logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
V. Balaji; A.J. Parameswaran
Tensor product theorem for Hitchin pairs – An algebraic approach
(Théorème du produit tensoriel pour des paires de Hitchin – Une approche algébrique)
Annales de l'institut Fourier, 61 no. 6 (2011), p. 2361-2403, doi: 10.5802/aif.2677
Article PDF | Reviews MR 2976315 | Zbl 1248.14046
Class. Math.: 14J60, 14D20
Keywords: Higgs semistable Hitchin pairs, Tannaka categories, group schemes, tensor products

Résumé - Abstract

We give an algebraic approach to the study of Hitchin pairs and prove the tensor product theorem for Higgs semistable Hitchin pairs over smooth projective curves defined over algebraically closed fields of characteristic zero and characteristic $p$, with $p$ satisfying some natural bounds. We also prove the corresponding theorem for polystable Hitchin pairs.

Bibliography

[1] V. Balaji & A. J. Parameswaran, “Semistable principal bundles. II. Positive characteristics”, Transform. Groups 8 (2003) no. 1, p. 3-36 Article |  MR 1959761 |  Zbl 1084.14013
[2] Peter Bardsley & R. W. Richardson, “Étale slices for algebraic transformation groups in characteristic $p$”, Proc. London Math. Soc. (3) 51 (1985) no. 2, p. 295-317 Article |  MR 794118 |  Zbl 0604.14037
[3] Alexander Beilinson & Vladimir Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications 51, American Mathematical Society, Providence, RI, 2004  MR 2058353 |  Zbl 1138.17300
[4] Indranil Biswas & Georg Schumacher, “Yang-Mills equation for stable Higgs sheaves”, Internat. J. Math. 20 (2009) no. 5, p. 541-556 Article |  MR 2526306 |  Zbl 1169.53017
[5] F. A. Bogomolov, “Holomorphic tensors and vector bundles on projective manifolds”, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978) no. 6, p. 1227-1287  MR 522939 |  Zbl 0439.14002
[6] P. Deligne & J. Milne, “Tannaka categories”, Springer Lecture Notes in Mathematics 900 (1982), p. 101-228 Article |  Zbl 0477.14004
[7] D. Gieseker, “On a theorem of Bogomolov on Chern classes of stable bundles”, Amer. J. Math. 101 (1979) no. 1, p. 77-85 Article |  MR 527826 |  Zbl 0431.14005
[8] Wim H. Hesselink, “Uniform instability in reductive groups”, J. Reine Angew. Math. 303/304 (1978), p. 74-96  MR 514673 |  Zbl 0386.20020
[9] N. J. Hitchin, “The self-duality equations on a Riemann surface”, Proc. London Math. Soc. (3) 55 (1987) no. 1, p. 59-126 Article |  MR 887284 |  Zbl 0634.53045
[10] Nigel Hitchin, “Stable bundles and integrable systems”, Duke Math. J. 54 (1987) no. 1, p. 91-114 Article |  MR 885778 |  Zbl 0627.14024
[11] S. Ilangovan, V. B. Mehta & A. J. Parameswaran, Semistability and semisimplicity in representations of low height in positive characteristic, A tribute to C. S. Seshadri (Chennai, 2002), Trends Math., Birkhäuser, 2003, p. 271–282  MR 2017588 |  Zbl 1067.20061
[12] George R. Kempf, “Instability in invariant theory”, Ann. of Math. (2) 108 (1978) no. 2, p. 299-316 Article |  MR 506989 |  Zbl 0406.14031
[13] Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31, Princeton University Press, Princeton, NJ, 1984  MR 766741 |  Zbl 0553.14020
[14] Y. Laszlo & C. Pauly, “The action of the Frobenius maps on rank $2$ vector bundles in characteristic $2$”, J. Algebraic Geom. 11 (2002) no. 2, p. 219-243 Article |  MR 1874113 |  Zbl 1080.14527
[15] V. B. Mehta & A. J. Parameswaran, Geometry of low height representations, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math. 16, Tata Inst. Fund. Res., 2002, p. 417–426  MR 1940675 |  Zbl 1060.20039
[16] Vikram Bhagvandas Mehta, Representations of algebraic groups and principal bundles on algebraic varieties, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, 2002, p. 629-635  MR 1957070 |  Zbl 1007.22020
[17] J.S. Milne, “Semisimple Lie algebras, algebraic groups, and tensor categories”, Milne’s home page, 2007
[18] Bao Châu Ngô, “Fibration de Hitchin et endoscopie”, Invent. Math. 164 (2006) no. 2, p. 399-453 Article |  MR 2218781 |  Zbl 1098.14023
[19] Madhav V. Nori, “The fundamental group-scheme”, Proc. Indian Acad. Sci. Math. Sci. 91 (1982) no. 2, p. 73-122 Article |  MR 682517 |  Zbl 0586.14006
[20] S. Ramanan & A. Ramanathan, “Some remarks on the instability flag”, Tohoku Math. J. (2) 36 (1984) no. 2, p. 269-291 Article |  MR 742599 |  Zbl 0567.14027
[21] A. Ramanathan, Stable principal bundles on a compact Riemann surface - Construction of moduli space, Ph. D. Thesis, Bombay University, Proc. Ind. Acad. Sci, 106 (1996), 301–328 and 421–449, 1976  MR 369747
[22] G. Rousseau, Instabilité dans les fibrés vectoriels (d’après Bogomolov), Algebraic surfaces (Orsay, 1976–78), Lecture Notes in Math. 868, Springer, 1981, p. 277–292  Zbl 0477.14012
[23] Jean-Pierre Serre, “Sur la semi-simplicité des produits tensoriels de représentations de groupes”, Invent. Math. 116 (1994) no. 1-3, p. 513-530 Article |  MR 1253203 |  Zbl 0816.20014
[24] Jean-Pierre Serre, “Moursund Lectures”, University of Oregon, Mathematics Department, 1998
[25] Jean-Pierre Serre, “Complète réductibilité”, Astérisque (2005) no. 299, p. 195-217, Séminaire Bourbaki. Vol. 2003/2004, Exp. No. 932, viii  MR 2167207 |  Zbl 1156.20313
[26] Carlos T. Simpson, “Higgs bundles and local systems”, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, p. 5-95 Numdam |  MR 1179076 |  Zbl 0814.32003
[27] Carlos T. Simpson, “Moduli of representations of the fundamental group of a smooth projective variety. I”, Inst. Hautes Études Sci. Publ. Math. (1994) no. 79, p. 47-129 Numdam |  MR 1307297 |  Zbl 0891.14005
top