logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Peter HaÏssinsky
Empilements de cercles et modules combinatoires
(Circle packings and combinatorial moduli)
Annales de l'institut Fourier, 59 no. 6 (2009), p. 2175-2222, doi: 10.5802/aif.2488
Article: subscription required (your ip address: 54.90.128.222) | Reviews MR 2640918 | Zbl 1189.30080
Class. Math.: 52C26, 30C62, 30F10, 30F40
Keywords: Circle packings, quasiconformal, modulus of curves

Résumé - Abstract

The aim of this article is to explain the deep relationships between circle-packings and combinatorial moduli of curves, and to compare the approaches to Cannon’s conjecture to which they lead.

Bibliography

[1] Lars V. Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966  MR 2241787 |  Zbl 0138.06002
[2] Lars V. Ahlfors, Conformal invariants : topics in geometric function theory, McGraw-Hill Book Co., 1973, McGraw-Hill Series in Higher Mathematics  MR 357743 |  Zbl 0272.30012
[3] B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Math. 1351, Springer, 1988, p. 52–68  MR 982072 |  Zbl 0662.46037
[4] Mario Bonk & Bruce Kleiner, “Quasisymmetric parametrizations of two-dimensional metric spheres”, Invent. Math. 150 (2002) no. 1, p. 127-183 Article |  MR 1930885 |  Zbl 1037.53023
[5] Mario Bonk & Bruce Kleiner, “Rigidity for quasi-Möbius group actions”, J. Differential Geom. 61 (2002) no. 1, p. 81-106 Article |  MR 1949785 |  Zbl 1044.37015
[6] Mario Bonk & Bruce Kleiner, “Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary”, Geom. Topol. 9 (2005), p. 219-246 (electronic) Article |  MR 2116315 |  Zbl 1087.20033
[7] James W. Cannon, The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, 1991, p. 315–369  MR 1130181 |  Zbl 0764.57002
[8] James W. Cannon, “The combinatorial Riemann mapping theorem”, Acta Math. 173 (1994) no. 2, p. 155-234 Article |  MR 1301392 |  Zbl 0832.30012
[9] James W. Cannon, William J. Floyd & Walter R. Parry, Squaring rectangles : the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus : groups, geometry and special functions (Brooklyn, NY, 1992), Contemp. Math. 169, Amer. Math. Soc., 1994, p. 133–212  MR 1292901 |  Zbl 0818.20043
[10] James W. Cannon, William J. Floyd & Walter R. Parry, “Sufficiently rich families of planar rings”, Ann. Acad. Sci. Fenn. Math. 24 (1999) no. 2, p. 265-304  MR 1724092 |  Zbl 0939.20048
[11] James W. Cannon & Eric L. Swenson, “Recognizing constant curvature discrete groups in dimension $3$”, Trans. Amer. Math. Soc. 350 (1998) no. 2, p. 809-849 Article |  MR 1458317 |  Zbl 0910.20024
[12] Yves Colin de Verdière, “Un principe variationnel pour les empilements de cercles”, Invent. Math. 104 (1991) no. 3, p. 655-669 Article |  MR 1106755 |  Zbl 0745.52010
[13] Mikhael Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math. 53 (1981), p. 53-73 Numdam |  MR 623534 |  Zbl 0474.20018
[14] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, 2001  MR 1800917 |  Zbl 0985.46008
[15] Juha Heinonen & Pekka Koskela, “Quasiconformal maps in metric spaces with controlled geometry”, Acta Math. 181 (1998) no. 1, p. 1-61 Article |  MR 1654771 |  Zbl 0915.30018
[16] Stephen Keith, “Modulus and the Poincaré inequality on metric measure spaces”, Math. Z. 245 (2003) no. 2, p. 255-292 Article |  MR 2013501 |  Zbl 1037.31009
[17] Stephen Keith & Tomi Laakso, “Conformal Assouad dimension and modulus”, Geom. Funct. Anal. 14 (2004) no. 6, p. 1278-1321 Article |  MR 2135168 |  Zbl 1108.28008
[18] Paul Koebe, “Kontaktprobleme der konformen Abbildung”, Ber. Sächs. Akad. Wiss. Leipzig, Math.-phys 88 (1936), p. 141-164  JFM 62.1217.04
[19] Jun-iti Nagata, Modern dimension theory, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965  MR 208571
[20] Pierre Pansu, “Dimension conforme et sphère à l’infini des variétés à courbure négative”, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989) no. 2, p. 177-212  MR 1024425 |  Zbl 0722.53028
[21] Burt Rodin & Dennis Sullivan, “The convergence of circle packings to the Riemann mapping”, J. Differential Geom. 26 (1987) no. 2, p. 349-360 Article |  MR 906396 |  Zbl 0694.30006
[22] Oded Schramm, “Square tilings with prescribed combinatorics”, Israel J. Math. 84 (1993) no. 1-2, p. 97-118 Article |  MR 1244661 |  Zbl 0788.05019
[23] William P. Thurston, “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc. (N.S.) 6 (1982) no. 3, p. 357-381 Article |  MR 648524 |  Zbl 0496.57005
[24] Jeremy Tyson, “Metric and geometric quasiconformality in Ahlfors regular Loewner spaces”, Conform. Geom. Dyn. 5 (2001), p. 21-73 (electronic) Article |  MR 1872156 |  Zbl 0981.30015
[25] Jussi Väisälä, “Quasi-Möbius maps”, J. Analyse Math. 44 (1984/85), p. 218-234 Article |  MR 801295 |  Zbl 0593.30022
top