logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Mats Andersson; Håkan Samuelsson; Jacob Sznajdman
On the Briançon-Skoda theorem on a singular variety
(Sur le théorème de Briançon-Skoda sur une variété singulière)
Annales de l'institut Fourier, 60 no. 2 (2010), p. 417-432, doi: 10.5802/aif.2527
Article PDF | Reviews MR 2667781 | Zbl 1200.32007 | 1 citation in Cedram
Class. Math.: 32C30, 32A27, 13A05
Keywords: Briançon-Skoda theorem, analytic space, residue current

Résumé - Abstract

Let $Z$ be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring $\mathcal{O}_Z$; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.

Bibliography

[1] Mats Andersson, “Coleff-Herrera currents, duality, and Noetherian operators”, Preprint Gothenburg (2009), available at arXiv:0902.3064 arXiv
[2] Mats Andersson, “A residue criterion for strong holomorphicity”, Ark. Mat., (to appear) available at arXiv:0711.2863 arXiv
[3] Mats Andersson, “Integral representation with weights. I”, Math. Ann. 326 (2003) no. 1, p. 1-18 Article |  MR 1981609 |  Zbl 1024.32005
[4] Mats Andersson, “Residue currents and ideals of holomorphic functions”, Bull. Sci. Math. 128 (2004) no. 6, p. 481-512 Article |  MR 2074610 |  Zbl 1086.32005
[5] Mats Andersson, “Explicit versions of the Briançon-Skoda theorem with variations”, Michigan Math. J. 54 (2006) no. 2, p. 361-373 Article |  MR 2252765 |  Zbl 1155.32004
[6] Mats Andersson, “Integral representation with weights. II. Division and interpolation”, Math. Z. 254 (2006) no. 2, p. 315-332 Article |  MR 2262705 |  Zbl 1104.32002
[7] Mats Andersson & E. Götmark, “Explicit representation of membership of polynomial ideals”, Preprint Mittag-Leffler (2008), available at arXiv:0806.2592 arXiv
[8] Mats Andersson & Håkan Samuelsson, “Koppelman formulas and the $\bar{\partial }$-equation on an analytic space”, Preprint Mittag-Leffler (2008), available at arXiv:0801.0710 arXiv
[9] Mats Andersson & Elizabeth Wulcan, “Decomposition of residue currents”, J. reine angew. Math., (to appear), available at arXiv:0710.2016 arXiv
[10] Mats Andersson & Elizabeth Wulcan, “Residue currents with prescribed annihilator ideals”, Ann. Sci. École Norm. Sup. (4) 40 (2007) no. 6, p. 985-1007 Numdam |  MR 2419855 |  Zbl 1143.32003
[11] Carlos A. Berenstein, Roger Gay, Alekos Vidras & Alain Yger, Residue currents and Bezout identities, Progress in Mathematics 114, Birkhäuser Verlag, Basel, 1993  MR 1249478 |  Zbl 0802.32001
[12] Jan-Erik Björk, Residues and $\mathcal{D}$-modules, The legacy of Niels Henrik Abel, Springer, 2004, p. 605–651  MR 2077588
[13] Nicolas R. Coleff & Miguel E. Herrera, Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics 633, Springer, Berlin, 1978  MR 492769 |  Zbl 0371.32007
[14] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995, With a view toward algebraic geometry  MR 1322960 |  Zbl 0819.13001
[15] Gennadi Henkin & Mikael Passare, “Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths”, Invent. Math. 135 (1999) no. 2, p. 297-328 Article |  MR 1666771 |  Zbl 0932.32012
[16] Craig Huneke, “Uniform bounds in Noetherian rings”, Invent. Math. 107 (1992) no. 1, p. 203-223 Article |  MR 1135470 |  Zbl 0756.13001
[17] Eero Hyry & Orlando Villamayor U., “A Briançon-Skoda theorem for isolated singularities”, J. Algebra 204 (1998) no. 2, p. 656-665 Article |  MR 1624420 |  Zbl 0928.13006
[18] M. Jonsson & E. Wulcan, “On Bochner-Martinelli residue currents and their annihilator ideals”, Ann. Inst. Fourier (Grenoble) 59 (2009) no. 6, p. 2119-2142 Cedram
[19] M. Lejeune-Jalabert, B. Teissier & J.-J. Risler, “Clôture intégrale des idéaux et équisingularité”, Ann. Fac. Sci. Toulouse Math. (6) 17 (2008) no. 4, p. 781-859 Cedram |  MR 2499856 |  Zbl 1171.13005
[20] Joseph Lipman & Avinash Sathaye, “Jacobian ideals and a theorem of Briançon-Skoda”, Michigan Math. J. 28 (1981) no. 2, p. 199-222 Article |  MR 616270 |  Zbl 0438.13019
[21] Joseph Lipman & Bernard Teissier, “Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals”, Michigan Math. J. 28 (1981) no. 1, p. 97-116 Article |  MR 600418 |  Zbl 0464.13005
[22] Mikael Passare, August Tsikh & Alain Yger, “Residue currents of the Bochner-Martinelli type”, Publ. Mat. 44 (2000) no. 1, p. 85-117  MR 1775747 |  Zbl 0964.32003
[23] Håkan Samuelsson, “Regularizations of products of residue and principal value currents”, J. Funct. Anal. 239 (2006) no. 2, p. 566-593 Article |  MR 2261338 |  Zbl 1111.32005
[24] Günter Scheja, “Riemannsche Hebbarkeitssätze für Cohomologieklassen”, Math. Ann. 144 (1961), p. 345-360 Article |  MR 148941 |  Zbl 0112.38001
[25] Henri Skoda, “Application des techniques $L^{2}$ à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids”, Ann. Sci. École Norm. Sup. (4) 5 (1972), p. 545-579 Numdam |  MR 333246 |  Zbl 0254.32017
[26] Henri Skoda & Joël Briançon, “Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de ${\bf C}^{n}$”, C. R. Acad. Sci. Paris Sér. A 278 (1974), p. 949-951  MR 340642 |  Zbl 0307.32007
[27] J. Sznajdman, “An elementary proof of the Briançon-Skoda theorem”, Preprint Gothenburg 2008, available at arXiv:0807.0142 arXiv
[28] Elizabeth Wulcan, “Residue currents of monomial ideals”, Indiana Univ. Math. J. 56 (2007) no. 1, p. 365-388 Article |  MR 2305939 |  Zbl 1120.32004
top