Three-manifolds and Kähler groups
[Variétés trois-dimensionelles et groupes de Kähler]
Annales de l'Institut Fourier, Tome 62 (2012) no. 3, pp. 1081-1090.

On donne une preuve simple d’un résultat dû à Dimca et Suciu : un groupe de Kähler qui est aussi le groupe fondamental d’une variété trois-dimensionelle est fini. On montre également qu’un groupe qui est le groupe fondamental d’une variété trois-dimensionelle et en même temps le groupe fondamental d’une surface complexe compacte non-kählerienne est soit soit 2 .

We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is or 2 .

DOI : 10.5802/aif.2717
Classification : 32Q15, 57M05, 14F35, 32J15, 57M50
Keywords: three-manifold groups, Kähler groups
Mot clés : groupes fondamentaux des variétés trois-dimensionelles, groupes de Kähler
Kotschick, D. 1

1 Mathematisches Institut, LMU München, Theresienstr. 39, 80333 München, Germany
@article{AIF_2012__62_3_1081_0,
     author = {Kotschick, D.},
     title = {Three-manifolds and {K\"ahler} groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1081--1090},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {3},
     year = {2012},
     doi = {10.5802/aif.2717},
     mrnumber = {3013817},
     zbl = {1275.32018},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2717/}
}
TY  - JOUR
AU  - Kotschick, D.
TI  - Three-manifolds and Kähler groups
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 1081
EP  - 1090
VL  - 62
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2717/
DO  - 10.5802/aif.2717
LA  - en
ID  - AIF_2012__62_3_1081_0
ER  - 
%0 Journal Article
%A Kotschick, D.
%T Three-manifolds and Kähler groups
%J Annales de l'Institut Fourier
%D 2012
%P 1081-1090
%V 62
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2717/
%R 10.5802/aif.2717
%G en
%F AIF_2012__62_3_1081_0
Kotschick, D. Three-manifolds and Kähler groups. Annales de l'Institut Fourier, Tome 62 (2012) no. 3, pp. 1081-1090. doi : 10.5802/aif.2717. https://aif.centre-mersenne.org/articles/10.5802/aif.2717/

[1] Amorós, J. On the Malcev completion of Kähler groups, Comment. Math. Helv., Volume 71 (1996), pp. 192-212 | DOI | EuDML | MR | Zbl

[2] Amorós, J.; Burger, M.; Corlette, K.; Kotschick, D.; Toledo, D. Fundamental Groups of Compact Kähler Manifolds, Mathematical Surveys and Monographs, 44, Amer. Math. Soc., Providence, R.I., 1996 | MR | Zbl

[3] Barth, W.; Peters, C.; Van de Ven, A. Compact Complex Surfaces, Mathematical Surveys and Monographs, Springer-Verlag, Berlin, 1984 | MR | Zbl

[4] Buchdahl, N. On compact Kähler surfaces, Ann. Inst. Fourier, Volume 49 (1999), pp. 287-302 | DOI | EuDML | Numdam | MR | Zbl

[5] Carlson, J. A.; Toledo, D. Harmonic mapping of Kähler manifolds to locally symmetric spaces, Publ. Math. I.H.E.S., Volume 69 (1989), pp. 173-201 | EuDML | Numdam | MR | Zbl

[6] Dimca, A.; Suciu, A. I. Which 3-manifold groups are Kähler groups?, J. Eur. Math. Soc., Volume 11 (2009), pp. 521-528 | DOI | EuDML | MR | Zbl

[7] Gromov, M. Sur le groupe fondamental d’une variété kählérienne, C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989), pp. 67-70 | MR | Zbl

[8] Hempel, J. Virtually Haken manifolds, Combinatorial methods in topology and algebraic geometry (Contemp. Math.), Volume 44 (1985), pp. 149-155 | MR | Zbl

[9] Hempel, J. Residual finiteness for 3-manifolds, Combinatorial group theory and topology, ed. S. M. Gersten and J. R. Stallings, Ann. Math. Stud. vol. 111, Princeton Univ. Press, 1987 | MR | Zbl

[10] Hernández-Lamoneda, L. Non-positively curved 3-manifolds with non-Kähler π 1 , C. R. Acad. Sci. Paris Sér. I, Volume 332 (2001), pp. 249-252 | DOI | MR

[11] Johnson, F. E. A.; Rees, E. G. On the fundamental group of a complex algebraic manifold, Bull. London Math. Soc., Volume 19 (1987), pp. 463-466 | DOI | MR | Zbl

[12] Kirby, R.; W. H. Kazez Problems in Low-Dimensional Topology, Geometric Topology (AMS/IP Studies in Advanced Mathematics), Volume 2 part 2 (1997) | MR | Zbl

[13] Kleiner, B.; Lott, J. Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008), pp. 2587-2855 | DOI | MR

[14] Klingler, B. Kähler groups and duality, Preprint arXiv:1005.2836v1 [math.GR], 17 May 2010

[15] Kojima, S. Finite covers of 3-manifolds containing essential surfaces of Euler characteristic =0, Proc. Amer. Math. Soc., Volume 101 (1987), pp. 743-747 | MR | Zbl

[16] Kollár, J. Shafarevich maps and automorphic forms, Mathematical Surveys and Monographs, Princeton Univ. Press, Princeton, NJ, 1995 | MR | Zbl

[17] Luecke, L. Finite covers of 3-manifolds containing essential tori, Trans. Amer. Math. Soc., Volume 310 (1988), pp. 381-391 | MR | Zbl

[18] Milnor, J. W. A unique decomposition theorem for 3-manifolds, Amer. J. Math., Volume 84 (1962), pp. 1-7 | DOI | MR | Zbl

[19] Morgan, J. W.; Tian, G. Ricci flow and the Poincaré conjecture, Amer. Math. Soc. and Clay Math. Institute, 2007 | MR

[20] Nakamura, I. Towards classification of non-Kählerian complex surfaces, Sugaku Exp., Volume 2 (1989), pp. 209-229 | MR | Zbl

[21] Perelman, G. Ricci flow with surgery on three-manifolds, Preprint arXiv:math/0303109v1 [math.DG], 10 Mar 2003

[22] Perelman, G. The entropy formula for the Ricci flow and its geometric applications, Preprint arXiv:math/0211159v1 [math.DG], 11 Nov 2002

[23] Scott, P. The geometries of 3-manifolds, Bull. London Math. Soc., Volume 15 (1983), pp. 401-487 | DOI | MR | Zbl

[24] Taubes, C. H. The existence of anti-self-dual conformal structures, J. Differential Geometry, Volume 36 (1992), pp. 163-253 | MR | Zbl

[25] Toledo, D. Examples of fundamental groups of compact Kähler manifolds, Bull. London Math. Soc., Volume 22 (1990), pp. 339-343 | DOI | MR | Zbl

Cité par Sources :