logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Corinne Blondel
Représentation de Weil et $\beta $-extensions
(Weil representation and $\beta $-extensions)
Annales de l'institut Fourier, 62 no. 4 (2012), p. 1319-1366, doi: 10.5802/aif.2724
Article PDF | Reviews MR 3025745 | Zbl 1263.22010
See also an erratum to this article
Class. Math.: 22E50
Keywords: Local non-archimedean field, classical group, Weil representation, beta-extension, semi-simple type, semi-simple character, cover, Hecke algebra, reducibility points.

Disclaimer

The printed and posted PDF version of these lectures contain an error in the reference list. This error is fixed in the online version of the bibliography below.

Résumé - Abstract

We study $\beta $-extensions in a $p$-adic classical group and we produce a relation between some $\beta $-extensions by means of a Weil representation. We apply this to the study of reducibility points of some parabolically induced representations.

Bibliography

[1] L. Blasco & C. Blondel, “Algèbres de Hecke et séries principales généralisées de $Sp_4(F)$”, Proc. London Math. Soc. 85(3) (2002), p. 659-685 Article |  MR 1936816 |  Zbl 1017.22010
[2] C. Blondel, “Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N)”, Ann. scient. Ec. Norm. Sup. 37 (2004), p. 533-558 Numdam |  MR 2097892 |  Zbl 1063.22016
[3] C. Blondel, Covers and propagation in symplectic groups, Functional analysis IX, Various Publ. Ser. (Aarhus), Univ. Aarhus, 2007, p. 16-31  MR 2349437 |  Zbl 1139.22013
[4] C. Blondel & S. Stevens, “Genericity of supercuspidal representations of $p$-adic $\text{Sp}4$”, Compositio Math. 145(1) (2009), p. 213-246 Article |  MR 2480501 |  Zbl 1217.22013
[5] C.J. Bushnell & P.C. Kutzko, The admissible dual of $\text{GL}(N)$ via compact open subgroups, Annals of Mathematics Studies 129, Princeton, 1993  MR 1204652 |  Zbl 0787.22016
[6] C.J. Bushnell & P. Kutzko, “Smooth representations of reductive $p$-adic groups : structure theory via types”, Proc. London Math. Soc. 77 (1998), p. 582-634 Article |  MR 1643417 |  Zbl 0911.22014
[7] C.J. Bushnell & P. Kutzko, “Semisimple types in $\text{GL}_n$”, Compositio Math. 119 (1999), p. 53-97 Article |  MR 1711578 |  Zbl 0933.22027
[8] W.T. Gan & S. Takeda, “The Local Langlands Conjecture for $Sp(4)$”, Int. Math. Res. Not. 2010 (2010), p. 2987-3038  MR 2673717 |  Zbl 1239.11061
[9] P. Gérardin, “Weil representations associated to finite fields”, J. of Algebra 46 (1977), p. 54-101 Article |  MR 460477 |  Zbl 0359.20008
[10] D. Goldberg, P. Kutzko & S. Stevens, “Covers for self-dual supercuspidal representations of the Siegel Levi subgroup of classical p-adic groups”, Int. Math. Res. Not. 2007 (2007)  MR 2376206 |  Zbl 1133.22010
[11] R. Howlett & G. Lehrer, “Induced cuspidal representations and generalised Hecke rings”, Invent. Math. 58 (1980), p. 37-64 Article |  MR 570873 |  Zbl 0435.20023
[12] C. Jantzen, “Discrete series for $p$-adic $\text{SO}(2n) $ and restrictions of representations of $ {\mathrm{O}}(2n)$”, to appear in Canadian Journal of Mathematics (2011)  Zbl 1219.22016
[13] P. Kutzko & L. Morris, “Level zero Hecke algebras and parabolic induction : the Siegel case for split classical groups”, Int. Math. Res. Not. 2006 (2006)  MR 2276353 |  Zbl 1115.22013
[14] C. Mœglin, “Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales ; le cas des groupes classiques p-adiques”, Ann. of Math. 151 (2000), p. 817-847 Article |  MR 1765711 |  Zbl 0956.22012
[15] L. Morris, “Tamely ramified intertwining algebras”, Ann. of Math. 114 (1993), p. 1-54  MR 1235019 |  Zbl 0854.22022
[16] M. Neuhauser, “An explicit construction of the metaplectic representation over a finite field”, J. of Lie Theory 12 (2002), p. 15-30  MR 1885034 |  Zbl 1026.22018
[17] F. Shahidi, “A proof of Langlands conjecture on Plancherel measure ; complementary series for p-adic groups”, Ann. of Math. 132 (1990), p. 273-330 Article |  MR 1070599 |  Zbl 0780.22005
[18] A. Silberger, “Special representations of reductive p-adic groups are not integrable”, Ann. of Math. 111 (1980), p. 571-587 Article |  MR 577138 |  Zbl 0437.22015
[19] S. Stevens, “Double coset decomposition and intertwining”, manuscripta math. 106 (2001), p. 349-364 Article |  MR 1869226 |  Zbl 0988.22008
[20] S. Stevens, “Semisimple characters for $p$-adic classical groups”, Duke Math. J. 127(1) (2005), p. 123-173 Article |  MR 2126498 |  Zbl 1063.22018
[21] S. Stevens, “The supercuspidal representations of $p$-adic classical groups”, Invent. Math. 172 (2008), p. 289-352 Article |  MR 2390287 |  Zbl 1140.22016
[22] F. Szechtman, “Weil representations of the symplectic group”, J. of Algebra 208 (1998), p. 662-686 Article |  MR 1655472 |  Zbl 0932.20047
[23] Y. Zhang, “Discrete series of classical groups”, Canad. J. Math. 52(5) (2000), p. 1101-1120 Article |  MR 1782340 |  Zbl 0961.22013
top