für die reine und angewandte Mathematik, available at arXiv:0710.2016 arXiv
[7] M. Andersson & E. Wulcan, “Residue currents with prescribed annihilator ideals”, Ann. Sci. École Norm. Sup. 40 (2007) no. 6, p. 985-1007 Numdam |  MR 2419855 |  Zbl 1143.32003
[8] C. A. Berenstein, R. Gay, A. Vidras & A. Yger, Residue currents and Bezout identities, Progress in Mathematics 114, Birkhäuser Verlag, 1993  MR 1249478 |  Zbl 0802.32001
[9] C. A. Berenstein & A. Yger, “Analytic residue theory in the non-complete intersection case”, J. Reine Angew. Math. 527 (2000), p. 203-235 Article |  MR 1794023 |  Zbl 0960.32004
[10] J-E. Björk, Residues and $\mathcal{D}$-modules, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, p. 605-651  MR 2077588 |  Zbl 1069.32001
[11] J. Briançon & H. Skoda, “Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de $\mathbb{C}^n$”, C. R. Acad. Sci. Paris Sér. A 278 (1974), p. 949-951  MR 340642 |  Zbl 0307.32007
[12] W. Bruns & J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993  MR 1251956 |  Zbl 0788.13005
[13] N. Coleff & M. Herrera, Les courants résiduels associcés à une forme méromorphe, Lecture Notes in Mathematics 633, Springer Verlag, Berlin, 1978  MR 492769 |  Zbl 0371.32007
[14] A. Dickenstein & C. Sessa, “Canonical representatives in moderate cohomology”, Invent. Math. 80 (1985), p. 417-434 Article |  MR 791667 |  Zbl 0556.32005
[15] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer Verlag, Berlin, 1977  MR 463157 |  Zbl 0367.14001
[16] W. Heinzer, L. J. Ratliff & K. Shah, “On the irreducible components of an ideal”, Comm. Algebra 25 (1997) no. 5, p. 1609-1634 Article |  MR 1444023 |  Zbl 0872.13002
[17] M. Hickel, “Une note à propos du Jacobien de $n$ fonctions holomorphes à l’origine de $\mathbb{C}^n$”, Preprint, 2007 arXiv |  Zbl 1154.32010
[18] C. Huneke & I. Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series 336, Cambridge University Press, Cambridge, 2006  MR 2266432 |  Zbl 1117.13001
[19] R. Lazarsfeld, Positivity in algebraic geometry. I & II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 48, 49, Springer-Verlag, Berlin, 2004  MR 2095471 |  Zbl 1093.14500
[20] M. Passare, “Residues, currents, and their relation to ideals of holomorphic functions”, Math. Scand. 62 (1988) no. 1, p. 75-152  MR 961584 |  Zbl 0633.32005
[21] M. Passare, A. Tsikh & A. Yger, “Residue currents of the Bochner-Martinelli type”, Publ. Mat. 44 (2000), p. 85-117  MR 1775747 |  Zbl 0964.32003
[22] B. Teissier, Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981), Lecture Notes in Mathematics 961, Springer-Verlag, Berlin, 1982  MR 708342 |  Zbl 0585.14008
[23] A.. Vidras & A. Yger, “On some generalizations of Jacobi’s residue formula”, Ann. Sci. École Norm. Sup. 34 (2001) no. 1, p. 131-157 Numdam |  MR 1833092 |  Zbl 0991.32003
[24] E. Wulcan, “Residue currents constructed from resolutions of monomial ideals”, To appear in Math. Z.  available at arXiv:math/0702847 arXiv |  Zbl pre05565285
[25] E. Wulcan, “Residue currents of monomial ideals”, Indiana Univ. Math. J. 56 (2007) no. 1, p. 365-388 Article |  MR 2305939 |  Zbl 1120.32004
top