logo ANNALES DE L'INSTITUT FOURIER

With cedram.org
Table of contents for this issue | Previous article | Next article
Nicolas Perrin
Spherical varieties and Wahl’s conjecture
(Variétés sphériques et conjecture de Wahl)
Annales de l'institut Fourier, 64 no. 2 (2014), p. 739-751, doi: 10.5802/aif.2864
Article PDF | Reviews MR 3330921 | Zbl 06387291
Class. Math.: 14M27, 14M15, 20G10
Keywords: Frobenius splitting, spherical varieties, Wahl’s conjecture

Résumé - Abstract

Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.

Bibliography

[1] P. Achinger & N. Perrin, “On spherical multiple flags”, Preprint arXiv:1307.7236, 2013
[2] N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1954  Zbl 0483.22001
[3] M. Brion & S. P. Inamdar, Frobenius splitting of spherical varieties, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), Proc. Sympos. Pure Math. 56, Amer. Math. Soc., 1994, p. 207-218  MR 1278708 |  Zbl 0820.14032
[4] Michel Brion & Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics 231, Birkhäuser, Boston, MA, 2005  MR 2107324 |  Zbl 1072.14066
[5] J. Brown & V. Lakshmibai, “Wahl’s conjecture for a minuscule $G/P$”, Proc. Indian Acad. Sci. Math. Sci. 119 (2009) no. 5, p. 571-592 Article |  MR 2598420 |  Zbl 1192.14036
[6] C. De Concini & T. A. Springer, “Compactification of symmetric varieties”, Transform. Groups 4 (1999) no. 2-3, p. 273-300, Dedicated to the memory of Claude Chevalley Article |  MR 1712864 |  Zbl 0966.14035
[7] Stephen Donkin, “Invariants of unipotent radicals”, Math. Z. 198 (1988) no. 1, p. 117-125 Article |  MR 938033 |  Zbl 0627.14013
[8] A. G. Helminck & S. P. Wang, “On rationality properties of involutions of reductive groups”, Adv. Math. 99 (1993) no. 1, p. 26-96 Article |  MR 1215304 |  Zbl 0788.22022
[9] Friedrich Knop, The Luna-Vust theory of spherical embeddings, in Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, 1991, p. 225-249  MR 1131314 |  Zbl 0812.20023
[10] Shrawan Kumar, “Proof of Wahl’s conjecture on surjectivity of the Gaussian map for flag varieties”, Amer. J. Math. 114 (1992) no. 6, p. 1201-1220 Article |  MR 1198300 |  Zbl 0790.14015
[11] V. Lakshmibai, V. B. Mehta & A. J. Parameswaran, “Frobenius splittings and blow-ups”, J. Algebra 208 (1998) no. 1, p. 101-128 Article |  MR 1643983 |  Zbl 0955.14006
[12] Venkatramani Lakshmibai, Komaranapuram N. Raghavan & Parameswaran Sankaran, “Wahl’s conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians”, Cent. Eur. J. Math. 7 (2009) no. 2, p. 214-223 Article |  MR 2506962 |  Zbl 1200.14100
[13] Niels Lauritzen & Jesper Funch Thomsen, “Maximal compatible splitting and diagonals of Kempf varieties”, Ann. Inst. Fourier (Grenoble) 61 (2011) no. 6, p. 2543-2575 (2012) Article |  MR 2976320 |  Zbl 1251.14037
[14] Peter Littelmann, “On spherical double cones”, J. Algebra 166 (1994) no. 1, p. 142-157 Article |  MR 1276821 |  Zbl 0823.20040
[15] V. B. Mehta & A. J. Parameswaran, “On Wahl’s conjecture for the Grassmannians in positive characteristic”, Internat. J. Math. 8 (1997) no. 4, p. 495-498 Article |  MR 1460897 |  Zbl 0914.14021
[16] Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 15, Springer-Verlag, Berlin, 1988  MR 922894 |  Zbl 0628.52002
[17] John R. Stembridge, “Multiplicity-free products and restrictions of Weyl characters”, Represent. Theory 7 (2003), p. 404-439 (electronic) Article |  MR 2017064 |  Zbl 1060.17001
[18] Jesper Funch Thomsen, “A proof of Wahl’s conjecture in the symplectic case”, Transform. Groups 18 (2013) no. 1, p. 263-286 Article |  MR 3022765 |  Zbl 1271.14024
[19] Thierry Vust, “Opération de groupes réductifs dans un type de cônes presque homogènes”, Bull. Soc. Math. France 102 (1974), p. 317-333 Numdam |  MR 366941 |  Zbl 0332.22018
[20] Jonathan Wahl, “Gaussian maps and tensor products of irreducible representations”, Manuscripta Math. 73 (1991) no. 3, p. 229-259 Article |  MR 1132139 |  Zbl 0764.20022
top