logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Abdelmejid Bayad; Yilmaz Simsek
Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions
(Sommes de Dedekind liées aux formes modulaires de Jacobi et aux valeurs spéciales des fonctions zêta de Barnes)
Annales de l'institut Fourier, 61 no. 5 (2011), p. 1977-1993, doi: 10.5802/aif.2663
Article PDF | Reviews MR 2961845 | Zbl 1279.11044
Class. Math.: 11F20, 11F50, 11F66, 11F67, 11M41
Keywords: Elliptic Dedekind sums, modular forms, theta functions, ellpitic functions, Bernoulli functions, Jacobi modular forms

Résumé - Abstract

In this paper we study three new shifted sums of Apostol-Dedekind-Rademacher type. The first sums are written in terms of Jacobi modular forms, and the second sums in terms of cotangent and the third sums are expressed in terms of special values of the Barnes multiple zeta functions. These sums generalize the classical Dedekind-Rademacher sums. The main aim of this paper is to state and prove the Dedekind reciprocity laws satisfied by these new sums. As an application of our Dedekind reciprocity law we show how to derive all the well-known results on Dedekind reciprocity law studied by Hall-Wilson-Zagier, Beck-Berndt-Dieter, Katayama and Nagasaka-Ota-Sekine.

Bibliography

[1] A. Bayad, “Jacobi forms in two variables: Multiple elliptic Dedekind sums, The Kummer-von Staudt Clausen Congruences for elliptic Bernoulli functions and values of Hecke L-functions”, Preprint
[2] A. Bayad, “Sommes de Dedekind elliptiques et formes de Jacobi”, Ann. Instit. Fourier 51 Fasc. 1, (2001), p. 29-42 Cedram |  MR 1821066 |  Zbl 1034.11030
[3] A. Bayad, “Applications aux sommes elliptiques multiples d’Apostol-Dedekind-Zagier”, C.R.A.S Paris, Ser. I 339 fascicule 8, Série I, (2004), p. 539-532  MR 2099541 |  Zbl 1099.11025
[4] A. Bayad, “Sommes elliptiques multiples d’Apostol-Dedekind-Zagier”, C.R.A.S Paris, Ser. I 339 fascicule 7, Série I, (2004), p. 457-462  MR 2099541 |  Zbl 1099.11026
[5] M. Beck, “Dedekind cotangent sums”, Acta Arithmetica 109 (2003) no. 2, p. 109-130 Article |  MR 1980640 |  Zbl 1061.11043
[6] B. C. Berndt, “Reciprocity theorems for Dedekind sums and generalizations”, Adv. in Math. 23 (1977) no. 3, p. 285-316 Article |  MR 429711 |  Zbl 0342.10014
[7] B. C. Berndt & U. Dieter, “Sums involving the greatest integer function and Riemann-Stieltjes integration”, J. reine angew. Math. 337 (1982), p. 208-220  MR 676053 |  Zbl 0487.10002
[8] U. Dieter, “Cotangent sums, a further generalization of Dedekind sums”, J. Number Th. 18 (1984), p. 289-305 Article |  MR 746865 |  Zbl 0537.10005
[9] R. R. Hall, J. C. Wilson & D. Zagier, “Reciprocity formulae for general Dedekind-Rademacher sums”, Acta Arith. 73 (1995) no. 4, p. 389-396  MR 1366045 |  Zbl 0847.11020
[10] K. Katayama, “Barne’s Double zeta function, the Dedekind Sum and Ramanujan’s Formula”, Tokyo J. Math. 27 (2004) no. 1, p. 41-56 Article |  MR 2060073 |  Zbl 1075.11028
[11] K. Katayama, “Barne’s Multiple function and Apostol’s Generalized Dedekind Sum”, Tokyo J. Math. 27 (2004) no. 1, p. 57-74 Article |  MR 2060074 |  Zbl 1075.11029
[12] Y. Nagasaka, K. Ota & C. Sekine, “Generalizations of Dedekind sums and their reciprocity laws”, acta Arith 106 (2003) no. 4, p. 355-378 Article |  MR 1957911 |  Zbl 1055.11031
[13] K. Ota, “Derivatives of Dedekind sums and their reciprocity law”, Journal of Number Theory 98 (2003), p. 280-309 Article |  MR 1955418 |  Zbl 1038.11028
[14] S. N. M. Ruijsenaars, “On Barnes’ Multiple Zeta and Gamma Functions”, Advances in Mathematics 156 (2000), p. 107-132 Article |  MR 1800255 |  Zbl 0966.33013
[15] R. Sczech, “Dedekindsummen mit elliptischen Funktionen”, Invent.math 76 (1984), p. 523-551 Article |  MR 746541 |  Zbl 0521.10021
[16] A. Weil, Elliptic functions according to Eisenstein and Kronecker, (Ergeb. der Math. 88), Springer-Verlag, 1976  MR 562289 |  Zbl 0318.33004
top